
Motif Reference Manual 1

Section 1 - Motif Functions and Macros
This page describes the format and contents of each reference page in Section 1,
which covers the Motif functions and macros.

Name
Function – a brief description of the function.

Synopsis
This section shows the signature of the function: the names and types of the argu-
ments, and the type of the return value. If header file other than <Xm/Xm.h> is
needed to declare the function, it is shown in this section as well.

Inputs
This subsection describes each of the function arguments that pass information to
the function.

Outputs
This subsection describes any of the function arguments that are used to return
information from the function. These arguments are always of some pointer type,
so you should use the C address-of operator (&) to pass the address of the varia-
ble in which the function will store the return value. The names of these argu-
ments are sometimes suffixed with _return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in this
section and in the "Inputs" section above. Finally, note that because the list of
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See the
function signature for the actual calling order.

Returns
This subsection explains the return value of the function, if any.

Availability
This section appears for functions that were added in Motif 2.0 and later, and also
for functions that are now superseded by other, preferred, functions.

Description
This section explains what the function does and describes its arguments and
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.

Usage
This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch out
for, and related functions that you might want to consider.

Motif Functions and Macros

2 Motif Reference Manual

Example
This section appears for some of the most commonly used Motif functions, and
provides an example of their use.

Structures
This section shows the definition of any structures, enumerated types, typedefs,
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the function.

See Also
This section refers you to related functions, widget classes, and clients. The num-
bers in parentheses following each reference refer to the sections of this book in
which they are found.

Motif Functions and Macros XmActivateProtocol

Motif Reference Manual 3

Name
XmActivateProtocol – activate a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmActivateProtocol (Widget shell, Atom property, Atom protocol)
Inputs

shell - Specifies the widget associated with the protocol property.
property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.

Description
XmActivateProtocol() activates the specified protocol. If the shell is real-
ized, XmActivateProtocol() updates its protocol handlers and the specified
property. If the protocol is active, the protocol atom is stored in property; if the
protocol is inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmActivateProtocol() makes the shell able to respond to ClientMessage
events that contain the specified protocol. Before you can activate a protocol, the
protocol must be added to the shell with XmAddProtocols(). Protocols are
automatically activated when they are added. The inverse routine is XmDeacti-
vateProtocol().

See Also
XmActivateWMProtocol(1), XmAddProtocols(1) XmDeactivate-
Protocol(1), XmInternAtom(1), VendorShell(2).

XmActivateWMProtocol Motif Functions and Macros

4 Motif Reference Manual

Name
XmActivateWMProtocol – activate the XA_WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmActivateWMProtocol (Widget shell, Atom protocol)
Inputs

shell - Specifies the widget associated with the protocol property.
protocol - Specifies the protocol atom.

Description
XmActivateWMProtocol() is a convenience routine that calls XmActi-
vateProtocol() with property set to XA_WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. Before you can activate the
protocols, they must be added to the shell with XmAddProtocols() or XmAd-
dWMProtocols(). Protocols are automatically activated when they are added.
The inverse routine is XmDeactivateWMProtocol().

See Also
XmActivateProtocol(1), XmAddProtocols(1),
XmAddWMProtocols(1), XmDeactivateWMProtocol(1),
XmInternAtom(1), VendorShell(2).

Motif Functions and Macros XmAddProtocolCallback

Motif Reference Manual 5

Name
XmAddProtocolCallback – add client callbacks to a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmAddProtocolCallback (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell - Specifies the widget associated with the protocol property.
property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.
callback - Specifies the procedure to invoke when the protocol message

 is received.
closure - Specifies any client data that is passed to the callback.

Description
XmAddProtocolCallback() adds client callbacks to a protocol. The routine veri-
fies that the protocol is registered, and if it is not, it calls XmAddProtocols().
XmAddProtocolCallback() adds the callback to the internal list of callbacks, so
that it is called when the corresponding client message is received.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmAddProtocolCallback() allows you to
register these callback routines.

See Also
XmAddProtocols(1), XmAddWMProtocolCallback(1),
XmInternAtom(1), VendorShell(2).

XmAddProtocols Motif Functions and Macros

6 Motif Reference Manual

Name
XmAddProtocols – add protocols to the protocol manager.

Synopsis
#include <Xm/Protocols.h>

void XmAddProtocols (Widget shell, Atom property, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddProtocols() registers a list of protocols to be stored in the specified
property of the specified shell widget. The routine adds the protocols to the pro-
tocol manager and allocates the internal tables that are needed for the protocol.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmAddProtocols() allows you to add protocols that can be understood by
your application. The inverse routine is XmRemoveProtocols(). To commu-
nicate using a protocol, a client sends a ClientMessage event containing a prop-
erty and protocol, and the receiving client responds by calling the associated
protocol callback routine. Use XmAddProtocolCallback() to add a call-
back function to be executed when a client message event containing the speci-
fied protocol atom is received.

See Also
XmAddProtocolCallback(1), XmAddWMProtocols(1),
XmInternAtom(1), XmRemoveProtocols(1), VendorShell(2).

Motif Functions and Macros XmAddTabGroup

Motif Reference Manual 7

Name
XmAddTabGroup – add a widget to a list of tab groups.

Synopsis
void XmAddTabGroup (Widget tab_group)

Inputs
tab_group Specifies the widget to be added.

Availability
In Motif 1.1, XmAddTabGroup() is obsolete. It has been superseded by setting
XmNnavigationType to XmEXCLUSIVE_TAB_GROUP.

Description
XmAddTabGroup() makes the specified widget a separate tab group. This rou-
tine is retained for compatibility with Motif 1.0 and should not be used in newer
applications. If traversal behavior needs to be changed, this should be done
directly by setting the XmNnavigationType resource, which is defined by Man-
ager and Primitive.

Usage
A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing
the Tab or Shift-Tab keys. If the tab_group widget is a manager, its children are
all members of the tab group (unless they are made into separate tab groups). If
the widget is a primitive, it is its own tab group. Certain widgets must not be
included with other widgets within a tab group. For example, each List, Scroll-
bar, OptionMenu, or multi-line Text widget must be placed in a tab group by
itself, since these widgets define special behavior for the arrow or Tab keys,
which prevents the use of these keys for widget traversal. The inverse routine is
XmRemoveTabGroup().

See Also
XmGetTabGroup(1), XmRemoveTabGroup(1),
XmManager(2), XmPrimitive(2).

XmAddToPostFromList Motif Functions and Macros

8 Motif Reference Manual

Name
XmAddToPostFromList – make a menu accessible from a widget.

Synopsis
#include <Xm/RowColumn.h>

void XmAddToPostFromList (Widget menu, Widget widget)
Inputs

menu Specifies a menu widget
widget Specifies the widget from which to make menu accessible

Availability
In Motif 2.0 and later, the function prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete.

Description
XmAddToPostFromList() is a convenience function which makes menu
accessible from widget. There is no limit to how many widgets may share the
same menu. The event sequence required to popup the menu is the same in each
widget context.

Usage
Rather than creating a new and identical hierarchy for each context in which a
pulldown or popup menu is required, a single menu can be created and shared. If
the type of the menu is XmMENU_PULLDOWN, the value of the XmNsubMen-
uId resource of widget is set to menu. If the type of the menu is
XmMENU_POPUP, button and key press event handlers are added to widget in
order to post the menu.

There are implicit assumptions that widget is a CascadeButton or CascadeBut-
tonGadget when menu is XmMENU_PULLDOWN, and that widget is not a
Gadget when menu is XmMENU_POPUP. These are not checked by the proce-
dure.

See Also
XmGetPostedFromWidget(1), XmRemoveFromPostFromList(1),
XmCascadeButton(2), XmCascadeButtonGadget(2), XmGadget(2),
XmPopupMenu(2), XmPulldownMenu(2), XmRowColumn(2).

Motif Functions and Macros XmAddWMProtocolCallback

Motif Reference Manual 9

Name
XmAddWMProtocolCallback – add client callbacks to an
XA_WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmAddWMProtocolCallback (Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
callback Specifies the procedure to invoke when the protocol message

 is received.
closure Specifies any client data that is passed to the callback.

Description
XmAddWMProtocolCallback() is a convenience routine that calls XmAd-
dProtocolCallback() with property set to XA_WM_PROTOCOL, the win-
dow manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containing a property and protocol,
and the receiving client responds by calling the associated protocol callback rou-
tine. XmAddWMProtocolCallback() allows you to register these callback
routines with the window manager protocol property. The inverse routine is
XmRemoveWMProtocolCallback().

Example
The following code fragment shows the use of XmAddWMProtocolCall-
back() to save the state of an application using the WM_SAVE_YOURSELF
protocol:

Atom wm_save_yourself;

wm_save_yourself = XInternAtom1 (XtDisplay
(toplevel),

1.From Motif 2.0, XmInternAtom() is marked for deprecation.

XmAddWMProtocolCallback Motif Functions and Macros

10 Motif Reference Manual

"WM_SAVE_YOURSELF"
, False);

XmAddWMProtocols (toplevel, &wm_save_yourself, 1);

XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocolCallback(1), XmInternAtom(1),
XmRemoveWMProtocolCallback(1), VendorShell(2).

Motif Functions and Macros XmAddWMProtocols

Motif Reference Manual 11

Name
XmAddWMProtocols – add the XA_WM_PROTOCOLS protocols to the proto-
col manager.

Synopsis
#include <Xm/Protocols.h>

void XmAddWMProtocols (Widget shell, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddWMProtocols() is a convenience routine that calls XmAddProtocols()
with property set to XA_WM_PROTOCOL, the window manager protocol prop-
erty.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmAddWMProtocols()
allows you to add this protocol so that it can be understood by your application.
The inverse routine is XmRemoveWMProtocols(). To communicate using a
protocol, a client sends a ClientMessage event containing a property and proto-
col, and the receiving client responds by calling the associated protocol callback
routine. Use XmAddWMProtocolCallback() to add a callback function to
be executed when a client message event containing the specified protocol atom
is received.

Example
The following code fragment shows the use of XmAddWMProtocols() to add the
window manager protocols, so that the state of an application can be saved using the
WM_SAVE_YOURSELF protocol:

Atom wm_save_yourself;

wm_save_yourself = XmInternAtom (XtDisplay
(toplevel),
"WM_SAVE_YOURSELF"
, False);

XmAddWMProtocols (toplevel, &wm_save_yourself, 1);

XmAddWMProtocols Motif Functions and Macros

12 Motif Reference Manual

XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocols(1), XmAddWMProtocolCallback(1),
XmInternAtom(1), XmRemoveWMProtocols(1), VendorShell(2).

Motif Functions and Macros XmCascadeButtonHighlight

Motif Reference Manual 13

Name
XmCascadeButtonHighlight, XmCascadeButtonGadgetHighlight – set the high-
light state of a CascadeButton.

Synopsis
#include <Xm/CascadeB.h>

void XmCascadeButtonHighlight (Widget cascadeButton, Boolean highlight)

#include <Xm/CascadeBG.h>

void XmCascadeButtonGadgetHighlight (Widget cascadeButton, Boolean high-
light)

Inputs
cascadeButton Specifies the CascadeButton or CascadeButtonGadget.
highlight Specifies the highlight state.

Description
XmCascadeButtonHighlight() sets the state of the shadow highlight
around the specified cascadeButton, which can be a CascadeButton or a Cas-
cadeButtonGadget.

XmCascadeButtonGadgetHighlight() sets the highlight state of the
specified cascadeButton, which must be a CascadeButtonGadget.

Both routines draw the shadow if highlight is True and erase the shadow if high-
light is False.

Usage
CascadeButtons do not normally display a shadow like other buttons, so the high-
light shadow is often used to show that the button is armed. XmCascadeBut-
tonHighlight() and XmCascadeButtonGadgetHighlight() provide a
way for you to cause the shadow to be displayed.

See Also
XmCascadeButton(2), XmCascadeButtonGadget(2).

XmChangeColor Motif Functions and Macros

14 Motif Reference Manual

Name
XmChangeColor – update the colors for a widget.

Synopsis
void XmChangeColor (Widget widget, Pixel background)

Inputs
widget Specifies the widget whose colors are to be changed.
background Specifies the background color.

Description
XmChangeColor() changes all of the colors for the specified widget based on
the new background color. The routine recalculates the foreground color, the
select color, the arm color, the trough color, and the top and bottom shadow
colors and updates the corresponding resources for the widget.

Usage
XmChangeColor() is a convenience routine for changing all of the colors for a
widget, based on the background color. Without the routine, an application
would have to call XmGetColors() to get the new colors and then set the XmN-
foreground, XmNtopShadowColor, XmNbottomShadowColor, XmNtrough-
Color, XmNarmColor, XmNselectColor resources for the widget with
XtSetValues(). The XmNhighlightColor is set to the value of the XmNfore-
ground.

XmChangeColor() calls XmGetColors() internally to allocate the required
pixels. In Motif 1.2 and earlier, this uses the default color calculation procedure
unless a customized color calculation procedure has been set with XmSet-
ColorCalculation(). In Motif 2.0 and later, color calculation can be speci-
fied on a per-screen basis, and any specified XmNcolorCalculationProc
procedure of the XmScreen object associated with the widget is used in prefer-
ence.

See Also
XmGetColorCalculation(1), XmGetColors(1),
XmSetColorCalculation(1), XmScreen(2).

Motif Functions and Macros XmClipboardBeginCopy

Motif Reference Manual 15

Name
XmClipboardBeginCopy – set up storage for a clipboard copy operation.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardBeginCopy (Display *display,
Window window,
XmString clip_label,
Widget widget,
VoidProc callback,
long *item_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
clip_label Specifies a label that is associated with the data item.
widget Specifies the widget that receives messages requesting data that

has been passed by name.
callback Specifies the callback function that is called when the clipboard

needs data that has been passed by name.
Outputs

item_id Returns the ID assigned to the data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardBeginCopy() is a convenience routine that calls XmClip-
boardStartCopy() with identical arguments and with a timestamp of Cur-
rentTime.

Usage
XmClipboardBeginCopy() can be used to start a normal copy operation or a
copy-by-name operation. In order to pass data by name, the widget and callback
arguments to XmClipboardBeginCopy() must be specified.

Procedures
The VoidProc has the following format:

typedef void (*VoidProc) (Widget widget, int *data_id, int *private_id, int
*reason)

XmClipboardBeginCopy Motif Functions and Macros

16 Motif Reference Manual

The VoidProc takes four arguments. The first argument, widget, is the widget
passed to the callback routine, which is the same widget as passed to XmClip-
boardBeginCopy(). The data_id argument is the ID of the data item that is
returned by XmClipboardCopy() and private_id is the private data passed to
XmClipboardCopy().

The reason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

See Also
XmClipboardCancelCopy(1), XmClipboardCopy(1),
XmClipboardCopyByName(1), XmClipboardEndCopy(1),
XmClipboardStartCopy(1).

Motif Functions and Macros XmClipboardCancelCopy

Motif Reference Manual 17

Name
XmClipboardCancelCopy – cancel a copy operation to the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardCancelCopy (Display *display, Window window, long item_id)
Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCancelCopy() cancels the copy operation that is in progress
and frees temporary storage that has been allocated for the operation. The func-
tion returns ClipboardFail if XmClipboardStartCopy() has not been called
or if the data item has too many formats.

Usage
A call to XmClipboardCancelCopy() is valid only between calls to
XmClipboardStartCopy() and XmClipboardEndCopy(). XmClip-
boardCancelCopy() can be called instead of XmClipboardEndCopy()
when you need to terminate a copying operation before it completes. If you have
previously locked the clipboard, XmClipboardCancelCopy() unlocks it, so
you should not call XmClipboardUnlock().

See Also
XmClipboardBeginCopy(1), XmClipboardCopy(1),
XmClipboardEndCopy(1), XmClipboardStartCopy(1).

XmClipboardCopy Motif Functions and Macros

18 Motif Reference Manual

Name
XmClipboardCopy – copy a data item to temporary storage for later copying to
the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardCopy (Display *display,
Window window,
long item_id,
char *format_name,
XtPointer buffer,
unsigned long length,
long private_id,
long *data_id)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
item_id Specifies the ID of the data item.
format_name Specifies the name of the format of the data item.
buffer Specifies the buffer from which data is copied to the clip-
board.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.

Outputs
data_id Returns an ID for a data item that is passed by name.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCopy() copies the data item specified by buffer to temporary
storage. The data item is moved to the clipboard data structure when XmClip-
boardEndCopy() is called. The item_id is the ID of the data item returned by
XmClipboardStartCopy() and format_name is a string that describes the
type of the data.

Motif Functions and Macros XmClipboardCopy

Motif Reference Manual 19

Since the data item is not actually stored in the clipboard until XmClip-
boardEndCopy() is called, multiple calls to XmClipboardCopy() add data item
formats to the same data item or will append data to an existing format. The func-
tion returns ClipboardFail if XmClipboardStartCopy() has not been called
or if the data item has too many formats.

Usage
XmClipboardCopy() is called between calls to XmClipboardStart-
Copy() and XmClipboardEndCopy(). If you need to make multiple calls to
XmClipboardCopy() to copy a large amount of data, you should call
XmClipboardLock() to lock the clipboard for the duration of the copy opera-
tion.

When there is a large amount of clipboard data and the data is unlikely to be
retrieved, it can be copied to the clipboard by name. Since the data itself is not
copied to the clipboard until it is requested with a retrieval operation, copying by
name can improve performance. To pass data by name, call XmClipboard-
Copy() with buffer specified as NULL. A unique number is returned in data_id
that identifies the data item for later use. When another application requests data
that has been passed by name, a callback requesting the actual data will be sent to
the application that owns the data and the owner must then call XmClipboard-
CopyByName() to transfer the data to the clipboard. Once data that is passed by
name has been deleted from the clipboard, a callback notifies the owner that the
data is no longer needed.

Example
The following callback shows the sequence of calls needed to copy data to the
clipboard:

void to_clipbd (Widget widget,

XtPointer client_data,

XtPointer call_data)

{

long item_id = 0;

int status;

XmString clip_label;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);

Window window = XtWindowOfObject (widget);

XmClipboardCopy Motif Functions and Macros

20 Motif Reference Manual

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);

clip_label = XmStringCreateLocalized ("Data");

/* start a copy; retry until unlocked */

do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);

XmStringFree (clip_label);

/* copy the data; retry until unlocked */

do {

status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,

(unsigned long) strlen
(buffer) + 1,

(long) 0, (long *) 0);

} while (status == ClipboardLocked);

/* end the copy; retry until unlocked */

do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

}

See Also
XmClipboardBeginCopy(1), XmClipboardCancelCopy(1),
XmClipboardCopyByName(1), XmClipboardEndCopy(1),
XmClipboardStartCopy(1).

Motif Functions and Macros XmClipboardCopyByName

Motif Reference Manual 21

Name
XmClipboardCopyByName – copy a data item passed by name.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardCopyByName (Display *display,
 Window window,
long data_id,
XtPointer buffer,
unsigned long length,
long private_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID number assigned to the data item by XmClip-
boardCopy().
buffer Specifies the buffer from which data is copied to the clipboard.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardCopyByName() copies the actual data to the clipboard for a data
item that has been previously passed by name. The data that is copied is specified
by buffer. The data_id is the ID assigned to the data item by XmClipboard-
Copy().

Usage
XmClipboardCopyByName() is typically used for incremental copying; new
data is appended to existing data with each call to XmClipboardCopyBy-
Name(). If you need to make multiple calls to XmClipboardCopyByName()
to copy a large amount of data, you should call XmClipboardLock() to lock
the clipboard for the duration of the copy operation.

Copying by name improves performance when there is a large amount of clip-
board data and when this data is likely never to be retrieved, since the data itself
is not copied to the clipboard until it is requested with a retrieval operation. Data
is passed by name when XmClipboardCopy() is called with a buffer value of
NULL. When a client requests the data passed by name, the callback registered

XmClipboardCopyByName Motif Functions and Macros

22 Motif Reference Manual

by XmClipboardStartCopy() is invoked. See XmClipboardStart-
Copy() for more information about the format of the callback. This callback calls
XmClipboardCopyByName() to copy the actual data to the clipboard.

Example
The following XmCutPasteProc callback shows the use of XmClipboard-
CopyByName() to copy data passed by name:

void copy_by_name (Widget widget,
long *data_id,
long *private_id;
int *reason)

{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;
char buffer[32];

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff");

do
status = XmClipboardCopyByName (dpy, win-

dow, *data_id,
(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);

while (status != ClipboardSuccess);
}

See Also
XmClipboardBeginCopy(1), XmClipboardCopy(1),
XmClipboardEndCopy(1), XmClipboardStartCopy(1).

Motif Functions and Macros XmClipboardEndCopy

Motif Reference Manual 23

Name
XmClipboardEndCopy – end a copy operation to the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardEndCopy (Display *display, Window window, long item_id)
Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardEndCopy() locks the clipboard, places data that has been accu-
mulated by calling XmClipboardCopy() into the clipboard data structure, and
then unlocks the clipboard. The item_id is the ID of the data item returned by
XmClipboardStartCopy(). The function returns ClipboardFail if XmClip-
boardStartCopy() has not been called previously.

Usage
XmClipboardEndCopy() frees temporary storage that was allocated by
XmClipboardStartCopy(). XmClipboardStartCopy() must be called
before XmClipboardEndCopy(), which does not need to be called if
XmClipboardCancelCopy() has already been called.

Example
The following callback shows the sequence of calls needed to copy data to the
clipboard:

static void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
long item_id = 0;
int status;
XmString clip_label;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

XmClipboardEndCopy Motif Functions and Macros

24 Motif Reference Manual

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);
clip_label = XmStringCreateLocalized ("Data");

/* start a copy; retry until unlocked */
do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do

status = XmClipboardCopy (dpy, window,
item_id, "STRING",

(XtPointer) buffer,
(unsigned
long)strlen(buffer)+1,
0, NULL);

while (status == ClipboardLocked);

/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);
}

See Also
XmClipboardBeginCopy(1), XmClipboardCancelCopy(1),
XmClipboardCopy(1), XmClipboardCopyByName(1),
XmClipboardStartCopy(1).

Motif Functions and Macros XmClipboardEndRetrieve

Motif Reference Manual 25

Name
XmClipboardEndRetrieve – end a copy operation from the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardEndRetrieve (Display *display, Window window)
Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardEndRetrieve() ends the incremental copying of data from the clip-
board.

Usage
A call to XmClipboardEndRetrieve() is preceded by a call to XmClip-
boardStartRetrieve(), which begins the incremental copy, and calls to
XmClipboardRetrieve(), which incrementally retrieve the data items from
clipboard storage. XmClipboardStartRetrieve() locks the clipboard and
it remains locked until XmClipboardEndRetrieve() is called.

Example
The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;
unsigned long received;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,

XmClipboardEndRetrieve Motif Functions and Macros

26 Motif Reference Manual

"STRING",
(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardRetrieve(1), XmClipboardStartRetrieve(1).

Motif Functions and Macros XmClipboardInquireCount

Motif Reference Manual 27

Name
XmClipboardInquireCount – get the number of data item formats available on
the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardInquireCount (Display *display,
Window window,
int *count,
unsigned long *max_length)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Outputs
count Returns the number of data item formats available for the data on
the clipboard.
max_length Returns the maximum length of data item format names.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardInquireCount() returns the number of data formats available
for the current clipboard data item and the length of its longest format name. The
count includes the formats that were passed by name. If there are no formats
available, count is 0 (zero).

Usage
To inquire about the formats of the data on the clipboard, you use XmClip-
boardInquireCount() and XmClipboardInquireFormat() in con-
junction. XmClipboardInquireCount() returns the number of formats for
the data item and XmClipboardInquireFormat() allows you to iterate
through all of the formats.

See Also
XmClipboardInquireFormat(1).

XmClipboardInquireFormat Motif Functions and Macros

28 Motif Reference Manual

Name
XmClipboardInquireFormat – get the specified clipboard data format name.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardInquireFormat (Display *display,
Window window,
int index,
XtPointer format_name_buf,
unsigned long buffer_len,
unsigned long *copied_len)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
index Specifies the index of the format name to retrieve.
buffer_len Specifies the length of format_name_buf in bytes.

Outputs
format_name_buf Returns the format name.
copied_len Returns the length (in bytes) of the string copied to
format_name_buf.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if format_name_buf is not long enough
to hold the returned data, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardInquireFormat() returns a format name for the current data
item in the clipboard. The format name returned is specified by index, where 1
refers to the first format. If index exceeds the number of formats for the data
item, then XmClipboardInquireFormat() returns a value of 0 (zero) in the
copied_len argument. XmClipboardInquireFormat() returns the format
name in the format_name_buf argument. This argument is a buffer of a fixed
length that is allocated by the programmer. If the buffer is not large enough to
hold the format name, the routine copies as much of the format name as will fit in
the buffer and returns ClipboardTruncate.

Motif Functions and Macros XmClipboardInquireFormat

Motif Reference Manual 29

Usage
To inquire about the formats of the data on the clipboard, you use XmClip-
boardInquireCount() and XmClipboardInquireFormat() in con-
junction. XmClipboardInquireCount() returns the number of formats for
the data item and XmClipboardInquireFormat() allows you to iterate
through all of the formats.

See Also
XmClipboardInquireCount(1).

XmClipboardInquireLength Motif Functions and Macros

30 Motif Reference Manual

Name
XmClipboardInquireLength – get the length of the data item on the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardInquireLength (Display *display,
Window window,
char *format_name,
unsigned long *length)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
format_name Specifies the format name for the data.

Outputs
length Returns the length of the data item for the specified format.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard for
the requested format.

Description
XmClipboardInquireLength() returns the length of the data stored under
the specified format_name for the current clipboard data item. If no data is found
corresponding to format_name or if there is no item on the clipboard, XmClip-
boardInquireLength() returns a length of 0 (zero). When a data item is
passed by name, the length of the data is assumed to be passed in a call to
XmClipboardCopy(), even though the data has not yet been transferred to the
clipboard.

Usage
XmClipboardInquireLength() provides a way for an application to find
out how much data is on the clipboard, so that it can allocate a buffer that is large
enough to retrieve the data with one call to XmClipboardRetrieve().

Example
The following code fragment demonstrates how to use XmClipboardIn-
quireLength() to retrieve all of the data on the clipboard:

int status;
unsigned long recvd, length;

Motif Functions and Macros XmClipboardInquireLength

Motif Reference Manual 31

char *data;
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardInquireLength (dpy, window,

"STRING",
&length);

while (status == ClipboardLocked);

if (length != 0) {
data = XtMalloc ((unsigned) (length+1) * sizeof
(char));

do
status = XmClipboardRetrieve (dpy, window,

"STRING",
(XtPointer)
data,
(unsigned long)
length+1,
&recvd, (long *)
0);

while (status == ClipboardLocked);

if (status != ClipboardSuccess || recvd !=
length) {

XtWarning ("Failed to receive all clipboard
data");

}
}

See Also
XmClipboardRetrieve(1).

XmClipboardInquirePendingItems Motif Functions and Macros

32 Motif Reference Manual

Name
XmClipboardInquirePendingItems – get a list of pending data ID/private ID
pairs.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardInquirePendingItems (Display *display,
Window window,
char

*format_name,
XmClipboardPendingList *item_list,
unsigned long *count)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.

Outputs
item_list Returns an array of data_id/private_id pairs for the specified for-
mat.
count Returns the number of items in the item_list array.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardInquirePendingItems() returns for the specified
format_name a list of pending data items, represented by data_id/private_id
pairs. The data_id and private_id arguments are specified in the clipboard func-
tions for copying and retrieving. A data item is considered pending under these
conditions: the application that owns the data item originally passed it by name,
the application has not yet copied the data, and the data item has not been deleted
from the clipboard. If there are no pending items for the specified format_name,
the routine returns a count of 0 (zero). The application is responsible for freeing
the memory that is allocated by XmClipboardInquirePendingItems() to
store the list. Use XtFree() to free the memory.

Usage
An application should call XmClipboardInquirePendingItems() before exiting, to
determine whether data that has been passed by name should be copied to the
clipboard.

Motif Functions and Macros XmClipboardInquirePendingItems

Motif Reference Manual 33

Structures
The XmClipboardPendingList is defined as follows:

typedef struct {
long DataId;
long PrivateId;

} XmClipboardPendingRec, *XmClipboardPendingList;

See Also
XmClipboardStartCopy(1).

XmClipboardLock Motif Functions and Macros

34 Motif Reference Manual

Name
XmClipboardLock – lock the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardLock (Display *display, Window window)
Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardLock() locks the clipboard on behalf of an application, which
prevents access to the clipboard by other applications. If the clipboard has
already been locked by another application, the routine returns ClipboardLocked.
If the same application has already locked the clipboard, the lock level is
increased.

Usage
An application uses XmClipboardLock() to ensure that clipboard data is not
changed by calls to clipboard functions by other applications. An application
does not need to lock the clipboard between calls to XmClipboardStar-
tRetrieve() and XmClipboardEndRetrieve(), because the clipboard is
locked automatically between these calls. XmClipboardUnlock() allows
other applications to access the clipboard again.

See Also
XmClipboardEndCopy(1), XmClipboardEndRetrieve(1),
XmClipboardStartCopy(1), XmClipboardStartRetrieve(1),
XmClipboardUnlock(1).

Motif Functions and Macros XmClipboardRegisterFormat

Motif Reference Manual 35

Name
XmClipboardRegisterFormat – register a new format for clipboard data items.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardRegisterFormat (Display *display, char *format_name, int
format_length)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
format_name Specifies the string name for the format.
format_length Specifies the length of the format in bits (0, 8, 16, or 32).

Returns
ClipboardSuccess on success, ClipboardBadFormat if the format is not properly
specified, ClipboardLocked if the clipboard is locked by another application, or
ClipboardFail on failure.

Description
XmClipboardRegisterFormat() registers a new format having the speci-
fied format_name and format_length. XmClipboardRegisterFormat()
returns ClipboardFail if the format is already registered with the specified length
or ClipboardBadFormat if format_name is NULL or format_length is not 0, 8,
16, or 32 bits.

Usage
XmClipboardRegisterFormat() is used by applications that support cut-
ting and pasting of arbitrary data types. Every format that is stored on the clip-
board needs to have a length associated with it, so that clipboard operations
between applications that run on platforms with different byte-swapping orders
function properly. Format types that are defined by the ICCCM are preregistered.
If format_length is 0, XmClipboardRegisterFormat() searches through
the preregistered format types, and returns ClipboardSuccess if format_name is
found, ClipboardFail otherwise.

If you are registering your own data structure as a format, you should choose an
appropriate name, and use 32 as the format size.

See Also
XmClipboardStartCopy(1).

XmClipboardRetrieve Motif Functions and Macros

36 Motif Reference Manual

Name
XmClipboardRetrieve – retrieve a data item from the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardRetrieve (Display *display,
Window window,
char *format_name,
XtPointer buffer,
unsigned long length,
unsigned long *num_bytes,
long *private_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.
buffer Specifies the buffer to which the clipboard data is copied.
length Specifies the length of buffer.

Outputs
num_bytes Returns the number of bytes of data copied into buffer.
private_id Returns the private data that was stored with the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if buffer is not long enough to hold the
returned data, or ClipboardNoData if there is no data on the clipboard for the
requested format.

Description
XmClipboardRetrieve() fetches the current data item from the clipboard
and copies it to the specified buffer. The format_name specifies the type of data
being retrieved. The num_bytes parameter returns the amount of data that is cop-
ied into buffer. The routine returns ClipboardTruncate when all of the data does
not fit in the buffer, to indicate that more data remains to be copied.

Usage
XmClipboardRetrieve() can be used to retrieve data in one large piece or in
multiple smaller pieces. To retrieve data in one chunk, call XmClipboardIn-
quireLength() to determine the size of the data on the clipboard. Multiple
calls to XmClipboardRetrieve() with the same format_name, between calls
to XmClipboardStartRetrieve() and XmClipboardEndRetrieve(),

Motif Functions and Macros XmClipboardRetrieve

Motif Reference Manual 37

copy data incrementally. Since the clipboard is locked by a call to XmClip-
boardStartRetrieve(), it is suggested that your application call any clip-
board inquiry routines between this call and the first call to
XmClipboardRetrieve()1.

Example
The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;
unsigned long received;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",

(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardEndRetrieve(1), XmClipboardInquireLength(1),
XmClipboardLock(1), XmClipboardStartRetrieve(1),
XmClipboardUnlock(1).

1.Erroneously given as ClipboardRetrieve() in 1st and 2nd editions.

XmClipboardStartCopy Motif Functions and Macros

38 Motif Reference Manual

Name
XmClipboardStartCopy – set up storage for a clipboard copy operation.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardStartCopy (Display *display,
 Window window,
XmString clip_label,
Time timestamp,
Widget widget,
XmCutPasteProc callback,
long *item_id)

Inputs
display Specifies a connection to an X server; returned from XOpenD-

isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-

board.
clip_label Specifies a label that is associated with the data item.
timestamp Specifies the time of the event that triggered the copy opera-

tion.
widget Specifies the widget that receives messages requesting data

that has been passed by name.
callback Specifies the callback function that is called when the clip-

board needs data that has been passed by name.
Outputs

item_id Returns the ID assigned to the data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardStartCopy() creates the storage and data structures that
receive clipboard data. During a cut or copy operation, an application calls this
function to initiate the operation. The data that is copied to the structures
becomes the next clipboard data item.

Several arguments to XmClipboardStartCopy() provide identifying infor-
mation. The window argument specifies the window that identifies the applica-
tion to the clipboard; an application should pass the same window ID to each
clipboard routine that it calls. clip_label assigns a text string to the data item that
could be used as the label for a clipboard viewing window. The timestamp passed

Motif Functions and Macros XmClipboardStartCopy

Motif Reference Manual 39

to the routine must be a valid timestamp. The item_id argument returns a number
that identifies the data item. An application uses this number to specify the data
item in other clipboard calls.

Usage
Since copying a large piece of data to the clipboard can take a long time and it is
possible that the data will never be requested by another application, the clip-
board copy routines provide a mechanism to copy data by name. When a clip-
board data item is passed by name, the application does not need to copy the data
to the clipboard until it has been requested by another application. In order to
pass data by name, the widget and callback arguments to XmClipboard-
StartCopy() must be specified. widget specifies the ID of the widget that
receives messages requesting that data be passed by name. All of the message
handling is done by the clipboard operations, so any valid widget ID can be used.
callback specifies the procedure that is invoked when the clipboard needs the
data that was passed by name and when the data item is removed from the clip-
board. The callback function copies the actual data to the clipboard using
XmClipboardCopyByName().

Example
The following routines show the sequence of calls needed to copy data by name.
The to_clipbd callback shows the copying of data and copy_by_name shows the
callback that actually copies the data:

void copy_by_name (Widget widget,
long *data_id,
long *private_id,
int *reason)

{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;
char buffer[32];

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff");

do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,

(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);

XmClipboardStartCopy Motif Functions and Macros

40 Motif Reference Manual

while (status != ClipboardSuccess);
}

}

void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
unsigned long item_id = 0;
int status;
XmString clip_label;
Display *dpy = XtDisplayOfObject
(widget);
Window window = XtWindowOfObject
(widget);
unsigned long size = DATA_SIZE;
char *data = (char *) client_data;

clip_label = XmStringCreateLocalized ("Data");

/* start a copy; retry until unlocked */
do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
widget,
copy_by_name,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do

status = XmClipboardCopy (dpy, window,
item_id,

"STRING", NULL,
size, 0, NULL);

while (status == ClipboardLocked);

/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);
}

Motif Functions and Macros XmClipboardStartCopy

Motif Reference Manual 41

Procedures
The XmCutPasteProc has the following format:

typedef void (*XmCutPasteProc) (Widget widget, long *data_id, long
*private_id, int *reason)

An XmCutPasteProc takes four arguments. The first argument, widget, is the
widget passed to the callback routine, which is the same widget as passed to
XmClipboardBeginCopy(). The data_id argument is the ID of the data item
that is returned by XmClipboardCopy() and private_id is the private data
passed to XmClipboardCopy().

The reason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

See Also
XmClipboardBeginCopy(1), XmClipboardCancelCopy(1),
XmClipboardCopy(1), XmClipboardCopyByName(1),
XmClipboardEndCopy(1), XmClipboardLock(1),
XmClipboardRegisterFormat(1), XmClipboardUndoCopy(1),
XmClipboardUnlock(1), XmClipboardWithdrawFormat(1).

XmClipboardStartRetrieve Motif Functions and Macros

42 Motif Reference Manual

Name
XmClipboardStartRetrieve – start a clipboard retrieval operation.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardStartRetrieve (Display *display, Window window, Time times-
tamp)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
timestamp Specifies the time of the event that triggered the retrieval opera-
tion.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardStartRetrieve() starts a clipboard retrieval operation by
telling the clipboard that an application is ready to start copying data from the
clipboard. XmClipboardStartRetrieve() locks the clipboard until
XmClipboardEndRetrieve() is called. The window argument specifies the
window that identifies the application to the clipboard; an application should pass
the same window ID to each clipboard routine that it calls. The timestamp passed
to the routine must be a valid timestamp.

Usage
Multiple calls to XmClipboardRetrieve() with the same format_name,
between calls to XmClipboardStartRetrieve() and XmClipboardEn-
dRetrieve(), copy data incrementally.

Example
The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;
unsigned long received;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do

Motif Functions and Macros XmClipboardStartRetrieve

Motif Reference Manual 43

status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",

(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardEndRetrieve(1), XmClipboardInquireCount(1),
XmClipboardInquireFormat(1), XmClipboardInquireLength(1),
XmClipboardInquirePendingItems(1), XmClipboardLock(1),
XmClipboardRetrieve(1), XmClipboardUnlock(1).

XmClipboardUndoCopy Motif Functions and Macros

44 Motif Reference Manual

Name
XmClipboardUndoCopy – remove the last item copied to the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardUndoCopy (Display *display, Window window)
Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardUndoCopy() deletes the item most recently placed on the clip-
board, provided that the application that originally placed the item has matching
values for display and window. If the values do not match, no action is taken. The
routine also restores any data item that was deleted from the clipboard by the call
to XmClipboardCopy().

Usage
Motif maintains a two-deep stack of items that have been placed on the clip-
board. Once an item has been copied to the clipboard, the copy can be undone by
calling XmClipboardUndoCopy(). Calling this routine twice undoes the last
undo operation.

See Also
XmClipboardBeginCopy(1), XmClipboardCopy(1),
XmClipboardCopyByName(1), XmClipboardEndCopy(1),
XmClipboardStartCopy(1).

Motif Functions and Macros XmClipboardUnlock

Motif Reference Manual 45

Name
XmClipboardUnlock – unlock the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardUnlock (Display *display, Window window, Boolean
remove_all_locks)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-

board.
remove_all_locks Specifies whether nested locks should be removed.

Returns
ClipboardSuccess on success or ClipboardFail if the clipboard is not locked or if
it is locked by another application.

Description
XmClipboardUnlock() unlocks the clipboard, which allows other applica-
tions to access it. If remove_all_locks is True, all nested locks are removed. If it
is False, only one level of lock is removed.

Usage
Multiple calls to XmClipboardLock() can increase the lock level, and nor-
mally, each XmClipboardLock() call requires a corresponding call to
XmClipboardUnlock(). However, by setting remove_all_locks to True,
nested locks can be removed with a single call.

See Also
XmClipboardBeginCopy(1), XmClipboardCancelCopy(1),
XmClipboardEndCopy(1), XmClipboardEndRetrieve\(1)
XmClipboardLock(1), XmClipboardStartCopy(1),
XmClipboardStartRetrieve(1).

XmClipboardWithdrawFormat Motif Functions and Macros

46 Motif Reference Manual

Name
XmClipboardWithdrawFormat – indicate that an application does not want to
supply a data item any longer.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardWithdrawFormat (Display *display, Window window, long
data_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID for the passed-by-name data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardWithdrawFormat() withdraws a data item that has been
passed by name from the clipboard. The data_id is the ID that was assigned to
the item when it was passed by XmClipboardCopy().

Usage
Despite its name, XmClipboardWithdrawFormat() does not remove a for-
mat specification from the clipboard. The routine provides an application with a
way to withdraw data of a particular format from the clipboard.

See Also
XmClipboardBeginCopy(1), XmClipboardCopy(1),
XmClipboardCopyByName(1), XmClipboardStartCopy(1).

Motif Functions and Macros XmComboBoxAddItem

Motif Reference Manual 47

Name
XmComboBoxAddItem – add a compound string to the ComboBox list.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxAddItem (Widget widget, XmString item, int position,
Boolean unique)

Inputs
widget Specifies the ComboBox widget.
item Specifies the compound string that is added to the ComboBox list.
position Specifies the position at which to add the new item.
unique Specifies whether the item must be unique in the list.

Availability
Motif 2.1 and later.

Description
XmComboBoxAddItem() is a convenience routine that adds an item into a
ComboBox list. XmComboBoxAddItem() inserts the specified item into the list
component of the ComboBox widget at the specified position. A position value
of 1 indicates the first location in the list, a position value of 2 indicates the sec-
ond location, and so forth. A value of 0 (zero) specifies the last location in the
list. If the value exceeds the current number of items in the list, the item is
silently appended. If unique is true, the item is only added if it does not already
appear in the list.

Usage
In order to use this routine, a compound string must be created for the item. The
routine calls XmListAddItemUnselected() to insert the item into the list
component. The ComboBox list takes a copy of the supplied item. It is the
responsibility of the programmer to reclaim the space by calling XmStringFree()
at an appropriate point.

See Also
XmComboBoxSelectItem(1), XmComboBoxSetItem(1),
XmComboBoxDeletePos(1), XmComboBoxUpdate(1), XmComboBox(2).

XmComboBoxDeletePos Motif Functions and Macros

48 Motif Reference Manual

Name
XmComboBoxDeletePos – delete an item at the specified position from a Com-
boBox list.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxDeletePos (Widget widget, int position)
Inputs

widget Specifies the ComboBox widget.
position Specifies the position from which to delete an item.

Availability
Motif 2.1 and later.

Description
XmComboBoxDeletePos() removes the item at the specified position from
the ComboBox list. The first location within the list is at position 1, the second
list item is at position 2, and so forth. A position value of 0 (zero) specifies the
last location in the list. If the ComboBox list does not have an item at the speci-
fied position, a warning message is displayed.

Usage
XmComboBoxDeletePos() is a convenience routine that allows you to
remove an item from a ComboBox list. The routine calls XmListDeletePos()
on the list component of the ComboBox.

See Also
XmComboBoxAddItem(1), XmComboBoxSelectItem(1),
XmComboBoxSetItem(1), XmComboBoxUpdate(1), XmComboBox(2).

Motif Functions and Macros XmComboBoxSelectItem

Motif Reference Manual 49

Name
XmComboBoxSelectItem – select an item from a ComboBox list.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxSelectItem (Widget widget, XmString item)
Inputs

widget Specifies the ComboBox widget.
item Specifies the item that is to be selected.

Availability
Motif 2.1 and later.

Description
XmComboBoxSelectItem() selects the first occurrence of the specified item
in the ComboBox list. If the item is found within the list, the value is also inserted
into the ComboBox text field. Otherwise, a warning message is displayed.

Usage
XmComboBoxSelectItem() is a convenience routine that allows you to select
an item in the ComboBox list. In order to use this routine, a compound string
must be created for the item. No ComboBox selection callbacks are invoked as a
result of calling this procedure. The routine internally calls XmListSelect-
Pos() on the list component of the ComboBox, after performing a linear search
through the XmNitems of the list: the item parameter is used only for the search
and is not directly used as the newly selected item. It is the responsibility of the
programmer to reclaim any allocated memory for the compound string item by
calling XmStringFree() at an appropriate time.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos(1),
XmComboBoxSetItem(1), XmComboBoxUpdate(1), XmComboBox(2).

XmComboBoxSetItem Motif Functions and Macros

50 Motif Reference Manual

Name
XmComboBoxSetItem – select and make visible an item from a ComboBox list.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxSetItem (Widget widget, XmString item)
Inputs

widget Specifies the ComboBox widget.
item Specifies the item that is to be selected.

Availability
Motif 2.1 and later.

Description
XmComboBoxSetItem() selects the first occurrence of the specified item in the
ComboBox list, and makes the selection the first visible item in the list. If the
item is found within the list, the value is also inserted into the ComboBox text
field. Otherwise, a warning message is displayed.

Usage
XmComboBoxSetItem() is a convenience routine that allows you to select an
item in the ComboBox. In order to use this routine, a compound string must be
created for the item. No ComboBox selection callbacks are invoked as a result of
calling this procedure. The routine internally calls XmListSelectPos() on
the list component of the ComboBox, after performing a linear search through
the XmNitems of the list: the item parameter is used only for the search and is not
directly used as the newly selected item. It is the responsibility of the program-
mer to reclaim any allocated memory for the compound string item by calling
XmStringFree() at an appropriate time.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos(1),
XmComboBoxSelectItem(1), XmComboBoxUpdate(1), XmComboBox(2).

Motif Functions and Macros XmComboBoxUpdate

Motif Reference Manual 51

Name
XmComboBoxUpdate – update the ComboBox list after changes to component
widgets.

Synopsis
#include <Xm/ComboBox.h>

void XmComboBoxUpdate (Widget widget)
Inputs

widget Specifies the ComboBox widget.

Availability
Motif 2.0 and later.

Description
XmComboBoxUpdate() updates the ComboBox to reflect the state of compo-
nent child widgets. This may be required where the programmer has directly
modified the contents or resources of the ComboBox list component rather than
through resources and functions of the ComboBox itself.

Usage
XmComboBoxUpdate() is a convenience routine that synchronizes the internal
state of the ComboBox with that of the component list and text field. In particu-
lar, the value of XmNselectedPosition is reset to the value taken from the internal
list. In addition, if the text field is unchanged, the XmNitems and XmNitem-
Count resources of the list are queried and used in conjunction with the recalcu-
lated XmNselectedPosition to reset the ComboBox selected item.

This routine should be called, for example, when the component list is directly
manipulated to change the selected item without notifying the ComboBox
directly.

See Also
XmComboBoxAddItem(1), XmComboBoxSelectItem(1),
XmComboBoxSetItem(1), XmComboBoxDeletePos(1), XmComboBox(2).

XmCommandAppendValue Motif Functions and Macros

52 Motif Reference Manual

Name
XmCommandAppendValue – append a compound string to the command.

Synopsis
#include <Xm/Command.h>

void XmCommandAppendValue (Widget widget, XmString command)
Inputs

widget Specifies the Command widget.
command Specifies the string that is appended.

Description
XmCommandAppendValue() appends the specified command to the end of the
string that is displayed on the command line of the specified Command widget.

Usage
XmCommandAppendValue() is a convenience routine that changes the value
of the XmNcommand resource of the Command widget. In order to use this rou-
tine, a compound string must be created for the command. The widget internally
copies command, and it is the responsibility of the programmer to reclaim any
allocated memory for the compound string at an appropriate time.

See Also
XmCommandSetValue(1), XmCommand(2).

Motif Functions and Macros XmCommandError

Motif Reference Manual 53

Name
XmCommandError – display an error message in a Command widget.

Synopsis
#include <Xm/Command.h>

void XmCommandError (Widget widget, XmString error)
Inputs

widget Specifies the Command widget.
error Specifies the error message to be displayed.

Description
XmCommandError() displays an error message in the history region of the
specified Command widget. The error string remains displayed until the next
command takes effect.

Usage
XmCommandError() displays the error message as one of the items in the
XmNhistoryItems list. When the next command is entered, the error message is
deleted from the list. In order to use this routine, a compound string must be cre-
ated for the error item. The widget internally copies error, and it is the responsi-
bility of the programmer to reclaim any allocated memory for the compound
string at an appropriate time.

See Also
XmCommand(2).

XmCommandGetChild Motif Functions and Macros

54 Motif Reference Manual

Name
XmCommandGetChild – get the specified child of a Command widget.

Synopsis
#include <Xm/Command.h>

Widget XmCommandGetChild (Widget widget, unsigned char child)
Inputs

widget Specifies the Command widget.
child Specifies a type of child of the Command widget.

Returns
The widget ID of the specified child of the Command widget.

Availability
As of Motif 2.0, the abstract child fetch routines in the toolkit are generally con-
sidered deprecated. Although XmCommandGetChild() continues to work, you
should prefer XtNameToWidget() to access children of the XmCommand
component.

Description
XmCommandGetChild() returns the widget ID of the specified child of the Com-
mand widget.

Usage
The child XmDIALOG_COMMAND_TEXT specifies the command text entry
area, XmDIALOG_PROMPT_LABEL specifies the prompt label for the com-
mand line, XmDIALOG_HISTORY_LIST specifies the command history list,
and XmDIALOG_WORK_AREA specifies any work area child that has been
added to the Command widget. For more information on the different children of
the Command widget, see the manual page in Section 2, Motif and Xt Widget
Classes.

Structures
The possible values for child are:

XmDIALOG_COMMAND_TEXT XmDIALOG_HISTORY_LIST
XmDIALOG_PROMPT_LABEL XmDIALOG_WORK_AREA

Motif Functions and Macros XmCommandGetChild

Motif Reference Manual 55

Widget Hierarchy
The following names are associated with the Command children:

“Selection” XmDIALOG_PROMPT_LABEL
“Text” XmDIALOG_COMMAND_TEXT
“ItemsList”1 XmDIALOG_HISTORY_LIST

See Also
XmCommand(2).

1.The List is not a direct descendant of the Command widget, but of an intermediary ScrolledList. Therefore if fetching
the widget via XtNameToWidget(), you should use the value “*ItemsList”.

XmCommandSetValue Motif Functions and Macros

56 Motif Reference Manual

Name
XmCommandSetValue – replace the command string.

Synopsis
#include <Xm/Command.h>

void XmCommandSetValue (Widget widget, XmString command)
Inputs

widget Specifies the Command widget.
command Specifies the string that is displayed.

Description
XmCommandSetValue() replaces the currently displayed command-line text
of the specified Command widget with the string specified by command. Specify-
ing a zero-length string clears the command line.

Usage
XmCommandSetValue() is a convenience routine that changes the value of the
XmNcommand resource of the Command widget. In order to use this routine, a
compound string must be created for the command. The widget internally copies
command, and it is the responsibility of the programmer to reclaim any allocated
memory for the compound string at an appropriate time.

See Also
XmCommandAppendValue(1), XmCommand(2).

Motif Functions and Macros XmContainerCopy

Motif Reference Manual 57

Name
XmContainerCopy – copy the Container primary selection onto the clipboard.

Synopsis
#include <Xm/Container.h>

Boolean XmContainerCopy (Widget container, Time timestamp)
Inputs

container Specifies a Container widget.
timestamp Specifies the server time at which to modify the selection.

Returns
True if the Container selection is transferable to the clipboard, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerCopy() copies the primary selection from a Container widget to
the clipboard. The primary selection of a Container widget consists of a set of
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

Usage
XmContainerCopy() is a convenience routine that copies a Container primary
selection to the clipboard. The procedures identified by the XmNconvertCallback
list of the Container are called to transfer the selection: the selection member of
the XmConvertCallbackStruct passed to callbacks has the value CLIPBOARD,
and the parm member is set to XmCOPY. See XmTransfer(1) for specific
details of the XmConvertCallbackStruct, and of the Uniform Transfer Model
(UTM) in general.

See Also
XmContainerCut(1), XmContainerCopyLink(1),
XmContainerGetItemChildren(1), XmContainerPaste(1),
XmContainerPasteLink(1), XmContainerRelayout(1),
XmContainerReorder(1), XmTransfer(1), XmContainer(2).

XmContainerCopyLink Motif Functions and Macros

58 Motif Reference Manual

Name
XmContainerCopyLink – copy links to the Container primary selection onto the
clipboard.

Synopsis
#include <Xm/Container.h>

Boolean XmContainerCopyLink (Widget container, Time timestamp)
Inputs

container Specifies a Container widget.
timestamp Specifies a time stamp at which to modify the selection.

Returns
True if the Container selection is transferable to the clipboard, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerCopyLink() copies links to the primary selection of a Con-
tainer widget onto the clipboard. The primary selection of a Container widget
consists of a set of selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

Usage
XmContainerCopyLink() is a convenience routine that copies links to a
Container primary selection to the clipboard. The procedures identified by the
XmNconvertCallback list of the Container are called, possibly many times: the
selection member of the XmConvertCallbackStruct passed to callbacks has the
value CLIPBOARD, and the parm member is set to XmLINK. See XmTrans-
fer(1) for specific details of the XmConvertCallbackStruct, and of the Uniform
Transfer Model (UTM) in general.

See Also
XmContainerCut(1), XmContainerCopy(1),
XmContainerGetItemChildren(1), XmContainerPaste(1),
XmContainerPasteLink(1), XmContainerRelayout(1),
XmContainerReorder(1), XmTransfer(1), XmContainer(2).

Motif Functions and Macros XmContainerCut

Motif Reference Manual 59

Name
XmContainerCut – cuts the Container primary selection onto the clipboard.

Synopsis
#include <Xm/Container.h>

Boolean XmContainerCut (Widget container, Time timestamp)
Inputs

container Specifies a Container widget.
timestamp Specifies the time at which to modify the selection.

Returns
True if the Container selection is transferable to the clipboard, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerCut() cuts the primary selection from a Container widget onto
the clipboard. The primary selection of a Container widget consists of a set of
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

Usage
XmContainerCut() is a convenience routine that moves a Container primary
selection onto the clipboard, then removes the primary selection. The procedures
identified by the XmNconvertCallback list of the Container are invoked to move
the selection to the clipboard: the selection member of the XmConvertCallback-
Struct passed to callbacks has the value CLIPBOARD, and the parm member is
set to XmMOVE. Thereafter, if the data was transferred, the convert callbacks
are invoked again to delete the primary selection: the selection member is set to
CLIPBOARD, and the target member is set to DELETE. See XmTransfer(1)
for specific details of the XmConvertCallbackStruct, and of the Uniform Trans-
fer Model (UTM) in general.

See Also
XmContainerCopy(1), XmContainerCopyLink(1),
XmContainerGetItemChildren(1), XmContainerPaste(1),
XmContainerPasteLink(1), XmContainerRelayout(1),
XmContainerReorder(1), XmTransfer(1), XmContainer(2).

XmContainerGetItemChildren Motif Functions and Macros

60 Motif Reference Manual

Name
XmContainerGetItemChildren – find the children of a Container item.

Synopsis
#include <Xm/Container.h>

int XmContainerGetItemChildren (Widget container, Widget item, WidgetList
*item_children)

Inputs
container Specifies a Container widget.
item A child of the Container which holds the XmQTcontainerItem
trait.

Outputs
item_children The list of logical children associated with the item.

Returns
The number of logical children within the item_children list.

Availability
Motif 2.0 and later.

Description
XmContainerGetItemChildren() constructs a list of Container items
which have item as a logical parent. item must hold the XmQTcontainerItem
trait: an IconGadget child of container, for example. A widget is a logical child of
item if the value of its constraint resource XmNentryParent is equal to item. con-
tainer is the Container widget which has item as a child, and the list of logical
children of item is placed in item_children. The function returns the number of
logical children found.

Usage
XmContainerGetItemChildren() is a convenience routine which allo-
cates a WidgetList to contain the set of all Container children whose XmNen-
tryParent resource matches that of a designated item.

If item is NULL, or if item is not a child of container, or if item has no logical
children, the item_children parameter is not set and the function returns 0.

Storage for the returned WidgetList is allocated by the function, and it is the
responsibility of the programmer to free the memory using XtFree() at an
appropriate point.

Motif Functions and Macros XmContainerGetItemChildren

Motif Reference Manual 61

See Also
XmContainerCut(1), XmContainerCopy(1),
XmContainerCopyLink(1), XmContainerPaste(1),
XmContainerPasteLink(1), XmContainerRelayout(1),
XmContainerReorder(1), XmContainer(2).

XmContainerPaste Motif Functions and Macros

62 Motif Reference Manual

Name
XmContainerPaste – pastes the clipboard selection into a Container.

Synopsis
#include <Xm/Container.h>

Boolean XmContainerPaste (Widget container)
Inputs

container Specifies a Container widget.
Returns

True if the clipboard selection is transferable to the Container, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerPaste() initiates data transfer of the clipboard primary selec-
tion to the container widget.

If data is transferred from the clipboard, the function returns True, otherwise
False.

Usage
XmContainerPaste() is a convenience routine that initiates copying of the
clipboard primary selection to a Container widget. The procedures identified by
the XmNdestinationCallback list of the Container are called: the selection mem-
ber of the XmDestinationCallbackStruct passed to callbacks has the value CLIP-
BOARD, and the operation member is set to XmCOPY.
XmContainerPaste() does not transfer data itself: it is the responsibility of
the programmer to supply a destination callback which will copy the clipboard
selection into the Container. See XmTransfer(1) for specific details of the
XmDestinationCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.

See Also
XmContainerCut(1), XmContainerCopy(1),
XmContainerCopyLink(1), XmContainerGetItemChildren(1),
XmContainerPasteLink(1), XmContainerRelayout(1),
XmContainerReorder(1), XmTransfer(1), XmContainer(2).

Motif Functions and Macros XmContainerPasteLink

Motif Reference Manual 63

Name
XmContainerPasteLink – copies links from the clipboard selection into a Con-
tainer.

Synopsis
#include <Xm/Container.h>

Boolean XmContainerPasteLink (Widget container)
Inputs

container Specifies a Container widget.
Returns

True if the clipboard selection is transferable to the Container, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerPasteLink() initiates data transfer of the clipboard primary
selection to the container widget.

If data is transferred from the clipboard, the function returns True, otherwise
False.

Usage
XmContainerPasteLink() is a convenience routine that initiates copying
links from the clipboard primary selection into a Container widget. The proce-
dures identified by the XmNdestinationCallback list of the Container are called:
the selection member of the XmDestinationCallbackStruct passed to callbacks
has the value CLIPBOARD, and the operation member is set to XmLINK.
XmContainerPasteLink() does not transfer data itself: it is the responsibil-
ity of the programmer to supply a destination callback which will link the clip-
board selection into the Container. See XmTransfer(1) for specific details of
the XmConvertCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.

See Also
XmContainerCut(1), XmContainerCopy(1),
XmContainerCopyLink(1), XmContainerGetItemChildren(1),
XmContainerPaste(1), XmContainerRelayout(1),
XmContainerReorder(1), XmTransfer(1), XmContainer(2).

XmContainerRelayout Motif Functions and Macros

64 Motif Reference Manual

Name
XmContainerRelayout – force relayout of a Container widget.

Synopsis
#include <Xm/Container.h>

void XmContainerRelayout (Widget container)
Inputs

container Specifies a Container widget.

Availability
Motif 2.0 and later.

Description
XmContainerRelayout() forces the container widget to recalculate the lay-
out of all Container items.

Usage
XmContainerRelayout() is a convenience routine that recalculates the grid
layout of a Container. The function has no effect if the widget is not realized, if
XmNlayoutType is not XmSPATIAL, or if XmNspatialStyle is XmNONE.

The function does not cause geometry management effects when performing the
relayout, although the Container window is completely cleared and redrawn if
the widget is realized.

XmContainerRelayout() utilizes the place_item method of the Container
widget class. If this is NULL in any derived class, XmContainerRelayout()
will have no effect upon the layout of Container items.

See Also
XmContainerCut(1), XmContainerCopy(1),
XmContainerCopyLink(1), XmContainerGetItemChildren(1),
XmContainerPaste(1), XmContainerPasteLink(1),
XmContainerReorder(1), XmContainer(2).

Motif Functions and Macros XmContainerReorder

Motif Reference Manual 65

Name
XmContainerReorder – reorder children of a Container.

Synopsis
#include <Xm/Container.h>

void XmContainerReorder (Widget container, WidgetList item_list, int
item_count)

Inputs
container Specifies a Container widget.
item_list Specifies a list of Container child widgets.
item_count Specifies the number of widgets in item_list.

Availability
Motif 2.0 and later.

Description
XmContainerReorder() reorders an item_list set of items of a Container.
item_count is the number of items within the item_list array.

Usage
XmContainerReorder() is a convenience routine that reorders Container
items according to the value of the XmNpositionIndex constraint resource of
each item, using a quicksort algorithm. If the XmNlayoutType is XmOUTLINE
or XmDETAIL, the Container will subsequently relayout all the items within the
widget.

Neither relayout nor reorder is performed if item_count is less than or equal to 1;
there is no error checking performed on item_list to compare it with NULL, or to
ensure that it matches the number of items specified by item_count.

See Also
XmContainerCut(1), XmContainerCopy(1),
XmContainerCopyLink(1), XmContainerGetItemChildren(1),
XmContainerPaste(1), XmContainerPasteLink(1),
XmContainerRelayout(1), XmContainer(1).

XmConvertStringToUnits Motif Functions and Macros

66 Motif Reference Manual

Name
XmConvertStringToUnits – convert a string to an integer, optionally translating
the units.

Synopsis
int XmConvertStringToUnits (Screen *screen,

String spec,
int orientation,
int unit_type,
XtEnum *error_return)

Inputs
screen Specifies a pointer to the screen structure.
spec Specifies a value to be converted.
orientation Specifies whether to use horizontal or vertical screen res-

olution. Pass either XmHORIZONTAL or XmVERTI-
CAL.

unit_type The units required for the result.
Outputs

error_return Returns the error status of the conversion.
Returns

The converted value.

Availability
Motif 2.0 and later.

Description
XmConvertStringToUnits() converts a string spec into an integer. The
conversion of spec is into the units specified by unit_type. Resolution for the con-
version is determined from the screen, and orientation determines whether the
horizontal or vertical screen resolution is used. The converted value is returned
by the function. The error_return parameter is set by the function to indicate any
error in the conversion process.

Usage
XmConvertStringToUnits() converts a string into an integer, translating
the units of the original string into those specified by unit_type. If the screen is
NULL, or if orientation is an invalid value, or if an invalid unit_type is supplied,
or if the string spec is not parsable, the function returns 0 (zero), and
error_return is set True. Otherwise, error_return is set False, and the function
returns the converted value.

The string spec is assumed to be in the following format:

Motif Functions and Macros XmConvertStringToUnits

Motif Reference Manual 67

<float> <unit>

where <float> is a floating point number. The <unit> specification is optional: if
omitted, the default unit of XmPIXELS is used. Otherwise, <unit> is one of the
following strings:

pix pixel pixels
in inch inches
cm centimeter centimeters
mm millimeter millimeters
pt point points
fu font_unit font_units

Structures
The possible values for unit_type are:

XmPIXELS XmCENTIMETERS XmMILLIME-
TERS
Xm100TH_MILLIMETERS XmINCHES
Xm1000TH_INCHES
XmPOINTS Xm100TH_POINTS
XmFONT_UNITS
Xm100TH_FONT_UNITS

Example
The following are valid string specifications:

3.1415926 pix
-3.1 pt
6.3
0.3 font_units
1

See Also
XmConvertUnits(1), XmScreen(2).

XmConvertUnits Motif Functions and Macros

68 Motif Reference Manual

Name
XmConvertUnits – convert a value to a specified unit type.

Synopsis
int XmConvertUnits (Widget widget,

int orientation,
int from_unit_type,
int from_value,
int to_unit_type)

Inputs
widget Specifies the widget for which to convert the data.
orientation Specifies the screen orientation that is used in the conver-

sion. Pass either XmHORIZONTAL or XmVERTICAL.
from_unit_type Specifies the unit type of the value that is being converted.
from_value Specifies the value that is being converted.
to_unit_type Specifies the new unit type of the value.

Returns
The converted value or 0 (zero) if the input parameters are not specified cor-
rectly.

Description
XmConvertUnits() converts the value specified in from_value into the equiv-
alent value in a different unit of measurement. This function returns the resulting
value if successful; it returns 0 (zero) if widget is NULL or if incorrect values are
supplied for orientation or conversion unit arguments. orientation matters only
when conversion values are font units, which are measured differently in the hor-
izontal and vertical dimensions.

Usage
XmConvertUnits() allows an application to manipulate resolution-independ-
ent values. XmPIXELS specifies a normal pixel value,
Xm100TH_MILLIMETERS specifies a value in terms of 1/100 of a millimeter,
Xm1000TH_INCHES specifies a value in terms of 1/1000 of an inch,
Xm100TH_POINTS specifies a value in terms of 1/100 of a point (1/72 of an
inch), and Xm100TH_FONT_UNITS specifies a value in terms of 1/100 of a
font unit. A font unit has horizontal and vertical components which are specified
by the XmScreen resources XmNhorizontalFontUnit and XmNverticalFontUnit.

Structures
The possible values for from_unit_type and to_unit_type are:

XmPIXELS XmCENTIMETERS
XmMILLIMETERS Xm100TH_MILLIMETERS

Motif Functions and Macros XmConvertUnits

Motif Reference Manual 69

XmINCHES Xm1000TH_INCHES
XmPOINTS Xm100TH_POINTS
XmFONT_UNITS Xm100TH_FONT_UNITS

The values XmPOINTS, XmINCHES, XmCENTIMETERS, XmFONT_UNITS,
and XmMILLIMETERS are available in Motif 2.0 and later.

See Also
XmSetFontUnits(1), XmScreen(2).

XmCreateObject Motif Functions and Macros

70 Motif Reference Manual

Name
XmCreateObject – create an instance of a particular widget class or compound
object.

Synopsis
Simple Widgets

#include <Xm/ArrowB.h>
Widget XmCreateArrowButton (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/ArrowBG.h>
Widget XmCreateArrowButtonGadget (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoard (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/CascadeB.h>
Widget XmCreateCascadeButton (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/CascadeBG.h>
Widget XmCreateCascadeButtonGadget (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/Command.h>
Widget XmCreateCommand (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/ComboBox.h>
Widget XmCreateComboBox (Widget parent, char *name, ArgList argv, Cardi-
nal argc)
Widget XmCreateDropDownComboBox (Widget parent, char *name, ArgList
argv, Cardinal argc)
Widget XmCreateDropDownList (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/Container.h>
Widget XmCreateContainer (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/DataF.h>
Widget XmCreateDataField (Widget parent, char *name, ArgList argv, Cardinal
argv)

Motif Functions and Macros XmCreateObject

Motif Reference Manual 71

#include <Xm/DialogS.h>
Widget XmCreateDialogShell (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/DragIcon.h>
Widget XmCreateDragIcon (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/DrawingA.h>
Widget XmCreateDrawingArea (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/DrawnB.h>
Widget XmCreateDrawnButton (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/DropDown.h>
Widget XmCreateDropDown (Widget parent, char *name, ArgList argv, Cardi-
nal argv)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionBox (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/Form.h>
Widget XmCreateForm (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/Frame.h>
Widget XmCreateFrame (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/GrabShell.h>
Widget XmCreateGrabShell (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/IconButton.h>
Widget XmCreateIconButton (Widget parent, char *name, ArgList argv, Cardi-
nal argv)

#include <Xm/IconG.h>
Widget XmCreateIconGadget (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/Label.h>
Widget XmCreateLabel (Widget parent, char *name, ArgList argv, Cardinal
argc)

XmCreateObject Motif Functions and Macros

72 Motif Reference Manual

#include <Xm/LabelG.h>
Widget XmCreateLabelGadget (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/List.h>
Widget XmCreateList (Widget parent, char *name, ArgList argv, Cardinal argc)

#include <Xm/MainW.h>
Widget XmCreateMainWindow (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/MenuShell.h>
Widget XmCreateMenuShell (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/MessageB.h>
Widget XmCreateMessageBox (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/MultiList.h>
Widget XmCreateMultiList (Widget parent, char *name, ArgList argv, Cardinal
argv)

#include <Xm/Notebook.h>
Widget XmCreateNotebook (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Outline.h>
Widget XmCreateOutline (Widget parent, char *name, ArgList argv, Cardinal
argv)

#include <Xm/PanedW.h>
Widget XmCreatePanedWindow (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/PushB.h>
Widget XmCreatePushButton (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/PushBG.h>
Widget XmCreatePushButtonGadget (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/RowColumn.h>
Widget XmCreateRowColumn (Widget parent, char *name, ArgList argv, Car-
dinal argc)

Motif Functions and Macros XmCreateObject

Motif Reference Manual 73

Widget XmCreateRadioBox (Widget parent, char *name, ArgList argv, Cardinal
argc)
Widget XmCreateWorkArea (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/Scale.h>
Widget XmCreateScale (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ScrollBar.h>
Widget XmCreateScrollBar (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ScrolledW.h>
Widget XmCreateScrolledWindow (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/SelectioB.h>
Widget XmCreateSelectionBox (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/Separator.h>
Widget XmCreateSeparator (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/SeparatoG.h>
Widget XmCreateSeparatorGadget (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/SSpinB.h>
Widget XmCreateSimpleSpinBox (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/SpinB.h>
Widget XmCreateSpinBox (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/Text.h>
Widget XmCreateText (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/TextF.h>
Widget XmCreateTextField (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ToggleB.h>

XmCreateObject Motif Functions and Macros

74 Motif Reference Manual

Widget XmCreateToggleButton (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/ToggleBG.h>
Widget XmCreateToggleButtonGadget (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/Tree.h>
Widget XmCreateTree (Widget parent, char *name, ArgList argv, Cardinal
argv)

Dialog Objects
#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoardDialog (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <ButtonBox.h>
Widget XmCreateButtonBox (Widget parent, char *name, ArgList argv, Cardi-
nal argv)

#include <ColorS.h>
Widget XmCreateColorSelector (Widget parent, char *name, ArgList argv, Car-
dinal argv)

#include <Column.h>
Widget XmCreateColumn (Widget parent, char *name, ArgList argv, Cardinal
argv)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionDialog (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/FontS.h>
Widget XmCreateFontSelector (Widget parent, char *name, ArgList argv, Car-
dinal argv)

#include <Xm/Form.h>
Widget XmCreateFormDialog (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/IconBox.h>
Widget XmCreateIconBox (Widget parent, char *name, ArgList argv, Cardinal
argv)

#include <Xm/MessageB.h>
Widget XmCreateErrorDialog (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

Motif Functions and Macros XmCreateObject

Motif Reference Manual 75

Widget XmCreateInformationDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateMessageDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateQuestionDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateTemplateDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateWarningDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateWorkingDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/SelectioB.h>
Widget XmCreatePromptDialog (Widget parent, char *name, ArgList argv, Car-
dinal argc)
Widget XmCreateSelectionDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/TabStack.h>
Widget XmCreateDialogShell (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/Command.h>
Widget XmCreateTabStack (Widget parent, char *name, ArgList argv, Cardinal
argv)

Menu Objects
#include <Xm/RowColumn.h>
Widget XmCreateMenuBar (Widget parent, char *name, ArgList argv, Cardinal
argc)
Widget XmCreateOptionMenu (Widget parent, char *name, ArgList argv, Car-
dinal argc)
Widget XmCreatePopupMenu (Widget parent, char *name, ArgList argv, Cardi-
nal argc)
Widget XmCreatePulldownMenu (Widget parent, char *name, ArgList argv,
Cardinal argc)

Simple Menu Objects
#include <Xm/Xm.h>
Widget XmCreateSimpleCheckBox (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateSimpleMenuBar (Widget parent, char *name, ArgList argv,
Cardinal argc)

XmCreateObject Motif Functions and Macros

76 Motif Reference Manual

Widget XmCreateSimpleOptionMenu (Widget parent, char *name, ArgList
argv, Cardinal argc)
Widget XmCreateSimplePopupMenu (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateSimplePulldownMenu (Widget parent, char *name, ArgList
argv, Cardinal argc)
Widget XmCreateSimpleRadioBox (Widget parent, char *name, ArgList argv,
Cardinal argc)

Scrolled Objects
#include <Xm/List.h>
Widget XmCreateScrolledList (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/Text.h>
Widget XmCreateScrolledText (Widget parent, char *name, ArgList argv, Car-
dinal argc)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup.
argv Specifies the resource name/value pairs used in creating the
widget.
argc Specifies the number of name/value pairs in argv.

Returns
The simple widget creation routines return the widget ID of the widget that is
created. The dialog creation routines return the widget ID of the widget that is
created as a child of the DialogShell. The menu creation routines return the
widget ID of the RowColumn widget that is created. The scrolled object creation
routines return the widget ID of the List or Text widget.

Availability
XmCreateDragIcon() and XmCreateTemplateDialog() are only avail-
able in Motif 1.2 and later.

XmCreateGrabShell(), XmCreateIconGadget(), XmCreateCom-
boBox(),
XmCreateDropDownComboBox(), XmCreateDropDownList(), XmCre-
ateNotebook(), XmCreateContainer(), and XmCreateSpinBox() are
available from Motif 2.0 onwards.

XmCreateSimpleSpinBox() is available from Motif 2.1 and onwards.

Description
The XmCreate*() routines are convenience routines for creating an instance of
a particular widget class or a particular compound object. Each creation routine

Motif Functions and Macros XmCreateObject

Motif Reference Manual 77

takes the same four arguments: the parent’s widget ID, the name of the new
widget, a list of resource name/value pairs, and the number of name/value pairs.

The simple creation routines create a single widget with the default resource set-
tings for the widget class, except for XmCreateRadioBox() and XmCreate-
WorkArea(), which create specially configured RowColumn widgets.

The dialog creation routines are convenience routines for creating a particular
unmanaged widget as a child of a DialogShell. The parent argument specifies
the parent of the DialogShell and name specifies the string name of the particular
widget that is created. The name of the DialogShell is the string that results from
appending "_popup" to the name of the widget. The routines return the widget ID
of the widget that is created as the child of the DialogShell.

The menu creation routines are convenience routines for creating particular types
of menu objects. Each routine creates a RowColumn widget with specific
resource settings that configure the widget to operate as the particular type of
menu. XmCreatePopupMenu() and XmCreatePulldownMenu() create the
RowColumn widget as the child of a MenuShell.

Except for XmCreateSimpleSpinBox(), the simple menu creation routines
are convenience routines for creating particular configurations of RowColumn
widgets and their children. For example, XmCreateSimpleCheckBox() cre-
ates a CheckBox with ToggleButtonGadgets as its children.

XmCreateScrolledList() and XmCreateScrolledText() are conven-
ience routines that create a List or Text widget as the child of a ScrolledWindow.
The parent argument specifies the parent of the ScrolledWindow and name spec-
ifies the string name of the List or Text widget. The name of the ScrolledWindow
is the string that results from appending "SW" to the name of the widget. The
routines return the widget ID of the List or Text widget.

Usage
Each widget or compound object that can be created with an XmCreate*() rou-
tine can also be created using XtCreateWidget(). The simple Motif creation
routines are simply veneers to XtCreateWidget(). The rest of the Motif crea-
tion routines create multiple widgets and/or set specific widget resources. In
order to use XtCreateWidget() to create these objects, you need to have a
complete understanding of the compound object that you are trying to create. For
more information on each widget and compound object that can be created, see
the appropriate manual page in Section 2, Motif and Xt Widget Classes.

XmCreateObject Motif Functions and Macros

78 Motif Reference Manual

See Also
XmArrowButtonGadget(2), XmArrowButton(2),
XmBulletinBoardDialog(2), XmBulletinBoard(2),
XmCascadeButtonGadget(2), XmCascadeButton(2),
XmCheckBox(2), XmComboBox(2), XmCommand(2),
XmCommandDialog(2), XmContainer(2), XmDialogShell(2),
XmDragIcon(2), XmDrawingArea(2), XmDrawnButton(2),
XmErrorDialog(2), XmFileSelectionBox(2),
XmFileSelectionDialog(2), XmFormDialog(2), XmForm(2),
XmFrame(2), XmGrabShell(2), XmIconGadget(2),
XmInformationDialog(2), XmLabelGadget(2), XmLabel(2),
XmList(2), XmMainWindow(2), XmMenuBar(2),
XmMenuShell(2), XmMessageBox(2), XmMessageDialog(2),
XmNotebook(2), XmOptionMenu(2), XmPanedWindow(2),
XmPopupMenu(2), XmPromptDialog(2),
XmPulldownMenu(2), XmPushButtonGadget(2)
XmPushButton(2), XmQuestionDialog(2), XmRadioBox(2),
XmRowColumn(2), XmScale(2), XmScrollBar(2),
XmScrolledList(2), XmScrolledText(2),
XmScrolledWindow(2), XmSelectionBox(2),
XmSelectionDialog(2), XmSeparatorGadget(2),
XmSeparator(2), XmSpinBox(2), XmSimpleSpinBox(2),
XmTemplateDialog(2), XmTextField(2), XmText(2),
XmToggleButtonGadget(2), XmToggleButton(2),
XmWarningDialog(2), XmWorkingDialog(2).

Motif Functions and Macros XmCvtByteStreamToXmString

Motif Reference Manual 79

Name
XmCvtByteStreamToXmString – convert a byte stream to a compound string.

Synopsis
XmString XmCvtByteStreamToXmString (unsigned char *property)

Inputs
property Specifies a byte stream.

Returns
An allocated compound string.

Availability
Motif 2.0 and later.

Description
XmCvtByteStreamToXmString() converts a stream of bytes to a compound
string. The function is typically used by the destination of a data transfer opera-
tion.

Usage
XmCvtByteStreamToXmString() converts a compound string in byte
stream format into an XmString. The function allocates storage for the returned
compound string, and it is the responsibility of the programmer to free the allo-
cated memory by calling XmStringFree() at an appropriate point.

See Also
XmCvtXmStringToByteStream(1), XmStringFree(1),

XmCvtCTToXmString Motif Functions and Macros

80 Motif Reference Manual

Name
XmCvtCTToXmString – convert compound text to a compound string.

Synopsis
XmString XmCvtCTToXmString (char *text)

Inputs
text Specifies the compound text that is to be converted.

Returns
The converted compound string.

Description
XmCvtCTToXmString() converts the specified text string from compound text
format, which is an X Consortium Standard defined in Compound Text Encoding,
to a Motif compound string. The routine assumes that the compound text is
NULL-terminated and NULLs within the compound text are handled correctly. If
text contains horizontal tabulation (HT) control characters, the result is unde-
fined. XmCvtCTToXmString() allocates storage for the converted compound
string. The application is responsible for freeing this storage using XmString-
Free().

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication. An application
must call XtAppInitialize() before calling XmCvtCTToXmString(). The
conversion of compound text to compound strings is implementation dependent.
XmCvtCTToXmString() is the complement of XmCvtXmStringToCT().

See Also
XmCvtXmStringToCT(1).

Motif Functions and Macros XmCvtStringToUnitType

Motif Reference Manual 81

Name
XmCvtStringToUnitType – convert a string to a unit-type value.

Synopsis
void XmCvtStringToUnitType (XrmValuePtr args,

Cardinal *num_args,
XrmValue *from_val,
XrmValue *to_val)

Inputs
args Specifies additional XrmValue arguments that are need to perform
the conversion.
num_args Specifies the number of items in args.
from_val Specifies value to convert.

Outputs
to_val Returns the converted value.

Availability
In Motif 1.2, XmCvtStringToUnitType() is obsolete. It has been super-
seded by a new resource converter that uses the RepType facility.

Description
XmCvtStringToUnitType() converts the string specified in from_val to one
of the unit-type values: XmPIXELS, Xm100TH_MILLIMETERS,
Xm1000TH_INCHES, Xm100TH_POINTS, or Xm100TH_FONT_UNITS.
This value is returned in to_val.

Usage
XmCvtStringToUnitType() should not be called directly; it should be
installed as a resource converter using the R3 routine XtAddConverter(). The
routine only needs to be installed if the XmNunitType resource for a widget is
being set in a resource file. In this case, XmCvtStringToUnitType() must be
installed with XtAddConverter() before the widget is created. Use the fol-
lowing call to XtAddConverter() to install the converter:

XtAddConverter (XmRString, XmRUnitType, XmCvtStringToUnitType,
NULL, 0);

In Motif 1.2, the use of XmCvtStringToUnitType() as a resource converter
is obsolete. A new resource converter that uses the RepType facility has replaced
the routine.

See Also
XmGadget(2), XmManager(2), XmPrimitive(2).

XmCvtTextPropertyToXmStringTable Motif Functions and Macros

82 Motif Reference Manual

Name
XmCvtTextPropertyToXmStringTable – convert an XTextProperty to a Com-
pound String Table.

Synopsis
#include <Xm/TxtPropCv.h>

int XmCvtTextPropertyToXmStringTable (Display *display,
XTextProperty *text_prop,
XmStringTable

*str_table_return,
int *count_return)

Inputs
display Specifies the connection to the X server.
text_prop Specifies a pointer to an XTextProperty structure.

Outputs
str_table_return The XmStringTable array converted from text_prop.
count_return The number of XmStrings in str_table_return.

Returns
Success if the conversion succeeded, XLocaleNotSupported if the current locale
is unsupported, XConverterNotFound if no converter is available in the current
locale.

Availability
Motif 2.0 and later.

Description
XmCvtTextPropertyToXmStringTable() converts the data specified
within text_prop into an array of XmStrings, returned through str_table_return.
The number of XmStrings in the array is returned in count_return.

Usage
The XmCvtTextPropertyToXmStringTable() function converts data
specified within an XTextProperty structure into an XmStringTable. The data to
be converted is the value member of text_prop, where value is an array of bytes,
consisting of a series of concatenated items, each NULL separated. The number
of such items is given by the nitems member of text_prop. The last item is termi-
nated by two NULL bytes. The interpretation of each item depends upon the
encoding member of text_prop.

If the encoding member of text_prop is COMPOUND_TEXT, the data is con-
verted using the function XmCvtCTToXmString(). If encoding is
COMPOUND_STRING, the data is converted using the function XmCvt-

Motif Functions and Macros XmCvtTextPropertyToXmStringTable

Motif Reference Manual 83

ByteStreamToXmString(). Conversion requires that a converter has been
registered for the current locale, otherwise the function returns XConverterNot-
Found. If encoding is XA_STRING, each returned XmString is converted
through XmStringGenerate() with a tag of "ISO8859-1" and a text type of
XmCHARSET_TEXT. If encoding is that of the current locale, each returned
XmString is converted through XmStringGenerate() with a tag of
_MOTIF_DEFAULT_LOCALE, and a text type of XmMULTIBYTE_TEXT.
For other values of encoding, the function returns XLocaleNotSupported.

XmCvtTextPropertyToXmStringTable() returns allocated storage, and
it is the responsibility of the programmer to free the utilized memory at an appro-
priate point by freeing each element of the array through XmStringFree(),
and subsequently the array itself through XtFree().

Structures
The XTextProperty structure is defined in <X11/Xutil.h> as follows:

typedef struct {
unsigned char *value; /* same as Property routines */
Atom encoding; /* the property type */
int format; /* property data format: 8, 16, or 32. */
unsigned long nitems; /* number of data items in value */

} XTextProperty;

See Also
XmCvtByteStreamToXmString(1), XmCvtCTToXmString(1),
XmStringFree(1), XmStringGenerate(1).

XmCvtXmStringTableToTextProperty Motif Functions and Macros

84 Motif Reference Manual

Name
XmCvtXmStringTableToTextProperty – convert an XmStringTable to an XTex-
tProperty.

Synopsis
#include <Xm/TxtPropCv.h>

int XmCvtXmStringTableToTextProperty (Display *dis-
play,

XmStringTable
string_table,

int count,
XmICCEncodingStyle style,
XTextProperty

*prop_return)
Inputs

display Specifies the connection to the X server.
string_table Specifies an array of compound strings.
count Specifies the number of compound strings in string_table.
style Specifies the encoding style from which to convert
string_table.

Outputs
prop_return The XTextProperty structure converted from string_table.

Returns
Success if the conversion succeeded, XLocaleNotSupported if the current locale
is unsupported.

Availability
Motif 2.0 and later.

Description
XmCvtXmStringTableToTextProperty() is the inverse function to
XmCvtTextPropertyToXmStringTable(). It converts an array of com-
pound strings, specified by string_table, into the elements of an XTextProperty
structure. The number of compound strings within the string_table is given by
count.

Usage
XmCvtXmStringTableToTextProperty() converts an XmStringTable
into the elements of an XTextProperty structure. The encoding member contains
an Atom representing the requested style. The value member contains a list of the
converted items, each separated by NULL bytes, and terminated by two NULL
bytes, the nitems member is the number of such items converted.

Motif Functions and Macros XmCvtXmStringTableToTextProperty

Motif Reference Manual 85

If style is XmSTYLE_COMPOUND_STRING, encoding is
_MOTIF_COMPOUND_STRING, and value contains a list of XmStrings in
byte stream format.

If style is XmSTYLE_COMPOUND_TEXT, encoding is COMPOUND_TEXT,
and value contains compound text items.

If style is XmSTYLE_LOCALE, encoding is the Atom representing the encoding
for the current locale. value contains items converted into the current locale.

If style is XmSTYLE_STRING, encoding is STRING, and value contains items
converted into ISO8859-1 strings.

If style is XmSTYLE_TEXT, and all the XmStrings in string_table are converti-
ble into the encoding for the current locale, the function behaves as though style
is XmSTYLE_LOCALE. Otherwise, the function behaves as though style is
XmSTYLE_COMPOUND_TEXT.

If style is XmSTYLE_STANDARD_ICC_TEXT, and all the XmStrings in
string_table are convertible as though the style is XmSTYLE_STRING, the
function behaves as though style is indeed XmSTYLE_STRING. Otherwise, the
function behaves as though style is XmSTYLE_COMPOUND_TEXT.

XmCvtXmStringTableToTextProperty() returns XLocaleNotSupported
if the conversion cannot be performed within the current locale, or if style is not
valid. Otherwise, the function returns Success.

Structures
The XTextProperty structure is defined in <X11/Xutil.h> as follows:

typedef struct {
unsigned char *value; /* same as Property routines */
Atom encoding; /* property type */
int format; /* property data format: 8, 16, or 32 */
unsigned long nitems; /* number of data items in value */

} XTextProperty;

The possible values of the XmICCEncodingStyle parameter style are:

XmSTYLE_COMPOUND_STRING
XmSTYLE_COMPOUND_TEXT
XmSTYLE_LOCALE
XmSTYLE_STANDARD_ICC_TEXT
XmSTYLE_STRING
XmSTYLE_TEXT

See Also

XmCvtXmStringTableToTextProperty Motif Functions and Macros

86 Motif Reference Manual

XmCvtByteStreamToXmString(1), XmCvtCTToXmString(1),
XmCvtTextPropertyToStringTable(1), XmStringFree(1),
XmStringGenerate(1).

Motif Functions and Macros XmCvtXmStringToByteStream

Motif Reference Manual 87

Name
XmCvtXmStringToByteStream – convert a compound string to byte stream for-
mat.

Synopsis
unsigned int XmCvtXmStringToByteStream (XmString string, unsigned char
**prop_return)

Inputs
string Specifies the compound string that is to be converted.

Outputs
prop_return The converted compound string in byte stream format.

Returns
The number of bytes in the byte stream.

Availability
Motif 2.0 and later.

Description
XmCvtXmStringToByteStream() converts a compound string string into a
stream of bytes, returning the number of bytes required for the conversion. The
byte stream is returned in prop_return. The function is the inverse of XmCvt-
ByteStreamToXmString().

Usage
XmCvtXmStringToByteStream() converts an XmString into byte stream
format. If prop_return is not NULL, the function places into prop_return the
converted string, and returns its length in bytes. If prop_return is NULL, the
number of bytes is calculated and returned, but no conversion is performed.

XmCvtXmStringToByteStream() returns allocated storage in prop_return,
and it is the responsibility of the programmer to free the utilized memory at an
appropriate point by calling XtFree().

See Also
XmCvtByteStreamToXmString(1).

XmCvtXmStringToCT Motif Functions and Macros

88 Motif Reference Manual

Name
XmCvtXmStringToCT – convert a compound string to compound text.

Synopsis
char * XmCvtXmStringToCT (XmString string)

Inputs
string Specifies the compound string that is to be converted.

Returns
The converted compound text string.

Description
XmCvtXmStringToCT() converts the specified Motif compound string to a
string in X11 compound text format, which is described in the X Consortium
Standard Compound Text Encoding.

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication. XmCvtXm-
StringToCT() is the complement of XmCvtCTToXmString().

In Motif 1.2 and later, an application must not call XmCvtXmStringToCT()
until after XtAppInitialize() is called, so that the locale is established cor-
rectly. The routine uses the font list tag of each compound string segment to
select a compound text format for the segment. A mapping between font list tags
and compound text encoding formats is stored in a registry.

If the compound string segment tag is associated with
XmFONTLIST_DEFAULT_TAG in the registry, the converter calls XmbTex-
tListToTextProperty() with the XCompoundTextStyle encoding style
and uses the resulting compound text for the segment. If the compound string
segment tag is mapped to a registered MIT charset, the routine creates the com-
pound text using the charset as defined in the X Consortium Standard Compound
Text Encoding. If the compound string segment tag is associated with a charset
that is not XmFONTLIST_DEFAULT_TAG or a registered charset, the con-
verter creates the compound text using the charset and the text as an "extended
segment" with a variable number of octets per character. If the compound string
segment tag is not mapped in the registry, the result depends upon the implemen-
tation.

See Also
XmCvtCTToXmString(1), XmMapSegmentEncoding(1),

Motif Functions and Macros XmCvtXmStringToCT

Motif Reference Manual 89

XmRegisterSegmentEncoding(1).

XmDeactivateProtocol Motif Functions and Macros

90 Motif Reference Manual

Name
XmDeactivateProtocol – deactivate a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmDeactivateProtocol (Widget shell, Atom property, Atom protocol)
Inputs

shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.

Description
XmDeactivateProtocol() deactivates the specified protocol without
removing it. If the shell is realized, XmDeactivateProtocol() updates its
protocol handlers and the specified property. A protocol may be active or inac-
tive. If protocol is active, the protocol atom is stored in property; if protocol is
inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmDeactivateProtocol() allows a client to temporarily stop participating
in the communication. The inverse routine is XmActivateProtocol().

See Also
XmActivateProtocol(1), XmDeactivateWMProtocol(1),
XmInternAtom(1), VendorShell(2).

Motif Functions and Macros XmDeactivateWMProtocol

Motif Reference Manual 91

Name
XmDeactivateWMProtocol – deactivate the XA_WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmDeactivateWMProtocol (Widget shell, Atom protocol)
Inputs

shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.

Description
XmDeactivateWMProtocol() is a convenience routine that calls XmDeac-
tivateProtocol() with property set to XA_WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmDeactivateWMPro-
tocol() allows a client to temporarily stop participating in the communication
with the window manager. The inverse routine is XmActivateWMProto-
col().

See Also
XmActivateWMProtocol(1), XmDeactivateProtocol(1),
XmInternAtom(1), VendorShell(2).

XmDestroyPixmap Motif Functions and Macros

92 Motif Reference Manual

Name
XmDestroyPixmap – remove a pixmap from the pixmap cache.

Synopsis
Boolean XmDestroyPixmap (Screen *screen, Pixmap pixmap)

Inputs
screen Specifies the screen on which the pixmap is located.
pixmap Specifies the pixmap.

Returns
True on success or False if there is no matching pixmap and screen in the cache.

Description
XmDestroyPixmap() removes the specified pixmap from the pixmap cache
when it is no longer needed. A pixmap is not completely freed until there are no
further reference to it.

Usage
The pixmap cache maintains a per-client list of the pixmaps that are in use.
Whenever a pixmap is requested using XmGetPixmap(), an internal reference
counter for the pixmap is incremented. XmDestroyPixmap() decrements this
counter, so that when it reaches 0 (zero), the pixmap is removed from the cache.

See Also
XmGetPixmap(1), XmInstallImage(1), XmUninstallImage(1).

Motif Functions and Macros XmDirectionMatch

Motif Reference Manual 93

Name
XmDirectionMatch – compare two directions.

Synopsis
Boolean XmDirectionMatch (XmDirection dir_1, XmDirection dir_2)

Inputs
dir_1 Specifies a direction.
dir_2 Specifies a direction to compare with dir_1.

Returns
True if the directions match, otherwise False.

Availability
Motif 2.0 and later.

Description
XmDirectionMatch() is a convenience function which compares two direc-
tion values, dir_1 and dir_2, returning True or False, depending upon whether
the values are a logical match for each other.

Usage
An XmDirection consists of three parts: a horizontal component, a vertical com-
ponent, and an order of precedence between each. XmDirection values match if
both the horizontal components and vertical components of each are logically the
same, and the order between the components is the same. If one value does not
have a horizontal component, this always matches the horizontal component of
the other value. Similarly, if one value has no vertical component, the vertical
component in the other value is automatically considered to match. Where a
match is found between the directions, the function returns True, otherwise False.

For example, suppose dir_1 is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT.
This has a vertical component XmTOP_TO_BOTTOM, a horizontal component
XmLEFT_TO_RIGHT, the vertical component being first in the order of prece-
dence. If dir_2 is XmLEFT_TO_RIGHT, this has no vertical component, which
automatically matches the vertical component of dir_1. The horizontal compo-
nents are identical, and therefore the two directions are considered a match (it is
also a match if dir_1 is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM). If dir_2 is
XmRIGHT_TO_LEFT, or XmTOP_TO_BOTTOM_RIGHT_TO_LEFT, no
match is found because the horizontal components differ, and the function
returns False. If dir_2 is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM, the func-
tion also returns False because the horizontal and vertical components, although
fully specified and equal in value, have different orders of precedence.

XmDirectionMatch Motif Functions and Macros

94 Motif Reference Manual

Structures
Valid XmDirection values for each of dir_1 and dir_2 are:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

See Also
XmDirectionMatchPartial(1),
XmDirectionToStringDirection(1),
XmStringDirectionToDirection(1),

Motif Functions and Macros XmDirectionMatchPartial

Motif Reference Manual 95

Name
XmDirectionMatchPartial – partially compare two directions.

Synopsis
Boolean XmDirectionMatchPartial (XmDirection dir_1, XmDirection dir_2,
XmDirection mask)

Inputs
dir_1 Specifies a direction.
dir_2 Specifies another direction to compare with dir_1.
mask Specifies whether the horizontal component

(XmHORIZONTAL_MASK), vertical component
(XmVERTICAL_MASK), or the order of component precedence
(XmPRECEDENCE_MASK) is compared.

Returns
True if the directions match, otherwise False.

Availability
Motif 2.0 and later.

Description
XmDirectionMatchPartial() is a convenience function which compares
two direction values, dir_1 and dir_2 according to the comparison rule specified
in mask.

Usage
An XmDirection consists of three logical parts: a horizontal component, a verti-
cal component, and an order of precedence between each. The function compares
corresponding logical parts of two XmDirection values. If mask is
XmHORIZONTAL_MASK, the horizontal components of dir_1 and dir_2 are
compared. If mask is XmVERTICAL_MASK, the vertical components are com-
pared. If mask is XmPRECEDENCE_MASK, the order of precedence between
the horizontal and vertical components is compared. If one value does not have a
particular logical part, this always matches the logical part in the second value.
Where a match is found, the function returns True, otherwise False.

For example, suppose dir_1 is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT, and
that dir_2 is XmBOTTOM_TO_TOP_LEFT_TO_RIGHT. If mask is
XmHORIZONTAL_MASK, the two values match because each has an equiva-
lent horizontal component (XmLEFT_TO_RIGHT). If mask is
XmVERTICAL_MASK, there is no match because each has different vertical
components. If mask is XmPRECEDENCE_MASK, the two values are a match
because each has the vertical component before the horizontal.

XmDirectionMatchPartial Motif Functions and Macros

96 Motif Reference Manual

Structures
Valid XmDirection values for each of dir_1 and dir_1 are:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

See Also
XmDirectionMatch(1), XmDirectionToStringDirection(1),
XmStringDirectionToDirection(1),

Motif Functions and Macros XmDirectionToStringDirection

Motif Reference Manual 97

Name
XmDirectionToStringDirection – convert a direction to a string direction.

Synopsis
XmStringDirection XmDirectionToStringDirection (XmDirection direction)

Inputs
direction Specifies the direction to be converted.

Returns
The equivalent XmStringDirection.

Availability
Motif 2.0 and later.

Description
XmDirectionToStringDirection() converts an XmDirection value
specified by direction into an XmStringDirection value.

Usage
XmDirectionToStringDirection() converts between the XmDirection
and XmStringDirection data types. If direction has a horizontal component, that
component is converted. If the horizontal component is XmLEFT_TO_RIGHT,
the function returns XmSTRING_DIRECTION_LEFT_TO_RIGHT. If the hori-
zontal component is XmRIGHT_TO_LEFT, the function returns
XmSTRING_DIRECTION_RIGHT_TO_LEFT. If direction has no horizontal
component, the function returns XmSTRING_DIRECTION_DEFAULT.

For example, if direction is XmRIGHT_TO_LEFT_TOP_TO_BOTTOM, the
horizontal component is XmRIGHT_TO_LEFT, and the return value is
XmSTRING_DIRECTION_RIGHT_TO_LEFT. If direction is
XmBOTTOM_TO_TOP, the value has only a vertical component, and the func-
tion returns XmSTRING_DIRECTION_DEFAULT.

See Also
XmDirectionMatch(1), XmDirectionMatchPartial(1),
XmStringDirectionToDirection(1).

XmDragCancel Motif Functions and Macros

98 Motif Reference Manual

Name
XmDragCancel – cancel a drag operation.

Synopsis
#include <Xm/DragDrop.h>

void XmDragCancel (Widget dragcontext)
Inputs

dragcontext Specifies the ID of the DragContext object for the drag operation
that is being cancelled.

Description
XmDragCancel() cancels the drag operation that is in progress for the specified
dragcontext. If the DragContext has any actions pending, they are terminated.
The routine can only be called by the client that initiated the drag operation.
XmDragCancel() frees the DragContext object associated with the drag opera-
tion.

Usage
XmDragCancel() allows an initiating client to cancel a drag operation if it
decides that the operation should not continue for whatever reason. Calling
XmDragCancel() is equivalent to the user pressing KCancel during the drag.
The XmNdropStartCallback informs the initiating client of the cancellation by
setting the dropAction field to XmDROP_CANCEL. So that it can undo any
drag-under effects under the dynamic protocol, the receiving client gets an
XmCR_DROP_SITE_LEAVE_MESSAGE when the drag is cancelled.

See Also
XmDragStart(1), XmDragContext(2).

Motif Functions and Macros XmDragStart

Motif Reference Manual 99

Name
XmDragStart – start a drag operation.

Synopsis
#include <Xm/DragDrop.h>

Widget XmDragStart (Widget widget, XEvent *event, ArgList arglist, Cardinal
argcount)

Inputs
widget Specifies the widget or gadget that contains the data that is being

dragged.
event Specifies the event that caused the drag operation.
arglist Specifies the resource name/value pairs used in creating the Drag-

Context.
argcount Specifies the number of name/value pairs in arglist.

Returns
The ID of the DragContext object that is created.

Availability
In Motif 2.0 and later, XmDragStart() is subsumed into the Uniform Transfer
Model (UTM). The Motif widget classes do not call XmDragStart() directly,
but install the XmQTtransfer trait to provide data transfer and conversion, and
initiate the drag through UTM mechanisms which calls XmDragStart() inter-
nally.

Description
XmDragStart() starts a drag operation by creating and returning a DragCon-
text object. The DragContext stores information that the toolkit needs to process
a drag transaction. The DragContext object is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DragContext upon com-
pletion of the drag and drop operation.

The widget argument to XmDragStart() should be the smallest widget that
contains the source data for the drag operation. The event that starts the drag
operation must be a ButtonPress event. The arglist and argcount parameters
work as for any creation routine; any DragContext resources that are not set by
the arguments are retrieved from the resource database or set to their default val-
ues.

Usage
Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. These drop sites can
be in the same application or another application.

XmDragStart Motif Functions and Macros

100 Motif Reference Manual

The Text and TextField widgets, the List widget, and Label and its subclasses are
set up to act as drag sources by the toolkit. In order for another widget to act as a
drag source, it must have a translation for BTransfer. The action routine for the
translation calls XmDragStart(), either directly or indirectly through the UTM,
to initiate the drag and drop operation.

The only DragContext resource that must be specified when XmDragStart() is
called is the XmNconvertProc procedure. This resource specifies a procedure of
type XtConvertSelectionIncrProc that converts the source data to the format(s)
requested by the receiving client. The specification of the other resources, such as
those for operations and drag-over visuals, is optional. For more information
about the DragContext object, see the manual page in Section 2, Motif and Xt
Widget Classes].

Example
The following routines show the use of XmDragStart() in setting up a Scroll-
Bar to function as a drag source. When the ScrollBar is created, the translations
are overridden to invoke StartDrag when BTransfer is pressed. ConvertProc,
which is not shown here, is set up by StartDrag to perform the translation of the
scrollbar data into compound text format.

/*
** XmSCOMPOUND_TEXT is defined in Motif 2.0 and
later
*/
#ifndef XmSCOMPOUND_TEXT
#define XmSCOMPOUND_TEXT "COMPOUND_TEXT"
#endif /* XmSCOMPOUND_TEXT */

/* global variable */
Atom COMPOUND_TEXT;

/* start the drag operation */
static void StartDrag(Widget widget,

XEvent *event,
String *params,
Cardinal *num_params)

{
Arg args[10];
int n = 0;
Atom exportList[1];

exportList[0] = COMPOUND_TEXT;

Motif Functions and Macros XmDragStart

Motif Reference Manual 101

XtSetArg (args[n], XmNexportTargets,
exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, XtNumber
(exportList));
n++;
XtSetArg (args[n], XmNdragOperations,
XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, ConvertProc);
n++;
XtSetArg (args[n], XmNclientData, widget); n++;

XmDragStart (widget, event, args, n);
}

/* define translations and actions */
static char dragTranslations[] =

"#override <Btn2Down>: StartDrag()";

static XtActionsRec dragActions[] =
{ {"StartDrag", (XtActionProc) StartDrag} };

void main (unsigned int argc, char **argv)
{

Arg args[10];
int n;
Widget top, bboard, scrollbar;
XtAppContext app;
XtTranslations parsed_trans;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL);

top = XtAppInitialize (&app, "Drag", NULL, 0,
&argc, argv, NULL, NULL,
0);

COMPOUND_TEXT = XInternAtom (XtDisplay (widget),
XmSCOMPOUND_TEXT,
False);

n = 0;
bboard = XmCreateBulletinBoard (top, "bboard",
args, n);
XtManageChild (bboard);

/* override button two press to start a drag */
parsed_trans = XtParseTranslationTable
(dragTranslations);

XmDragStart Motif Functions and Macros

102 Motif Reference Manual

XtAppAddActions (app, dragActions, XtNumber
(dragActions));

n = 0;
XtSetArg (args[n], XmNtranslations,
parsed_trans); n++;
XtSetArg (args[n], XmNorientation, XmHORIZON-
TAL); n++;
XtSetArg (args[n], XmNwidth, 100); n++;
scrollbar = XmCreateScrollBar (bboard, "scroll-
bar", args, n);
XtManageChild (scrollbar);

XtRealizeWidget (top);
XtAppMainLoop (app);

}

See Also
XmDragCancel(1), XmTransfer(1), XmDragContext(2).

Motif Functions and Macros XmDropDownGetArrow

Motif Reference Manual 103

Name
XmDropDownGetArrow –A DropDown function that returns the “arrow” child
of the XmDropDown.

Synopsis
#include <Xm/DropDown.h>

Widget XmDropDownGetArrow(Widget widget)
Inputs

widget Specifies the DropDown widget ID.
Outputs

value_return Returns the widget ID of the “arrow” child of the Drop-
Down widget.

Description
XmDropDownGetArrow() is used to access the “arrow” child within the Drop-
Down widget.

Usage
XmDropDownArrow() is a convenience routine that returns the “arrow” child
within the DropDown widget.

See Also
XmDropDown(2).

XmDropDownGetChild Motif Functions and Macros

104 Motif Reference Manual

Name
XmDropDownGetChild –get the specified child of a DropDown widget.

Synopsis
#include <Xm/DropDown.h>

void XmDropDownGetChild (Widget widget, int child)
Inputs

widget Specifies the DropDown widget.
child Specifies a type of child of the DropDown widget.

Returns
The widget ID of the specified child of the DropDown widget.

Description
XmDropDownGetChild() returns the widget ID of the specified child of the
DropDown widget.

Usage
The child XmDROPDOWN_LABEL specifies the label of the DropDown,
XmDROPDOWN_TEXT specifies the text area of the DropDown,
XmDROPDOWN_ARROW_BUTTON specifies the arrow button of the Drop-
Down, and XmDROPDOWN_LIST specifies the list widget of DropDown.

Structures
The possible values for child are:

XmDROPDOWN_LABEL XmDROPDOWN_TEXT
XmDROPDOWN_ARROW_BUTTON XmDROPDOWN_LIST

Motif Functions and Macros XmDropDownGetChild

Motif Reference Manual 105

Widget Hierarchy
The following names are associated with the DropDown children:

“Label” XmDROPDOWN_LABEL

“Arrow” XmDROPDOWN_ARROW_BUTTON
“Text” XmDROPDOWN_TEXT
“List” XmDROPDOWN_LIST

See Also
XmDropDown(2).

XmDropDownGetLabel Motif Functions and Macros

106 Motif Reference Manual

Name
XmDropDownGetLabel – A DropDown function that returns the “label” child of
the XmDropDown.

Synopsis
#include <Xm/DropDown.h>

Widget XmDropDownGetLabel(Widget widget)
Inputs

widget Specifies the DropDown widget ID.
Outputs

value_return Returns the widget ID of the “label” child of the DropDown
widget.

Description
XmDropDownGetLabel() is used to access the “label” child within the Drop-
Down widget.

Usage
XmDropDownGetLabel() is a convenience routine that returns the “label”
child of the DropDown widget.

See Also
XmDropDown(2).

Motif Functions and Macros XmDropDownGetList

Motif Reference Manual 107

Name
XmDropDownGetList – A DropDown function that returns the “list” child of the
XmDropDown.

Synopsis
#include <Xm/DropDown.h>

Widget XmDropDownGetList(Widget widget)
Inputs

widget Specifies the DropDown widget ID.
Outputs

value_return Returns the widget ID of the “list” child of the DropDown
widget.

Description
XmDropDownGetList() is used to access the “list” child within the Drop-
Down widget.

Usage
XmDropDownGetList() is a convenience routine that returns the “list” child
of the DropDown widget.

See Also
XmDropDown(2).

XmDropDownGetText Motif Functions and Macros

108 Motif Reference Manual

Name
XmDropDownGetText– A DropDown function that returns the “text” child of
the XmDropDown.

Synopsis
#include <Xm/DropDown.h>

Widget XmDropDownGetText (Widget widget)
Inputs

widget Specifies the DropDown widget ID.
Outputs

value_return Returns the widget ID of the “text” child of the DropDown
widget.

Description
XmDropDownGetText() is used to access the “text” child within the Drop-
Down widget.

Usage
XmDropDownGetText() is a convenience routine that returns the “text” child
of the DropDown widget.

See Also
XmDropDown(2).

Motif Functions and Macros XmDropDownGetValue

Motif Reference Manual 109

Name
XmDropDownGetValue–retrieve the value from DropDown.

Synopsis
#include <Xm/DropDown.h>

void String XmDropDownGetValue (Widget w)
Inputs

widget Specifies the DropDown widget ID.
Outputs

value_return Returns the string contained within the text widget of the
DropDown widget.

Description
The XmDropDownGetValue() function returns the string contained within
the text widget of the DropDown widget.

Usage
XmDropDownGetValue() is a convenience routine that returns the string con-
tained within the text widget of the DropDown widget. This string has been allo-
cated with XtMalloc() and must be freed by the application with XtFree().
Always leave the specified margin between its edge and the nearest child. A new
String to fillOption resource converter has been registered to convert the follow-
ing strings to fill options: “none”, “major”, “minor”, “all”. This resource can
therefore be set in an application defaults file.

See Also
XmDropDown(2).

XmDropSiteConfigureStackingOrder Motif Functions and Macros

110 Motif Reference Manual

Name
XmDropSiteConfigureStackingOrder – change the stacking order of a drop site.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteConfigureStackingOrder (Widget widget, Widget sibling, Car-
dinal stack_mode)

Inputs
widget Specifies the widget ID associated with the drop site.
sibling Specifies an optional widget ID of a sibling drop site.
stack_mode Specifies the stacking position. Pass either XmABOVE or
XmBELOW.

Description
XmDropSiteConfigureStackingOrder() changes the stacking order of a
drop site relative to its siblings. The routine changes the stacking order of the
drop site associated with the specified widget. The stacking order is changed only
if the drop sites associated with widget and sibling are siblings in both the widget
hierarchy and the drop site hierarchy. The parent of both of the widgets must be
registered as a composite drop site.

If sibling is specified, the stacking order of the drop site is changed relative to the
stack position of the drop site associated with sibling, based on the value of
stack_mode. If stack_mode is XmABOVE, the drop site is positioned just above
the sibling; if stack_mode is XmBELOW, the drop site is positioned just below
the sibling. If sibling is not specified, a stack_mode of XmABOVE causes the
drop site to be placed at the top of the stack, while a stack_mode of XmBELOW1
causes it to be placed at the bottom of the stack.

Usage
A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of the
drop sites controls clipping of drag-under effects during a drag and drop opera-
tion. When drop sites overlap, the drag-under effects of the drop sites lower in
the stacking order are clipped by the drop sites above them, regardless of whether
or not the drop sites are active. You can use XmDropSiteConfigure-
StackingOrder() to modify the stacking order. Use XmDropSiteQueryS-
tackingOrder() to get the current stacking order.

See Also

1.Erroneously given as BELOW in 1st and 2nd editions.

Motif Functions and Macros XmDropSiteConfigureStackingOrder

Motif Reference Manual 111

XmDropSiteQueryStackingOrder(1),
XmDropSiteRegister(1), XmDropSite(2)

XmDropSiteEndUpdate Motif Functions and Macros

112 Motif Reference Manual

Name
XmDropSiteEndUpdate – end an update of multiple drop sites.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteEndUpdate (Widget widget)
Inputs

widget Specifies any widget in the hierarchy associated with the drop sites
that are to be updated.

Description
XmDropSiteEndUpdate() finishes an update of multiple drop sites. The
widget parameter specifies a widget in the widget hierarchy that contains all of
the widgets associated with the drop sites being updated. The routine uses widget
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteEndUpdate() is used with XmDropSiteStartUpdate() and
XmDropSiteUpdate() to update information about multiple drop sites in the
DropSite registry. XmDropSiteStartUpdate() starts the update processing,
XmDropSiteUpdate() is called multiple times to update information about
different drop sites, and XmDropSiteEndUpdate() completes the processing.
These routines optimize the updating of drop site information. Calls to XmDrop-
SiteStartUpdate() and XmDropSiteEndUpdate() can be nested recur-
sively.

See Also
XmDropSiteStartUpdate(1), XmDropSiteUpdate(1),
XmDropSite(2).

Motif Functions and Macros XmDropSiteQueryStackingOrder

Motif Reference Manual 113

Name
XmDropSiteQueryStackingOrder – get the stacking order of a drop site.

Synopsis
#include <Xm/DragDrop.h>

Status XmDropSiteQueryStackingOrder (Widget widget,
Widget *parent_return,
Widget **child_returns,
Cardinal *num_child_returns)

Inputs
widget Specifies the widget ID associated with a composite drop
site.

Outputs
parent_return Returns the widget ID of the parent of the specified
widget.
child_returns Returns a list of the children of widget that are registered
as drop sites.
num_child_returns Returns the number of children in child_returns.

Returns
A non-zero value on success or 0 (zero) on failure.

Description
XmDropSiteQueryStackingOrder() retrieves information about the
stacking order of drop sites. For the specified widget, the routine returns its par-
ent and a list of its children that are registered as drop sites. The children are
returned in child_returns, which lists the children in the current stacking order,
with the lowest child in the stacking order at the beginning of the list and the top
child at the end of the list. XmDropSiteQueryStackingOrder() allocates
storage for the list of returned children. The application is responsible for manag-
ing this storage, which can be freed using XtFree(). The routine returns a non-
zero value on success or 0 (zero) on failure.

XmDropSiteQueryStackingOrder Motif Functions and Macros

114 Motif Reference Manual

Usage
A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of the
drop sites controls clipping of drag-under effects during a drag and drop opera-
tion. When drop sites overlap, the drag-under effects of the drop sites lower in
the stacking order are clipped by the drop sites above them, regardless of whether
or not the drop sites are active. Use XmDropSiteQueryStackingOrder()
to get the current stacking order for a composite drop site. You can use
XmDropSiteConfigureStackingOrder() to modify the stacking order.

Text, TextField, and Container widgets are automatically registered as drop sites
by the Motif toolkit.

See Also
XmDropSiteConfigureStackingOrder(1),
XmDropSiteRegister(1), XmDropSite(2).

Motif Functions and Macros XmDropSiteRegister

Motif Reference Manual 115

Name
XmDropSiteRegister – register a drop site.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteRegister (Widget widget, ArgList arglist, Cardinal argcount)
Inputs

widget Specifies the widget ID that is to be associated with the drop site.
arglist Specifies the resource name/value pairs used in registering the
drop site.
argcount Specifies the number of name/value pairs in arglist.

Availability
In Motif 2.0 and later, XmDropSiteRegister() is subsumed into the Uni-
form Transfer Model (UTM). The Motif widget classes do not call XmDrop-
SiteRegister() directly, but initiate the site through UTM mechanisms
which call XmDropSiteRegister() internally. The callbacks specified by the
XmNdestinationCallback resource of a widget handle the data drop.

Description
XmDropSiteRegister() registers the specified widget as a drop site, which
means the widget has a drop site associated with it in the DropSite registry. Drop
sites are widget-like, in that they use resources to specify their attributes. The
arglist and argcount parameters work as for any creation routine; any drop site
resources that are not set by the arguments are retrieved from the resource data-
base or set to their default values. If the drop site is registered with XmNdrop-
SiteActivity set to XmDROP_SITE_ACTIVE and XmNdropProc set to NULL,
the routine generates a warning message.

Usage
Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. The DropSite regis-
try stores information about all of the drop sites for a display. Text and TextField
widgets are automatically registered as drop sites when they are created. An
application can register other widgets as drop sites using XmDropSiteRegis-
ter(). Once a widget is registered as a drop site, it can participate in drag and
drop operations. A drop site can be removed from the registry using XmDrop-
SiteUnregister(). When a drop site is removed, the widget no longer partic-
ipates in drag and drop operations.

XmDropSiteRegister Motif Functions and Macros

116 Motif Reference Manual

A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. If the drop site being regis-
tered is a descendant of a widget that has already been registered as a drop site,
the XmNdropSiteType resource of the ancestor must be set to
XmDROP_SITE_COMPOSITE. A composite drop site must be registered as a
drop site before its descendants are registered. The stacking order of the drop
sites controls clipping of drag-under effects during a drag and drop operation.
When drop sites overlap, the drag-under effects of the drop sites lower in the
stacking order are clipped by the drop sites above them, regardless of whether or
not the drop sites are active. When a descendant drop site is registered, it is
stacked above all of its sibling drop sites that have already been registered.

Example
The following routine shows the use of XmDropSiteRegister() to register a
Label widget as a drop site. When a drop operation occurs in the Label, the Han-
dleDrop routine, which is not shown here, handles the drop:

/* global variable */
Atom COMPOUND_TEXT;

void main (unsigned int argc, char **argv)
{

Arg args[10];
int n;
Widget top, bb, label;
XtAppContext app;
Atom importList[1];

XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL);
top = XtAppInitialize (&app, "Drop", NULL, 0,

&argc, argv, NULL, NULL,
0);

n = 0;
bb = XmCreateBulletinBoard (top, "bb", args, n);
XtManageChild (bb);

COMPOUND_TEXT = XInternAtom (XtDisplay (top),
"COMPOUND_TEXT",
False);

n = 0;
label = XmCreateLabel (bb, "Drop Here", args,
n);

Motif Functions and Macros XmDropSiteRegister

Motif Reference Manual 117

XtManageChild (label);

/* register the label as a drop site */
importList[0] = COMPOUND_TEXT;

n = 0;
XtSetArg (args[n], XmNimportTargets,
importList); n++;
XtSetArg (args[n], XmNnumImportTargets, XtNumber
(importList)); n++;
XtSetArg (args[n], XmNdropSiteOperations,
XmDROP_COPY); n++;
XtSetArg (args[n], XmNdropProc, HandleDrop);
n++;
XmDropSiteRegister (label, args, n);

XtRealizeWidget (top);
XtAppMainLoop (app);

}

See Also
XmDropSiteConfigureStackingOrder(1),
XmDropSiteEndUpdate(1), XmDropSiteQueryStackingOrder(1),
XmDropSiteRetrieve(1), XmDropSiteStartUpdate(1),
XmDropSiteUpdate(1), XmDropSiteUnregister(1),
XmTransfer(1), XmDisplay(2), XmDropSite(2), XmScreen(2).

XmDropSiteRetrieve Motif Functions and Macros

118 Motif Reference Manual

Name
XmDropSiteRetrieve – get the resource values for a drop site.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteRetrieve (Widget widget, ArgList arglist, Cardinal argcount)
Inputs

widget Specifies the widget ID associated with the drop site.
arglist Specifies the resource name/address pairs that contain the resource

names and addresses into which the resource values are stored.
argcount Specifies the number of name/value pairs in arglist.

Description
XmDropSiteRetrieve() gets the specified resources for the drop site associ-
ated with the specified widget. Drop sites are widget-like, in that they use
resources to specify their attributes. The arglist and argcount parameters work as
for XtGetValues().

Usage
XmDropSiteRetrieve() can be used to get the current attributes of a drop
site from the DropSite registry. The DropSite registry stores information about
all of the drop sites for a display. An initiating client can also use XmDropSi-
teRetrieve() to retrieve information about the current drop site by passing the
DragContext for the operation to the routine. The initiator can access all of the
drop site resources except XmNdragProc and XmNdropProc1 using this tech-
nique.

See Also
XmDropSiteRegister(1), XmDropSiteUpdate(1), XmDropSite(2).

1.Erroneously given as XmdropProc in 1st and 2nd editions.

Motif Functions and Macros XmDropSiteStartUpdate

Motif Reference Manual 119

Name
XmDropSiteStartUpdate – start an update of multiple drop sites.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteStartUpdate (Widget widget)
Inputs

widget Specifies any widget in the hierarchy associated with the drop sites
that are to be updated.

Description
XmDropSiteStartUpdate() begins an update of multiple drop sites. The
widget parameter specifies a widget in the widget hierarchy that contains all of
the widgets associated with the drop sites being updated. The routine uses widget
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteStartUpdate() is used with XmDropSiteUpdate() and
XmDropSiteEndUpdate() to update information about multiple drop sites in
the DropSite registry. XmDropSiteStartUpdate() starts the update process-
ing, XmDropSiteUpdate() is called multiple times to update information
about different drop sites, and XmDropSiteEndUpdate() completes the
processing. These routines optimize the updating of drop site information. Calls
to XmDropSiteStartUpdate() and XmDropSiteEndUpdate() can be
nested recursively.

See Also
XmDropSiteEndUpdate(1), XmDropSiteUpdate(1), XmDropSite(2).

XmDropSiteUnregister Motif Functions and Macros

120 Motif Reference Manual

Name
XmDropSiteUnregister – remove a drop site.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteUnregister (Widget widget)
Inputs

widget Specifies the widget ID associated with the drop site.

Description
XmDropSiteUnregister() removes the drop site associated with the speci-
fied widget from the DropSite registry. After the routine is called, the widget can-
not be the receiver in a drag and drop operation. The routine frees all of the
information associated with the drop site.

Usage
Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. Once a widget is
registered as a drop site with XmDropSiteRegister(), it can participate in
drag and drop operations. Text and TextField widgets are automatically regis-
tered as drop sites when they are created. XmDropSiteUnregister() pro-
vides a way to remove a drop site from the registry, so that the widget no longer
participates in drag and drop operations.

See Also
XmDropSiteRegister(1), XmDropSite(2).

Motif Functions and Macros XmDropSiteUpdate

Motif Reference Manual 121

Name
XmDropSiteUpdate – change the resource values for a drop site.

Synopsis
#include <Xm/DragDrop.h>

void XmDropSiteUpdate (Widget widget, ArgList arglist, Cardinal argcount)
Inputs

widget Specifies the widget ID associated with the drop site.
arglist Specifies the resource name/value pairs used in updating the drop
site.
argcount Specifies the number of name/value pairs in arglist.

Description
XmDropSiteUpdate() changes the resources for the drop site associated with
the specified widget. Drop sites are widget-like, in that they use resources to
specify their attributes. The arglist and argcount parameters work as for
XtSetValues().

Usage
XmDropSiteUpdate() can be used by itself to update the attributes of a drop
site. The routine can also be used with XmDropSiteStartUpdate() and
XmDropSiteEndUpdate() to update information about multiple drop sites in
the DropSite registry. XmDropSiteStartUpdate() starts the update
processing, XmDropSiteUpdate() is called multiple times to update informa-
tion about different drop sites, and XmDropSiteEndUpdate() completes the
processing. The DropSite registry stores information about all of the drop sites
for a display. These routines optimize the updating of drop site information by
sending all of the updates at once, rather than processing each one individually.

See Also
XmDropSiteEndUpdate(1), XmDropSiteRegister(1),
XmDropSiteStartUpdate(1), XmDropSiteUnregister(1),
XmDropSite(2).

XmDropTransferAdd Motif Functions and Macros

122 Motif Reference Manual

Name
XmDropTransferAdd – add drop transfer entries to a drop operation.

Synopsis
#include <Xm/DragDrop.h>

void XmDropTransferAdd (Widget drop_transfer,
XmDropTransferEntryRec *transfers,
Cardinal num_transfers)

Inputs
drop_transfer Specifies the ID of the DropTransfer object to which the
entries are being added.
transfers Specifies the additional drop transfer entries.
num_transfer Specifies the number of drop transfer entries in transfers.

Availability
In Motif 2.0 and later, the drag and drop mechanisms are rationalized as part of
the Uniform Transfer Model. Motif widget classes do not call XmDropTrans-
ferAdd() directly, but call XmTransferValue() to transfer data to a destina-
tion. XmTransferValue() calls XmDropTransferAdd() internally as the
need arises.

Description
XmDropTransferAdd() specifies a list of additional drop transfer entries that
are to be processed during a drop operation. The widget argument specifies the
DropTransfer object associated with the drop operation. transfers is an array of
XmDropTransferEntryRec structures that specifies the targets of the additional
drop transfer operations. XmDropTransferAdd() can be used to modify the
DropTransfer object until the last call to the XmNtransferProc is made. After the
last call, the result of modifying the DropTransfer object is undefined.

Usage
The toolkit uses the DropTransfer object to manage the transfer of data from the
drag source to the drop site during a drag and drop operation. XmDropTrans-
ferAdd() provides a way for a drop site to specify additional target formats after
a drop operation has started. The routine adds the entries to the XmNdropTrans-
fers resource. The attributes of a DropTransfer object can also be manipulated
with XtSetValues() and XtGetValues().

Motif Functions and Macros XmDropTransferAdd

Motif Reference Manual 123

Structures
XmDropTransferEntryRec is defined as follows:

typedef struct {
XtPointer client_data; /* data passed to the transfer proc */
Atom target; /* target format of the transfer */

} XmDropTransferEntryRec, *XmDropTransferEntry;

See Also
XmDropTransferStart(1), XmTransferValue(1),
XmDragContext(2), XmDropTransfer(2).

XmDropTransferStart Motif Functions and Macros

124 Motif Reference Manual

Name
XmDropTransferStart – start a drop operation.

Synopsis
#include <Xm/DragDrop.h>

Widget XmDropTransferStart (Widget widget, ArgList arglist, Cardinal arg-
count)

Inputs
widget Specifies the ID of the DragContext object associated with the
operation.
arglist Specifies the resource name/value pairs used in creating the
DropTransfer.
argcount Specifies the number of name/value pairs in arglist.

Returns
The ID of the DropTransfer object that is created.

Availability
In Motif 2.0 and later, the drag and drop mechanisms are rationalized as part of
the Uniform Transfer Model. XmDropTransferStart() is called on request
internally as the need arises by the destination callback handlers, or through the
XmTransferValue() and XmTransferDone() functions.

Description
XmDropTransferStart() starts a drop operation by creating and returning a
DropTransfer object. The DropTransfer stores information that the toolkit needs
to process a drop transaction. The DropTransfer is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DropTransfer upon com-
pletion of the drag and drop operation.

The widget argument to XmDropTransferStart() is the DragContext object
associated with the drag operation. The arglist and argcount parameters work as
for any creation routine; any DropTransfer resources that are not set by the argu-
ments are retrieved from the resource database or set to their default values.

Usage
Motif 1.2 supports the drag and drop model of selection actions. In a widget that
acts as a drag source, a user can make a selection and then drag the selection,
using BTransfer, to other widgets that are registered as drop sites. These drop
sites can be in the same application or another application. The toolkit uses the
DropTransfer object to manage the transfer of data from the drag source to the
drop site. XmDropTransferStart() is typically called from within the XmNdrop-
Proc procedure of the drop site.

Motif Functions and Macros XmDropTransferStart

Motif Reference Manual 125

The attributes of a DropTransfer object can be manipulated with XtSetVal-
ues() and XtGetValues() until the last call to the XmNtransferProc proce-
dure is made. You can also use XmDropTransferAdd() to add drop transfer
entries to be processed. After the last call to XmNtransferProc, the result of using
the DropTransfer object is undefined. For more information about the Drop-
Transfer object, see the manual page in Section 2, Motif and Xt Widget Classes.

Example
The following routine shows the use of XmDropTransferStart() in the
HandleDrop routine, which is the XmNdropProc procedure for a Label widget
that is being used as a drop site. The data transfer procedure TransferProc()
which presumably translates the data in the Label into compound text format, is
not shown.

/* global variable */
Atom COMPOUND_TEXT;

static void HandleDrop(Widget widget,
XtPointer client_data,
XtPointer call_data)

{
XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[1];
XmDropTransferEntry transferList;
Arg args[10];
int n;

DropData = (XmDropProcCallback) call_data;

n = 0;

if ((DropData->dropAction != XmDROP) ||
(DropData->operation != XmDROP_COPY)) {

XtSetArg (args[n], XmNtransferStatus,
XmTRANSFER_FAILURE);
n++;

}
else {

transferEntries[0].target = COMPOUND_TEXT;
transferEntries[0].client_data = (XtPointer)
widget;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, trans-
ferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

XmDropTransferStart Motif Functions and Macros

126 Motif Reference Manual

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, Transfer-
Proc); n++;

}

 XmDropTransferStart (DropData->dragContext,
args, n);
}

See Also
XmDropTransferAdd(1), XmTransferValue(1), XmTransferDone(1),
XmDragContext(2), XmDropTransfer(2).

Motif Functions and Macros XmFileSelectionBoxGetChild

Motif Reference Manual 127

Name
XmFileSelectionBoxGetChild – get the specified child of a FileSelectionBox
widget.

Synopsis
#include <Xm/FileSB.h>

Widget XmFileSelectionBoxGetChild (Widget widget, unsigned char child)
Inputs

widget Specifies the FileSelectionBox widget.
child Specifies the child of the FileSelectionBox widget. Possible values

are defined below.
Returns

The widget ID of the specified child of the FileSelectionBox.

Availability
From Motif 2.0, XmFileSelectionBoxGetChild() is deprecated code.
XtNameToWidget() is the preferred method of accessing children of the
widget.

Description
XmFileSelectionBoxGetChild() returns the widget ID of the specified
child of the FileSelectionBox widget.

Usage
XmDIALOG_APPLY_BUTTON, XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. XmDIALOG_DEFAULT_BUTTON specifies the
current default button. XmDIALOG_DIR_LIST and
XmDIALOG_DIR_LIST_LABEL specify the directory list and its label, while
XmDIALOG_LIST and XmDIALOG_LIST_LABEL specify the file list and its
label. XmDIALOG_FILTER_LABEL and XmDIALOG_FILTER_TEXT spec-
ify the filter text entry area and its label, while XmDIALOG_TEXT and
XmDIALOG_SELECTION_LABEL specify the file text entry area and its label.
XmDIALOG_SEPARATOR specifies the separator and
XmDIALOG_WORK_AREA specifies any work area child that has been added
to the FileSelectionBox.

In Motif 2.0 and later, if the resource XmNpathMode is
XmPATH_MODE_RELATIVE, the directory pattern specification is displayed
in two text fields, rather than the single filter text entry area. When this is the
case, the pattern is displayed in the original filter text area, and the directory por-
tion is displayed in an additional text field called DirText. The Label associated

XmFileSelectionBoxGetChild Motif Functions and Macros

128 Motif Reference Manual

with the DirText child is called DirL. No corresponding mask has been defined to
access this extra text field or its Label through XmFileSelection-
BoxGetChild(): XtNameToWidget() should be used to access the DirText
widget ID when required.

For more information on the different children of the FileSelectionBox, see the
manual page in Section 2, Motif and Xt Widget Classes.

Widget Hierarchy
As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON or XmDIALOG_WORK_AREA children
using a public interface except through XmSelectionBoxGetChild()1, the routine
should not be considered truly deprecated. For consistency with the preferred
new style, when fetching all other child values, consider giving preference to the
Intrinsics routine XtNameToWidget(), passing one of the following names as the
second parameter:

“Apply” (XmDIALOG_APPLY_BUTTON)
“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)
“*ItemsList”2 (XmDIALOG_LIST)
“Items” (XmDIALOG_LIST_LABEL)
“Selection” (XmDIALOG_SELECTION_LABEL)
“Text” (XmDIALOG_TEXT)
“*DirList“3 (XmDIALOG_DIR_LIST)
“Dir“ (XmDIALOG_DIR_LIST_LABEL)
“FilterLabel“ (XmDIALOG_FILTER_LABEL)
“FilterText“ (XmDIALOG_FILTER_TEXT)
“DirL“ (no macro - must use XtNameToWidget()))
“DirText“ (no macro - must use XtNameToWidget())

1.Called internally by XmFileSelectionBoxGetChild().
2.The “*” is important: the Files List is not a direct child of the SelectionBox, but of a ScrolledList.
3.As above; the Directories list is a child of a ScrolledWindow, not the SelectionBox itself.

Motif Functions and Macros XmFileSelectionBoxGetChild

Motif Reference Manual 129

CDE variants of the Motif 2.1 toolkit may support a ComboBox in place of the
Directory Text field (DirText). This is known as “DirComboBox”, and also has
no defined public macro1:

“DirComboBox” (no macro - must use XtNameToWidget())

Structures
The possible values for child are:

XmDIALOG_APPLY_BUTTON XmDIALOG_LIST
XmDIALOG_CANCEL_BUTTON XmDIALOG_LIST_LABEL
XmDIALOG_DEFAULT_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DIR_LIST
XmDIALOG_SELECTION_LABEL
XmDIALOG_DIR_LIST_LABEL XmDIALOG_SEPARATOR
XmDIALOG_FILTER_LABEL XmDIALOG_TEXT
XmDIALOG_FILTER_TEXT XmDIALOG_WORK_AREA
XmDIALOG_HELP_BUTTON

See Also
XmFileSelectionBox(2).

1.The ComboBox, containing a List of directories, is enabled if the CDE resource XmNenableFsbPickList is true.

XmFileSelectionDoSearch Motif Functions and Macros

130 Motif Reference Manual

Name
XmFileSelectionDoSearch – start a directory search.

Synopsis
#include <Xm/FileSB.h>

void XmFileSelectionDoSearch (Widget widget, XmString dirmask)
Inputs

widget Specifies the FileSelectionBox widget.
dirmask Specifies the directory mask that is used in the directory search.

Description
XmFileSelectionDoSearch() starts a directory and file search for the
specified FileSelectionBox widget. dirmask is a text pattern that can include
wildcard characters. XmFileSelectionDoSearch() updates the lists of
directories and files that are displayed by the FileSelectionBox. If dirmask is
non-NULL, the routine restricts the search to directories that match the dirmask.

Usage
XmFileSelectionDoSearch()1 allows you to force a FileSelectionBox to
reinitialize itself, which is useful if you want to set the directory mask directly.

See Also
XmFileSelectionBox(2).

1.Erroneously given as XmFileSelectionBoxDoSearch() in 1st and 2nd editions.

Motif Functions and Macros XmFontListAdd

Motif Reference Manual 131

Name
XmFontListAdd – create a new font list.

Synopsis
XmFontList XmFontListAdd (XmFontList oldlist, XFontStruct *font, XmString-
CharSet charset)

Inputs
oldlist Specifies the font list to which font is added.
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.

Returns
The new font list, oldlist if font or charset is NULL, or NULL if oldlist is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively. To maintain backwards compatibility, the XmFontList is re-implemented
as a render table.

Description
XmFontListAdd() makes a new font list by adding the font structure specified
by font to the old font list. The routine returns the new font list and deallocates
oldlist. charset specifies the character set that is associated with the font. It can
be XmSTRING_DEFAULT_CHARSET, which takes the character set from the
current language environment, but this value may be removed from future ver-
sions of Motif.

XmFontListAdd() searches the font list cache for a font list that matches the
new font list. If the routine finds a matching font list, it returns that font list and
increments its reference count. Otherwise, the routine allocates space for the new
font list and caches it. In either case, the application is responsible for managing
the memory associated with the font list. When the application is done using the
font list, it must be freed using XmFontListFree().

XmFontListAdd Motif Functions and Macros

132 Motif Reference Manual

Usage
In Motif 1.1 and 1.2, a font list contains entries that describe the fonts that are in
use. In Motif 1.1, each entry associates a font and a character set. In Motif 1.2,
each entry consists of a font or a font set and an associated tag. In Motif 2.0 and
later, the XmFontList is implemented using the XmRenderTable type. XmRendi-
tion objects within a render table represent the font entries. XmFontListAdd()
returns a reference counted render table.

XmFontListAdd() is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

See Also
XmFontListAppendEntry(1), XmFontListFree(1),
XmRenderTableAddRenditions(1), XmRenditionCreate(1),
XmRendition(2).

Motif Functions and Macros XmFontListAppendEntry

Motif Reference Manual 133

Name
XmFontListAppendEntry – append a font entry to a font list.

Synopsis
XmFontList XmFontListAppendEntry (XmFontList oldlist, XmFontListEntry
entry)

Inputs
oldlist Specifies the font list to which entry is appended.
entry Specifies the font list entry.

Returns
The new font list or oldlist if entry is NULL.

Availability
Motif 1.2 and later. In Motif 2.0 and later, the XmFontList and XmFontListEntry
are obsolete. They are superseded by the XmRenderTable type and the XmRen-
dition object respectively.

Description
XmFontListAppendEntry() makes a new font list by appending the speci-
fied entry to the old font list. If oldlist is NULL, the routine creates a new font list
that contains the single entry. XmFontListAppendEntry() returns the new
font list and deallocates oldlist. The application is responsible for freeing the font
list entry using XmFontListEntryFree().

XmFontListAppendEntry() searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns that
font list and increments its reference count. Otherwise, the routine allocates space
for the new font list and caches it. In either case, the application is responsible for
managing the memory associated with the font list. When the application is done
using the font list, it should be freed using XmFontListEntryFree().

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. Before a font list can be added to a font list,
it has to be created with XmFontListEntryCreate() or XmFontListEn-
tryLoad(). In Motif 2.0 and later, the XmFontList is an alias for the
XmRenderTable type. XmRendition objects within a render table represent the
font entries. XmFontListAppendEntry() returns a reference counted render
table.

XmFontListAppendEntry() is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

XmFontListAppendEntry Motif Functions and Macros

134 Motif Reference Manual

See Also
XmFontListEntryCreate(1), XmFontListEntryFree(1),
XmFontListEntryLoad(1), XmFontListFree(1),
XmFontListRemoveEntry(1), XmRenderTableAddRenditions(1),
XmRenditionCreate(1), XmRendition(2).

Motif Functions and Macros XmFontListCopy

Motif Reference Manual 135

Name
XmFontListCopy – copy a font list.

Synopsis
XmFontList XmFontListCopy (XmFontList fontlist)

Inputs
fontlist Specifies the font list to be copied.

Returns
The new font list or NULL if fontlist is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListCopy() makes and returns a copy of fontlist.

The routine searches the font list cache for the font list, returns the font list, and
increments its reference count. The application is responsible for managing the
memory associated with the font list. When the application is done using the font
list, it should be freed using XmFontListFree().

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects
within a render table represent the font entries. XmFontListCopy() is a con-
venience routine which calls XmRenderTableCopy() to copy and return a ref-
erence counted render table.

XmFontListCopy() makes a correct copy of the font list regardless of the type
of entries in the list.

When a font list is assigned to a widget, the widget makes a copy of the font list,
so it is safe to free the font list. When you retrieve a font list from a widget using
XtGetValues(), you should not alter the font list directly. If you need to make
changes to the font list, use XmFontListCopy() to make a copy of the font list
and then change the copy.

XmFontListCopy() is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

XmFontListCopy Motif Functions and Macros

136 Motif Reference Manual

See Also
XmFontListFree(1), XmRenderTableCopy(1),
XmRenditionCreate(1), XmRendition(2)

Motif Functions and Macros XmFontListCreate

Motif Reference Manual 137

Name
XmFontListCreate – create a font list.

Synopsis
XmFontList XmFontListCreate (XFontStruct *font, XmStringCharSet charset)

Inputs
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.

Returns
The new font list or NULL if font or charset is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListCreate() creates a new font list that contains a single entry with
the specified font and charset. charset specifies the character set that is associ-
ated with the font. It can be XmSTRING_DEFAULT_CHARSET, which takes
the character set from the current language environment, but this value may be
removed from future versions of Motif.

XmFontListCreate() searches the font list cache for a font list that matches
the new font list. If the routine finds a matching font list, it returns that font list
and increments its reference count. Otherwise, the routine allocates space for the
new font list and caches it. In either case, the application is responsible for man-
aging the memory associated with the font list. When the application is done
using the font list, it should be freed using XmFontListFree().

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects
within a render table represent the font entries. XmFontListCreate() is a
convenience routine which calls XmRenditionCreate() to create a rendition
object for the font. The rendition object is added to a render table by the
XmRenderTableAddRenditions() function. The render table is returned.

XmFontListCreate() is retained for compatibility with Motif 1.2 and should
not be used in newer applications.

XmFontListCreate Motif Functions and Macros

138 Motif Reference Manual

XmFontListCreate() is not multi-thread safe if the application has multiple
application contexts. In Motif 2.1, the function XmFontListCreate_r() is to
be preferred within multi-threaded applications.

Fonts must not be shared between displays in a multi-threaded environment.

See Also
XmFontListAppendEntry(1), XmRenderTableAddRenditions(1),
XmRenditionCreate(1), XmRendition(2).

Motif Functions and Macros XmFontListCreate_r

Motif Reference Manual 139

Name
XmFontListCreate_r – create a font list in a thread-safe manner.

Synopsis
XmFontList XmFontListCreate_r (XFontStruct *font, XmStringCharSet charset,
Widget widget)

Inputs
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.
widget Specifies a widget.

Returns
The new font list or NULL if font or charset is NULL.

Availability
Motif 2.1 and later.

Description
XmFontListCreate_r() is identical to XmFontListCreate(), except that
it is multi-thread safe. The additional widget parameter is used to obtain a lock
upon the application context associated with widget. The older routine
XmFontListCreate() is not safe in threaded environments which have multi-
ple application contexts.

Usage
The widget does not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not safe
for multi-threaded applications.

Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListCreate_r() is provided for backwards compatibility with appli-
cations, using the XmFontList interface, which are intended to run in multi-
threaded environments. XmFontListCreate_r() should not be used in appli-
cations using the newer XmRendition and XmRenderTable interface.

See Also
XmFontListCreate(1), XmRendition(2).

XmFontListEntryCreate Motif Functions and Macros

140 Motif Reference Manual

Name
XmFontListEntryCreate – create a font list entry.

Synopsis
XmFontListEntry XmFontListEntryCreate (char *tag, XmFontType type,
XtPointer font)

Inputs
tag Specifies the tag for the font list entry.
type Specifies the type of the font argument. Pass either

XmFONT_IS_FONT, XmFONT_IS_FONTSET, or
XmFONT_IS_XFT if support of Xft is enabled.

font Specifies the font or font set.
Returns

A font list entry.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively. To maintain backwards compatibility, the XmFontList is re-implemented
as a render table.

Description
XmFontListEntryCreate() makes a font list entry that contains the speci-
fied font, which is identified by tag. type indicates whether font specifies an
XFontSet or a pointer to an XFontStruct. tag is a NULL-terminated string that
identifies the font list entry. It can have the value
XmFONTLIST_DEFAULT_TAG, which identifies the default font list entry in a
font list.

XmFontListEntryCreate() allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font list
entry. When the application is done using the font list entry, it should be freed
using XmFontListEntryFree().

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. XmFontListEntryCreate() creates a
font list entry using an XFontStruct returned by XLoadQueryFont() or an
XFontSet returned by XCreateFontSet(). The routine does not copy the font
structure, so the XFontStruct or XFontSet must not be freed until all references to
it have been freed. The font list entry can be added to a font list using
XmFontListAppendEntry().

Motif Functions and Macros XmFontListEntryCreate

Motif Reference Manual 141

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryCreate() returns a rendition object.

XmFontListEntryCreate() is not multi-thread safe if the application has
multiple application contexts. In Motif 2.1, the function
XmFontListEntryCreate_r() is to be preferred within multi-threaded
applications.

Fonts must not be shared between displays in a multi-threaded environment.

XmFontListEntryCreate() is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

Example
The following code fragment shows how to create font list entries using
XmFontListEntryCreate():

Widget toplevel;
XFontStruct *font1, *font2; /* Previously loaded
fonts */
XFontSet fontset3; /* Previously created
font sets */
XmFontListEntry entry1, entry2, entry3;
XmFontList fontlist;

entry1 = XmFontListEntryCreate("tag1", XmFONT_IS_FONT,
font1);
entry2 = XmFontListEntryCreate("tag2", XmFONT_IS_FONT,
font2);
entry3 = XmFontListEntryCreate("tag3",
XmFONT_IS_FONTSET, fontset3);
fontlist = XmFontListAppendEntry (NULL, entry1);
fontlist = XmFontListAppendEntry (fontlist, entry2);
fontlist = XmFontListAppendEntry (fontlist, entry3);

/* Bug in Motif 1.2.1: see XmFontListEntryFree() */
#if ((XmVERSION == 1) && (XmREVISION == 2) &&
(XmUPDATE_LEVEL == 1))

XtFree (entry1);
XtFree (entry2);
XtFree (entry3);

#else /* Motif 1.2.1 */
XmFontListEntryFree (entry1);
XmFontListEntryFree (entry2);

XmFontListEntryCreate Motif Functions and Macros

142 Motif Reference Manual

XmFontListEntryFree (entry3);
#endif /* Motif 1.2.1 */

XtVaCreateManagedWidget ("widget_name", xmLabelWidget-
Class, toplevel, XmNfontList,
fontlist, NULL);

XmFontListFree (fontlist);
...

See Also
XmFontListAppendEntry(1), XmFontListEntryFree(1),
XmFontListEntryCreate_r(1), XmFontListEntryGetFont(1),
XmFontListEntryGetTag(1), XmFontListEntryLoad(1),
XmFontListRemoveEntry(1), XmRenditionCreate(1),
XmRendition(2).

Motif Functions and Macros XmFontListEntryCreate_r

Motif Reference Manual 143

Name
XmFontListEntryCreate_r – create a font list entry in a thread-safe manner.

Synopsis
XmFontListEntry XmFontListEntryCreate_r (char *tag,

XmFontType type,
XtPointer font,
Widget widget)

Inputs
tag Specifies the tag for the font list entry.
type Specifies the type of the font argument. Pass either

XmFONT_IS_FONT, XmFONT_IS_FONTSET, or
XmFONT_IS_XFT if support of Xft is enabled.

font Specifies the font or font set.
widget Specifies a widget.

Returns
A font list entry.

Availability
Motif 2.1 and later.

Description
XmFontListEntryCreate_r() is in all respects identical to XmFontLis-
tEntryCreate(), except that XmFontListEntryCreate_r() is provided
for multi-threaded applications: the additional widget parameter is used to obtain
a lock upon an application context. The older routine XmFontListEntry-
Create() is not safe in threaded environments which have multiple application
contexts.

Usage
The widget does not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not safe
for multi-threaded applications.

Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListEntryCreate_r() is provided for backwards compatibility
with applications, using the XmFontList interface, which are intended to run in
multi-threaded environments. XmFontListEntryCreate_r() should not be
used in applications using the newer XmRendition and XmRenderTable inter-
face.

See Also
XmFontListEntryCreate(1), XmRendition(2).

XmFontListEntryFree Motif Functions and Macros

144 Motif Reference Manual

Name
XmFontListEntryFree – free the memory used by a font list entry.

Synopsis
void XmFontListEntryFree (XmFontListEntry *entry)

Inputs
entry Specifies the address of the font list entry that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryFree() deallocates storage used by the specified font list
entry. The routine does not free the XFontSet or XFontStruct data structure asso-
ciated with the font list entry.

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. A font list entry can be created using
XmFontListEntryCreate() or XmFontListEntryLoad() and then
appended to a font list with XmFontListAppendEntry(). Once the entry has
been appended to the necessary font lists, it should be freed using XmFontLis-
tEntryFree().

In Motif 1.2.1, there is a bug in XmFontListEntryFree() that causes it to
free the font or font set, rather than the font list entry. As a workaround for this
specific version, you can use XtFree() to free the font list entry.

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryFree() is a simple convenience routine which calls
XmRenditionFree().

XmFontListEntryFree() is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

See Also
XmFontListAppendEntry(1), XmFontListEntryCreate(1),
XmFontListEntryLoad(1), XmFontListNextEntry(1),
XmFontListRemoveEntry(1), XmRenditionFree(1),
XmRendition(2).

Motif Functions and Macros XmFontListEntryGetFont

Motif Reference Manual 145

Name
XmFontListEntryGetFont – get the font information from a font list entry.

Synopsis
XtPointer XmFontListEntryGetFont (XmFontListEntry entry, XmFontType
*type_return)

Inputs
entry Specifies the font list entry.

Outputs
type_return Returns the type of the font information that is returned. Valid

types are XmFONT_IS_FONT, XmFONT_IS_FONTSET, or
XmFONT_IS_XFT if support of Xft is enabled.

Returns
An XFontSet or a pointer to an XFontStruct.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryGetFont() retrieves the font information for the speci-
fied font list entry. When the font list entry contains a font, type_return is
XmFONT_IS_FONT and the routine returns a pointer to an XFontStruct. When
the font list entry contains a font set, type_return is XmFONT_IS_FONTSET
and the routine returns the XFontSet. The XFontSet or XFontStruct that is
returned is not a copy of the data structure, so it must not be freed by an applica-
tion. When the font list entry contains an xft font, type_return is
Xm_FONT_IS_XFT and the runtime returns the XftFont*.

Usage
The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetFont() can be used to get the font structure for a font
list entry once it has been retrieved from the font list using XmFontListNex-
tEntry().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetFont() is a convenience routine which fetches the

XmFontListEntryGetFont Motif Functions and Macros

146 Motif Reference Manual

XmNfont and XmNfontType values of the rendition object represented by entry.
The values are fetched through the function XmRenditionRetrieve().
type_return is set to the value of the XmNfontType resource, and the function
XmFontListEntryGetFont() returns the value of the XmNfont resource of
the rendition object.

XmFontListEntryGetFont()1 is retained for compatibility with Motif 1.2
and should not be used in newer applications.

See Also
XmFontListEntryCreate(1), XmFontListEntryGetTag(1),
XmFontListEntryLoad(1), XmFontListNextEntry(1),
XmRenditionRetrieve(1), XmRendition(2).

1.Erroneously given as XmFontListGetFont() in 2nd edition.

Motif Functions and Macros XmFontListEntryGetTag

Motif Reference Manual 147

Name
XmFontListEntryGetTag – get the tag of a font list entry.

Synopsis
char* XmFontListEntryGetTag (XmFontListEntry entry)

Inputs
entry Specifies the font list entry.

Returns
The tag for the font list entry.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryGetTag() retrieves the tag of the specified font list entry.
The routine allocates storage for the tag string; the application is responsible for
freeing the memory using XtFree().

Usage
The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetTag() can be used to get the tag of a font list entry
once it has been retrieved from the font list using XmFontListNextEntry().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetTag() is a convenience routine which fetches and
returns a copy of the XmNtag value of the rendition object represented by entry.
The value is fetched through the function XmRenditionRetrieve().

XmFontListEntryGetTag()1 is retained for compatibility with Motif 1.2
and should not be used in newer applications.

See Also
XmFontListEntryCreate(1), XmFontListEntryGetFont(1),
XmFontListEntryLoad(1), XmFontListNextEntry(1),
XmRenditionRetrieve(1), XmRendition(2).

1.Erroneously given as XmFontListGetTag() in 2nd edition.

XmFontListEntryLoad Motif Functions and Macros

148 Motif Reference Manual

Name
XmFontListEntryLoad – load a font or create a font set and then create a font list
entry.

Synopsis
XmFontListEntry XmFontListEntryLoad (Display *display,

char *font_name,
XmFontType type,
char *tag)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
font_name Specifies an X Logical Font Description (XLFD) string.
type Specifies the type of font_name. Pass either XmFONT_IS_FONT,

XmFONT_IS_FONTSET, or XmFONT_IS_XFT.
tag Specifies the tag for the font list entry.

Returns
A font list entry or NULL if the font cannot be found or the font set cannot be
created.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryLoad() either loads a font or creates a font set depending
on the value of type and then creates a font list entry that contains the font data
and the specified tag. font_name is an XLFD string which is parsed as either a
font name or a base font name list. tag is a NULL-terminated string that identifies
the font list entry. It can have the value XmFONTLIST_DEFAULT_TAG, which
identifies the default font list entry in a font list.

If type is set to XmFONT_IS_FONT, the routine uses the XtCvtStringTo-
FontStruct() converter to load the font struct specified by font_name. If the
value of type is XmFONT_IS_FONTSET, XmFontListEntryLoad uses the
XtCvtStringToFontSet() converter to create a font set in the current
locale.

XmFontListEntryLoad() allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font list
entry. When the application is done using the font list entry, it should be freed
using XmFontListEntryFree().

Motif Functions and Macros XmFontListEntryLoad

Motif Reference Manual 149

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. XmFontListEntryLoad() sets up the
font data and creates a font list entry. The font list entry can be added to a font list
using XmFontListAppendEntry().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryLoad() is a convenience routine which creates and returns
a rendition object whose XmNfontName resource is set to font_name, and XmN-
fontType value is type. The rendition object is created with an XmNloadModel
of XmLOAD_IMMEDIATE.

XmFontListEntryLoad() is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

See Also
XmFontListAppendEntry(1), XmFontListEntryCreate(1),
XmFontListEntryFree(1), XmFontListEntryGetFont(1),
XmFontListEntryGetTag(1), XmFontListRemoveEntry(1),
XmRenditionCreate(1), XmRendition(2).

XmFontListFree Motif Functions and Macros

150 Motif Reference Manual

Name
XmFontListFree – free the memory used by a font list.

Synopsis
void XmFontListFree (XmFontList fontlist)

Inputs
fontlist Specifies the font list that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListFree() deallocates storage used by the specified fontlist. The rou-
tine does not free the XFontSet or XFontStruct data structures associated with the
font list.

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. XmFontListFree() frees the stor-
age used by the font list but does not free the associated font data structures. In
Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListFree() is a convenience function which simply calls
XmRenderTableFree().

It is important to call XmFontListFree() rather than XtFree() because
Motif caches font lists. A call to XmFontListFree() decrements the reference
count for the font list; the font list is not actually freed until the reference count
reaches 0 (zero).

XmFontListFree() is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

See Also
XmFontListAppendEntry(1), XmFontListCopy(1),
XmFontListEntryFree(1), XmFontListRemoveEntry(1),
XmRenderTableFree(1).

Motif Functions and Macros XmFontListFreeFontContext

Motif Reference Manual 151

Name
XmFontListFreeFontContext – free a font context.

Synopsis
void XmFontListFreeFontContext (XmFontContext context)

Inputs
context Specifies the font list context that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListFreeFontContext() deallocates storage used by the specified
font list context.

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a
font list. XmFontListFreeFontContext() is the last of the three font con-
text routines that an application should call when processing a font list, as it frees
the font context data structure. An application begins by calling XmFontLis-
tInitFontContext() to create a font context and then makes repeated calls
to XmFontListNextEntry() or XmFontListGetNextFont() to cycle
through the font list.

XmFontListFreeFontContext() is retained for compatibility with Motif
1.2, and should not be used in newer applications.

See Also
XmFontListGetNextFont(1), XmFontListInitFontContext(1),
XmFontListNextEntry(1), XmRenderTableAddRendition(1),
XmRenditionCreate(1), XmRendition(2).

XmFontListGetNextFont Motif Functions and Macros

152 Motif Reference Manual

Name
XmFontListGetNextFont – retrieve information about the next font list element.

Synopsis
Boolean XmFontListGetNextFont (XmFontContext context,

XmStringCharSet *charset,
XFontStruct **font)

Inputs
context Specifies the font context for the font list.

Outputs
charset Returns the tag that identifies the character set for the font.
font Returns the font structure for the current font list element.

Returns
True if the values being returned are valid or False otherwise.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListGetNextFont() returns the character set and font for the next
element of the font list. context is the font context created by XmFontListIn-
itFontContext(). The first call to XmFontListGetNextFont() returns
the first font list element. Repeated calls to XmFontListGetNextFont()
using the same context access successive font list elements. The routine returns
False when it has reached the end of the font list.

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects
within a render table represent the font entries. The XmFontContext is an opaque
type which contains an index into the renditions of a render table.

If the routine is called with a font context that contains a font set, it returns the
first font of the font set.

The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a

Motif Functions and Macros XmFontListGetNextFont

Motif Reference Manual 153

font list. XmFontListGetNextFont() cycles through the fonts in a font list.
XmFontListInitFontContext() is called first to create the font context.
When an application is done processing the font list, it should call
XmFontListFreeFontContext() with the same context to free the allo-
cated data.

XmFontListGetNextFont() is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

See Also
XmFontListFreeFontContext(1),
XmFontListInitFontContext(1),
XmFontListNextEntry(1), XmRendition(2).

XmFontListInitFontContext Motif Functions and Macros

154 Motif Reference Manual

Name
XmFontListInitFontContext – create a font context.

Synopsis
Boolean XmFontListInitFontContext (XmFontContext *context, XmFontList
fontlist)

Inputs
fontlist Specifies the font list.

Outputs
context Returns the allocated font context structure.

Returns
True if the font context is allocated or False otherwise.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListInitFontContext() creates a font context for the specified
fontlist. This font context allows an application to access the information that is
stored in the font list. XmFontListInitFontContext() allocates space for
the font context. The application is responsible for managing the memory associ-
ated with the font context. When the application is done using the font context, it
should be freed using XmFontListFreeFontContext().

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a
font list. XmFontListInitFontContext() is the first of the three font con-
text routines that an application should call when processing a font list, as it cre-
ates the font context data structure. The context is passed to
XmFontListNextEntry() or XmFontListGetNextFont() to cycle
through the font list. When an application is done processing the font list, it
should call XmFontListFreeFontContext() with the same context to free
the allocated data.

Motif Functions and Macros XmFontListInitFontContext

Motif Reference Manual 155

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries. The
XmFontContext is an opaque type which contains an index into the renditions of
a render table.

XmFontListInitFontContext() is retained for compatibility with Motif
1.2, and should not be used in newer applications.

See Also
XmFontListFreeFontContext(1), XmFontListGetNextFont(1),
XmFontListInitFontContext(1), XmFontListNextEntry(1),
XmRendition(2).

XmFontListNextEntry Motif Functions and Macros

156 Motif Reference Manual

Name
XmFontListNextEntry – retrieve the next font list entry in a font list.

Synopsis
XmFontListEntry XmFontListNextEntry (XmFontContext context)

Inputs
context Specifies the font context for the font list.

Returns
A font list entry or NULL if the context refers to an invalid entry or if it is at the
end of the font list.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListNextEntry() returns the next font list entry in a font list. con-
text is the font context created by XmFontListInitFontContext(). The
first call to XmFontListNextEntry() returns the first entry in the font list.
Repeated calls to XmFontListNextEntry() using the same context access
successive font list entries. The routine returns NULL when it has reached the
end of the font list.

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. In Motif 2.0 and later, the XmFontList is an
alias for the XmRenderTable type. XmRendition objects within a render table
represent the font entries. The XmFontContext is an opaque type which contains
an index into the renditions of a render table.

The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListInitFontContext() is called first to create the font context.
XmFontListNextEntry() cycles through the font entries in a font list.
XmFontListEntryGetFont() and XmFontListEntryGetTag() access
the information in a font list entry. When an application is done processing the
font list, it should call XmFontListFreeFontContext() with the same con-
text to free the allocated data.

Motif Functions and Macros XmFontListNextEntry

Motif Reference Manual 157

XmFontListNextEntry() is retained for compatibility with Motif 1.2, and should
not be used in newer applications.

See Also
XmFontListEntryFree(1), XmFontListEntryGetFont(1),
XmFontListEntryGetTag(1), XmFontListFreeFontContext(1),
XmFontListInitFontContext(1), XmRendition(2).

XmFontListRemoveEntry Motif Functions and Macros

158 Motif Reference Manual

Name
XmFontListRemoveEntry – remove a font list entry from a font list.

Synopsis
XmFontList XmFontListRemoveEntry (XmFontList oldlist, XmFontListEntry
entry)

Inputs
oldlist Specifies the font list from which entry is removed.
entry Specifies the font list entry.

Returns
The new font list, oldlist if entry is NULL or no entries are removed, or NULL if
oldlist is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListRemoveEntry() makes a new font list by removing any entries
in oldlist that match the specified entry. The routine returns the new font list and
deallocates oldlist. XmFontListRemoveEntry() does not deallocate the font
list entry, so the application should free the storage using XmFontListEn-
tryFree().

XmFontListRemoveEntry() searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns that
font list and increments its reference count. Otherwise, the routine allocates space
for the new font list and caches it. In either case, the application is responsible for
managing the memory associated with the font list. When the application is done
using the font list, it should be freed using XmFontListFree().

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. In Motif 2.0 and later, the XmFontList is an
alias for the XmRenderTable type. XmRendition objects within a render table
represent the font entries. The XmFontContext is an opaque type which contains
an index into the renditions of a render table.

An application can use XmFontListRemoveEntry() to remove a font list
entry from a font list. If an application needs to process the font list to determine
which entries to remove, it can use XmFontListInitFontContext() and
XmFontListNextEntry() to cycle through the entries in the font list.

Motif Functions and Macros XmFontListRemoveEntry

Motif Reference Manual 159

XmFontListRemoveEntry() is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

See Also
XmFontListAppendEntry(1), XmFontListEntryCreate(1),
XmFontListEntryFree(1), XmFontListEntryLoad(1),
XmFontListFree(1), XmRendition(2).

XmGetAtomName Motif Functions and Macros

160 Motif Reference Manual

Name
XmGetAtomName – get the string representation of an atom.

Synopsis
#include <Xm/AtomMgr.h>

String XmGetAtomName (Display *display, Atom atom)
Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
atom Specifies the atom for the property name to be returned.

Returns
The string that represents atom.

Availability
In Motif 2.0 and later, XGetAtomName() is preferred.

Description
XmGetAtomName() returns the string that is used to represent a given atom.
This routine works like Xlib’s XGetAtomName() routine, but the Motif routine
provides the added feature of client-side caching. XmGetAtomName() allocates
space for the returned string; the application is responsible for freeing this storage
using XtFree() when the atom is no longer needed.

Usage
An Atom is a number that identifies a property. Properties also have string
names. XmGetAtomName() returns the string name specified in the original call
to XmInternAtom() or XInternAtom(), or for predefined atoms, a string
version of the symbolic constant without the XA_ attached.

In Motif 2.0 and later, XmGetAtomName() is no more than a convenience rou-
tine which calls XGetAtomName(). While XmGetAtomName() is not yet obso-
lete, XGetAtomName() is to be preferred.

See Also
XmInternAtom(1).

Motif Functions and Macros XmGetColorCalculation

Motif Reference Manual 161

Name
XmGetColorCalculation – get the procedure that calculates default colors.

Synopsis
XmColorProc XmGetColorCalculation (void)

Returns
The procedure that calculates default colors.

Description
XmGetColorCalculation() returns the procedure that calculates the default
foreground, top and bottom shadow, and select colors. The procedure calculates
these colors based on the background color that is passed to the procedure.

Usage
Motif widgets rely on the use of shadowed borders to achieve their three-dimen-
sional appearance. The top and bottom shadow colors are lighter and darker
shades of the background color; these colors are reversed to make a component
appear raised out of the screen or recessed into the screen. The select color is a
slightly darker shade of the background color that indicates that a component is
selected. The default foreground color is either black or white, depending on
which color provides the most contrast with the background color. XmGet-
ColorCalculation() returns the procedure that calculates these colors. Use
XmSetColorCalculation() to change the calculation procedure.

In Motif 2.0 and later, color calculation procedures can be specified on a per-
screen basis by specifying a value for the XmScreen object XmNcolorCalcula-
tionProc resource. Where a particular XmScreen does not have an assigned cal-
culator, the procedure specified by XmGetColorCalculation() is used as
the default.

Procedures
The XmColorProc has the following syntax:

typedef void (*XmColorProc) (XColor *bg_color, /* specifies the
background color */

XColor *fg_color, /* returns the fore-
ground color */

XColor *sel_color, /* returns the select
color */

XColor *ts_color, /* returns the top
shadow color */

XColor *bs_color) /* returns the bot-
tom shadow color */

XmGetColorCalculation Motif Functions and Macros

162 Motif Reference Manual

An XmColorProc takes five arguments. The first argument, bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, blue,
and pixel fields in the structure contain valid values. The rest of the arguments
are pointers to XColor structures for the colors that are to be calculated. The pro-
cedure fills in the red, green, and blue fields in these structures.

See Also
XmChangeColor(1), XmGetColors(1), XmSetColorCalculation(1).
XmScreen(2).

Motif Functions and Macros XmGetColors

Motif Reference Manual 163

Name
XmGetColors – update the colors for a widget.

Synopsis
void XmGetColors (Screen *screen,

Colormap color_map,
Pixel background,
Pixel *foreground_return,
Pixel *top_shadow_return,
Pixel *bottom_shadow_return,
Pixel *select_return)

Inputs
screen Specifies the screen for which colors are to be allocated.
color_map Specifies a Colormap from which the colors are allocated.
background Specifies the background from which to calculate allocated
colors.

Outputs
foreground_return Specifies an address into which the foreground Pixel
is returned.
top_shadow_return Specifies an address into which the top shadow Pixel
is returned.
bottom_shadow_return Specifies an address into which the bottom shadow
Pixel is returned.
select_return Specifies an address into which the select Pixel is
returned.

Description
XmGetColors() allocates and returns a set of pixels within a Colormap associ-
ated with a given screen for use as the foreground, top shadow, bottom shadow,
and select colors of a widget. The returned values are calculated based upon a
supplied background.

Usage
XmGetColors() allocates a set of pixels from a colormap. The pixels required
are based upon a supplied background pixel. If any return address is specified as
NULL, the relevant pixel is not allocated. In Motif 1.2 and earlier, pixels are allo-
cated using the current color calculation procedure, which can be specified using
XmSetColorCalculation(). In Motif 2.0 and later, per-screen color calcu-
lation procedures are supported: if the XmNcolorCalculationProc resource of the
XmScreen object associated with screen is not NULL, the procedure specified by
the resource is used to calculate the pixels. Otherwise, the current color calcula-
tion procedure is used.

XmGetColors Motif Functions and Macros

164 Motif Reference Manual

See Also
XmGetColorCalculation(1), XmSetColorCalculation(1).
XmScreen(2).

Motif Functions and Macros XmGetDestination

Motif Reference Manual 165

Name
XmGetDestination – get the current destination widget.

Synopsis
Widget XmGetDestination (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

Returns
The widget ID of the current destination widget or NULL if there is no current
destination widget.

Description
XmGetDestination() returns the widget ID of the current destination widget
for the specified display. The destination widget is usually the widget most
recently changed by a select, edit, insert, or paste operation. XmGetDestina-
tion() identifies the widget that serves as the destination for quick paste opera-
tions and some clipboard routines. This routine returns NULL if there is no
current destination, which occurs when no edit operations have been performed
on a widget.

Usage
XmGetDestination() provides a way for an application to retrieve the widget that
would be acted on by various selection operations, so that the application can do
any necessary processing before the operation occurs.

See Also
XmGetFocusWidget(1), XmGetTabGroup(1).

XmGetDragContext Motif Functions and Macros

166 Motif Reference Manual

Name
XmGetDragContext – get information about a drag and drop operation.

Synopsis
#include <Xm/DragDrop.h>

Widget XmGetDragContext (Widget widget, Time timestamp)
Inputs

widget Specifies a widget on the display where the drag and drop opera-
tion is taking place.
timestamp Specifies a timestamp that identifies a DragContext.

Returns
The ID of the DragContext object or NULL if no active DragContext is found.

Availability
Motif 1.2 and later.

Description
XmGetDragContext() retrieves the DragContext object associated with the
display of the specified widget that is active at the specified timestamp. When
more that one drag operation has been started on a display, a timestamp can
uniquely identify the active DragContext. If the specified timestamp corresponds
to a timestamp processed between the beginning and end of a single drag and
drop operation, XmGetDragContext() returns the DragContext associated
with the operation. If there is no active DragContext for the time-stamp, the rou-
tine returns NULL.

Usage
Motif 1.2 and later supports the drag and drop model of selection actions. Every
drag and drop operation has a DragContext object associated with it that stores
information about the drag operation. Both the initiating and the receiving clients
use information in the DragContext to process the drag transaction. The Drag-
Context object is widget-like, in that it uses resources to specify its attributes.
These resources can be checked using XtGetValues() and modified using
XtSetValues().

XmGetDragContext() provides a way for an application to retrieve a Drag-
Context object. The application can then use XtGetValues() and XtSet-
Values() to manipulate the DragContext.

See Also
XmDragCancel(1), XmDragStart(1), XmDragContext(2).

Motif Functions and Macros XmGetFocusWidget

Motif Reference Manual 167

Name
XmGetFocusWidget – get the widget that has the keyboard focus.

Synopsis
Widget XmGetFocusWidget (Widget widget)

Inputs
widget Specifies the widget whose hierarchy is to be traversed.

Returns
The widget ID of the widget with the keyboard focus or NULL if no widget has
the focus.

Availability
Motif 1.2 and later.

Description
XmGetFocusWidget() returns the widget ID of the widget that has keyboard
focus in the widget hierarchy that contains the specified widget. The routine
searches the widget hierarchy that contains the specified widget up to the nearest
shell ancestor. XmGetFocusWidget() returns the widget in the hierarchy that
currently has the focus, or the widget that last had the focus when the user navi-
gated to another hierarchy. If no widget in the hierarchy has the focus, the routine
returns NULL.

Usage
XmGetFocusWidget() provides a means of determining the widget that currently
has the keyboard focus, which can be useful if you are trying to control keyboard
navigation in an application.

See Also
XmGetTabGroup(1), XmGetVisibility(1), XmIsTraversable(1),
XmProcessTraversal(1).

XmGetMenuCursor Motif Functions and Macros

168 Motif Reference Manual

Name
XmGetMenuCursor – get the current menu cursor.

Synopsis
Cursor XmGetMenuCursor (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

Returns
The cursor ID for the current menu cursor or None if no cursor has been defined.

Availability
In Motif 1.2 and later, XmGetMenuCursor() is obsolete. It has been super-
seded by getting the Screen resource XmNmenuCursor.

Description
XmGetMenuCursor() returns the cursor ID of the menu cursor currently in use
by the application on the specified display. The routine returns the cursor for the
default screen of the display. If the cursor is not yet defined because the applica-
tion called the routine before any menus were created, then XmGetMenuCursor()
returns the value None.

Usage
The menu cursor is the pointer shape that is used whenever a menu is posted.
This cursor can be different from the normal pointer shape. In Motif 1.2 and later,
the new Screen object has a resource, XmNmenuCursor, that specifies the menu
cursor. XmGetMenuCursor() is retained for compatibility with Motif 1.1 and
should not be used in newer applications.

See Also
XmSetMenuCursor(1), XmScreen(2).

Motif Functions and Macros XmGetPixmap

Motif Reference Manual 169

Name
XmGetPixmap – create and return a pixmap.

Synopsis
Pixmap XmGetPixmap (Screen *screen, char *image_name, Pixel foreground,
Pixel background)

Inputs
screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixmap.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the image
when it is a bitmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Description
XmGetPixmap() generates a pixmap, stores it in the pixmap cache, and returns
its resource ID. Before the routine actually creates the pixmap, it checks the pix-
map cache for a pixmap that matches the specified image_name, screen, fore-
ground, and background. If a match is found, the reference count for the pixmap
is incremented and the resource ID for the pixmap is returned. If no pixmap is
found, XmGetPixmap() checks the image cache for a image that matches the
specified image_name. If a matching image is found, it is used to create the pix-
map that is returned.

When no matches are found, XmGetPixmap() begins a search for an X10 or
X11 bitmap file, using image_name as the filename. If a file is found, its contents
are read, converted into an image, and cached in the image cache. Then, the
image is used to generate a pixmap that is subsequently cached and returned. The
depth of the pixmap is the default depth of the screen. If image_name specifies a
bitmap, the foreground and background colors are combined with the image. If
no file is found, the routine returns XmUNSPECIFIED_PIXMAP.

Usage
When image_name starts with a slash (/), it specifies a full pathname and
XmGetPixmap() opens the specified file. Otherwise, image_name specifies a
filename which causes XmGetPixmap() to look for the file using a search path.
In Motif 1.2 and earlier, the XBMLANGPATH environment variable specifies
the search path for X bitmap files. In Motif 2.0 and later, the environment varia-
bles XMICONSEARCHPATH and XMICONBMSEARCHPATH specify search

XmGetPixmap Motif Functions and Macros

170 Motif Reference Manual

paths for pixmap files: XMICONSEARCHPATH is used if a color server is run-
ning, XMICONBMSEARCHPATH otherwise, and XBMLANGPATH is used as
a fallback.

The search path can contain the substitution character %B, where image_name is
substituted for %B. The search path can also use the substitution characters
accepted by XtResolvePathname(), where %T is mapped to bitmaps and %S
is mapped to NULL.

If XBMLANGPATH is not set, XmGetPixmap() uses a default search path. If
the XAPPLRESDIR environment variable is set, the routine searches the follow-
ing paths:

%B
$XAPPLRESDIR/%L/bitmaps/%N/%B /usr/lib/X11/%L/bitmaps/%N/
%B
$XAPPLRESDIR/%l_%t/bitmaps/%N/%B /usr/lib/X11/%l_%t/bitmaps/
%N/%B
$XAPPLRESDIR/%l/bitmaps/%N/%B /usr/lib/X11/%l/bitmaps/%N/
%B
$XAPPLRESDIR/bitmaps/%N/%B /usr/lib/X11/bitmaps/%N/%B
$XAPPLRESDIR/%L/bitmaps/%B /usr/lib/X11/%L/bitmaps/%B
$XAPPLRESDIR/%l_%t/bitmaps/%B /usr/lib/X11/%l_%t/bitmaps/
%B
$XAPPLRESDIR/%l/bitmaps/%B /usr/lib/X11/%l/bitmaps/%B
$XAPPLRESDIR/bitmaps/%B /usr/lib/X11/bitmaps/%B

/usr/include/X11/bitmaps/%B
$HOME/bitmaps/%B $HOME/%B

If XAPPLRESDIR is not set, XmGetPixmap() searches the same paths, except
that XAPPLRESDIR is replaced by HOME. These search paths are vendor-
dependent and a vendor may use different directories for /usr/lib/X11 and /usr/
include/X11. In the search paths, the image name is substituted for %B, the
class name of the application is substituted for %N, the language string of the dis-
play is substituted for %L, the language component of the language string is sub-
stituted for %l, and the territory string is substituted for %t.

See Also
XmDestroyPixmap(1), XmGetPixmapByDepth(1),
XmInstallImage(1), XmUninstallImage(1).

Motif Functions and Macros XmGetPixmapByDepth

Motif Reference Manual 171

Name
XmGetPixmapByDepth – create and return a pixmap of the specified depth.

Synopsis
Pixmap XmGetPixmapByDepth (Screen *screen,

char *image_name,
Pixel foreground,
Pixel background,
int depth)

Inputs
screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixmap.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the image
when it is a bitmap.
depth Specifies the depth of the pixmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Availability
Motif 1.2 and later.

Description
XmGetPixmapByDepth() generates a pixmap, stores it in the pixmap cache,
and returns its resource ID. Before the routine actually creates the pixmap, it
checks the pixmap cache for a pixmap that matches the specified image_name,
screen, foreground, background, and depth. If a match is found, the reference
count for the pixmap is incremented and the resource ID for the pixmap is
returned. If no pixmap is found, XmGetPixmapByDepth() checks the image
cache for a image that matches the specified image_name. If a matching image is
found, it is used to create the pixmap that is returned.

When no matches are found, XmGetPixmapByDepth() begins a search for an
X10 or X11 bitmap file, using image_name as the filename. If a file is found, its
contents are read, converted into an image, and cached in the image cache. Then,
the image is used to generate a pixmap that is subsequently cached and returned.
The depth of the pixmap is the specified depth. If image_name specifies a bit-
map, the foreground and background colors are combined with the image. If no
file is found, the routine returns XmUNSPECIFIED_PIXMAP.

XmGetPixmapByDepth Motif Functions and Macros

172 Motif Reference Manual

Usage
XmGetPixmapByDepth() works just like XmGetPixmap() except that the
depth of the pixmap can be specified. With XmGetPixmap(), the depth of the
returned pixmap is the default depth of the screen. See XmGetPixmap() for an
explanation of the search path that is used to find the image.

See Also
XmDestroyPixmap(1), XmGetPixmap(1), XmInstallImage(1),
XmUninstallImage(1).

Motif Functions and Macros XmGetPostedFromWidget

Motif Reference Manual 173

Name
XmGetPostedFromWidget – get the widget that posted a menu.

Synopsis
#include <Xm/RowColumn.h>

Widget XmGetPostedFromWidget (Widget menu)
Inputs

menu Specifies the menu widget.
Returns

The widget ID of the widget that posted the menu.

Description
XmGetPostedFromWidget() returns the widget from which the specified
menu is posted. The value that is returned depends on the type of menu that is
specified. For a PopupMenu, the routine returns the widget from which menu is
popped up. For a PulldownMenu, the routine returns the RowColumn widget
from which menu is pulled down. For cascading submenus, the returned widget
is the original RowColumn widget at the top of the menu system. For tear-off
menus in Motif 1.2 and later, XmGetPostedFromWidget() returns the widget
from which the menu is torn off.

Usage
If an application uses the same menu in different contexts, it can use XmGet-
PostedFromWidget() in an activate callback to determine the context in
which the menu callback should be interpreted.

See Also
XmRowColumn(2), XmPopupMenu(2), XmPulldownMenu(2).

XmGetScaledPixmap Motif Functions and Macros

174 Motif Reference Manual

Name
XmGetScaledPixmap – create and return a scaled pixmap.

Synopsis
Pixmap XmGetScaledPixmap (Widget widget,

char *image_name,
Pixel foreground,
Pixel background,
int depth,
double scaling_ratio)

Inputs
widget Specifies a widget.
image_name Specifies the string name of the image used to make the pix-
map.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the
image when it is a bitmap.
depth Specifies the depth of the pixmap.
scaling_ratio Specifies a scaling ratio applied to the pixmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Availability
Motif 2.1 and later.

Description
XmGetScaledPixmap() is similar to XmGetPixmapByDepth() except that
the returned pixmap is scaled.

Usage
widget is used to find a PrintShell by wandering up the widget hierarchy, and sec-
ondly to find a Screen on which to create the pixmap. If scaling_ratio is zero
and an ancestral PrintShell is found, the ratio applied is given by

(printer resolution / default pixmap resolution)
where the default pixmap resolution is the XmNdefaultPixmapResolution
resource of the PrintShell, and the printer resolution is fetched by the PrintShell
using Xp extensions to communicate with the XPrint server. The default value of
the PrintShell XmNdefaultPixmapResolution resource is 100.

Motif Functions and Macros XmGetScaledPixmap

Motif Reference Manual 175

At present, any resolution specified within the pixmap file itself is currently
ignored, although it is intended that this should take precedence over any Print-
Shell setting.
Although otherwise fully documented, the function does not have a functional
prototype in any of the supplied public headers.

See Also
XmDestroyPixmap(1), XmGetPixmapByDepth(1), XmPrintShell(2).

XmGetSecondaryResourceData Motif Functions and Macros

176 Motif Reference Manual

Name
XmGetSecondaryResourceData – retrieve secondary widget resource data.

Synopsis
Cardinal XmGetSecondaryResourceData (WidgetClass
widget_class,

XmSecondaryResourceData
**secondary_data_return)

Inputs
widget_class Specifies the widget class.

Outputs
secondary_data_return Returns an array of XmSecondaryResourceData
pointers.

Returns
The number of secondary resource data structures associated with the widget
class.

Availability
Motif 1.2 and later.

Description
XmGetSecondaryResourceData() provides access to the secondary widget
resource data associated with a widget class. Some Motif widget classes have
resources that are not accessible with the functions XtGetResourceList()
and XtGetConstraintResourceList(). If the specified widget_class has
secondary resources, XmGetSecondaryResourceData() provides descrip-
tions of the resources in one or more data structures and returns the number such
structures. If the widget_class does not have secondary resources, the routine
returns 0 (zero) and the value of secondary_data_return is undefined.
If the widget_class has secondary resources, XmGetSecondaryResource-
Data() allocates an array of pointers to the corresponding data structures. The
application is responsible for freeing the allocated memory using XtFree(). The
resource list in each structure (the value of the resources field), the structures, and
the array of pointers to the structures all need to be freed.

Motif Functions and Macros XmGetSecondaryResourceData

Motif Reference Manual 177

Usage
XmGetSecondaryResourceData()1 only returns the secondary resources
for a widget class if the class has been initialized. You can initialize a widget
class by creating an instance of the class or any of its subclass. VendorShell and
Text are two Motif widget classes that have secondary resources. The two fields
in the XmSecondaryResourceData structure that are of interest to an application
are resources and num_resources. These fields contain a list of the secondary
resources and the number of such resources.
Most applications do not need to query a widget class for the resources it sup-
ports. XmGetSecondaryResourceData() is intended to support interface
builders and applications like editres that allow a user to view the available
resources and set them interactively. Use XtGetResourceList() and
XtGetConstraintResourceList() to get the regular and constraint
resources for a widget class.

Example
The following code fragment shows the use of XmGetSecondaryRe-
sourceData() to print the names of the secondary resources of the Vendor-
Shell widget:

XmSecondaryResourceData *res; Cardinal num_res, i,
j;

if (num_res = XmGetSecondaryResourceData (vendor-
Shell-
WidgetCla
ss,
&res)) {

for (i = 0; i < num_res; i++) {
for (j = 0; j < res[i]->num_resources; j++) {

printf ("%s\n", res[i]-
>resources[j].resource_name);

}
XtFree ((char*) res[i]->resources);
XtFree ((char*) res[i]);

}
XtFree ((char*) res);

}

1.Erroneously given as XmGetSecondaryResources() in 1st and 2nd edition.

XmGetSecondaryResourceData Motif Functions and Macros

178 Motif Reference Manual

Structures
The XmSecondaryResourceData structure is defined as follows:

typedef struct {
XmResourceBaseProc base_proc;
XtPointer client_data;
String name;
String res_class;
XtResourceList resources;
Cardinal num_resources;

}XmSecondaryResourceDataRec, *XmSecondaryResourceData;

See Also
VendorShell(2), XmText(2).

Motif Functions and Macros XmGetTabGroup

Motif Reference Manual 179

Name
XmGetTabGroup – get the tab group for a widget.

Synopsis
Widget XmGetTabGroup (Widget widget)

Inputs
widget Specifies the widget whose tab group is to be returned.

Returns
The widget ID of the tab group of widget.

Availability
Motif 1.2 and later.

Description
XmGetTabGroup() returns the widget ID of the widget that is the tab group for
the specified widget. If widget is a tab group or a shell, the routine returns widget.
If widget is not a tab group and no ancestor up to the nearest shell ancestor is a
tab group, the routine returns the nearest shell ancestor. Otherwise, XmGetTab-
Group() returns the nearest ancestor of widget that is a tab group.

Usage
XmGetTabGroup() provides a way to find out the tab group for a particular
widget in an application. A tab group is a group of widgets that can be traversed
using the keyboard rather than the mouse. Users move from widget to widget
within a single tab group by pressing the arrow keys. Users move between differ-
ent tab groups by pressing the Tab or Shift-Tab keys. If the tab group widget is a
manager, its children are all members of the tab group (unless they are made into
separate tab groups). If the widget is a primitive, it is its own tab group. Certain
widgets must not be included with other widgets within a tab group. For exam-
ple, each List, ScrollBar, OptionMenu, or multi-line Text widget must be placed
in a tab group by itself, since these widgets define special behavior for the arrow
or Tab keys, which prevents the use of these keys for widget traversal.

See Also
XmGetFocusWidget(1), XmGetVisibility(1), XmIsTraversable(1),
XmProcessTraversal(1), XmManager(2), XmPrimitive(2).

XmGetTearOffControl Motif Functions and Macros

180 Motif Reference Manual

Name
XmGetTearOffControl – get the tear-off control for a menu.

Synopsis
#include <Xm/RowColumn.h>

Widget XmGetTearOffControl (Widget menu)
Inputs

menu Specifies the RowColumn widget whose tear-off control is to be
returned.

Returns
The widget ID of the tear-off control or NULL if no tear-off control exists.

Availability
Motif 1.2 and later.

Description
XmGetTearOffControl() retrieves the widget ID of the widget that is the
tear-off control for the specified menu. When the XmNtearOffModel resource of
a RowColumn widget is set to XmTEAR_OFF_ENABLED for a PulldownMenu
or a PopupMenu, the RowColumn creates a tear-off button for the menu. The
tear-off button, which contains a dashed line by default, is the first element in the
menu. When the button is activated, the menu is torn off. If the specified menu
does not have a tear-off control, XmGetTearOffControl() returns NULL.

Usage
In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown-
Menu supports tear-off menus. When a menu is torn off, it remains on the screen
after a selection is made so that additional selections can be made. The tear-off
control is a button that has a Separator-like appearance. Once you retrieve the
widget ID of the tear-off control, you can set resources to specify its appearance.
You can specify values for the following resources: XmNbackground, XmN-
backgroundPixmap, XmNbottomShadowColor, XmNforeground, XmNheight,
XmNmargin, XmNseparatorType, XmNshadowThickness, and XmNtopShad-
owColor. You can also set these resources in a resource file by using the name of
the control, which is TearOffControl.

See Also
XmRepTypeInstallTearOffModelConverter(1), XmPopupMenu(2),
XmPulldownMenu(2), XmRowColumn(2), XmSeparator(2).

Motif Functions and Macros XmGetVisibility

Motif Reference Manual 181

Name
XmGetVisibility – determine whether or not a widget is visible.

Synopsis
XmVisibility XmGetVisibility (Widget widget)

Inputs
widget Specifies the widget whose visibility state is to be returned.

Returns
XmVISIBILITY_UNOBSCURED if widget is completely visi-
ble, XmVISIBILITY_PARTIALLY_OBSCURED if widget is partially visible,
XmVISIBILITY_FULLY_OBSCURED or if widget is not visible.

Availability
Motif 1.2 and later.

Description
XmGetVisibility() determines whether or not the specified widget is visi-
ble. The routine returns XmVISIBILITY_UNOBSCURED if the entire rectangu-
lar area of the widget is visible. It returns
XmVISIBILITY_PARTIALLY_OBSCURED if a part of the rectangular area of
the widget is obscured by its ancestors. XmGetVisibility() returns
XmVISIBILITY_FULLY_OBSCURED if the widget is completely obscured by
its ancestors or if it is not visible for some other reason, such as if it is unmapped
or unrealized.

Usage
XmGetVisibility() provides a way for an application to find out the visibility
state of a particular widget. This information can be used to help determine
whether or not a widget is eligible to receive the keyboard focus. In order for a
widget to receive the keyboard focus, it and all of its ancestors must not be in the
process of being destroyed and they must be sensitive to input. The widget and its
ancestors must also have their XmNtraversalOn resources set to True. If the
widget is viewable, which means that it and its ancestors are managed, mapped,
and realized and some part of the widget is visible, then the widget is eligible to
receive the keyboard focus. A fully-obscured widget is not eligible to receive the
focus unless part of it is within the work area of a ScrolledWindow with an
XmNscrollingPolicy of XmAUTOMATIC that has an XmNtraverseObscured-
Callback.

XmGetVisibility Motif Functions and Macros

182 Motif Reference Manual

Structures
XmVisibility is defined as follows:

typedef enum {
XmVISIBILITY_UNOBSCURED,
XmVISIBILITY_PARTIALLY_OBSCURED,
XmVISIBILITY_FULLY_OBSCURED

} XmVisibility;

See Also
XmGetFocusWidget(1), XmGetTabGroup(1), XmIsTraversable(1),
XmProcessTraversal(1), XmManager(2), XmScrolledWindow(2).

Motif Functions and Macros XmGetXmDisplay

Motif Reference Manual 183

Name
XmGetXmDisplay – get the Display object for a display.

Synopsis
#include <Xm/Display.h>

Widget XmGetXmDisplay (Display *display)
Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

Returns
The Display object for the display.

Availability
Motif 1.2 and later.

Description
XmGetXmDisplay() retrieves the Display object for the specified display.

Usage
In Motif 1.2, the Display object stores display-specific information for use by the
toolkit. An application has a Display object for each display it accesses. When an
application creates its first shell on a display, typically by calling XtAppIni-
tialize() or XtAppCreateShell(), a Display object is created automati-
cally. There is no way to create a Display independently. Use
XmGetXmDisplay() to get the ID of the Display object, so that you can use
XtGetValues() and XtSetValues() to access and modify Display
resources.

See Also
XmDisplay(2), XmScreen(2).

XmGetXmScreen Motif Functions and Macros

184 Motif Reference Manual

Name
XmGetXmScreen – get the Screen object for a screen.

Synopsis
Widget XmGetXmScreen (Screen *screen)

Inputs
screen Specifies a screen on a display; returned by XtScreen().

Returns
The Screen object for the screen.

Availability
Motif 1.2 and later.

Description
XmGetXmScreen() retrieves the Screen object for the specified screen.

Usage
In Motif 1.2, the Screen object stores screen-specific information for use by the
toolkit. An application has a Screen object for each screen that it accesses. When
an application creates its first shell on a screen, typically by calling XtAppIni-
tialize() or XtAppCreateShell(), a Screen object is created automati-
cally. There is no way to create a Screen independently. Use
XmGetXmScreen() to get the ID of the Screen object, so that you can use
XtGetValues() and XtSetValues() to access and modify Screen resources.

See Also
XmDisplay(2), XmScreen(2).

Motif Functions and Macros XmHierarchyGetChildNodes

Motif Reference Manual 185

Name
XmHierarchyGetChildNodes – A Hierarchy function that returns the list of
“node children” of the node widget.

Synopsis
#include <Xm/Hierarchy.h>

WidgetList XmHierarchyGetChildNodes(Widget widget, int *value_return)
Inputs

widget Specifies the Node widget whose list of node children is
requested.

Outputs
value_return Returns the list of “node children” of the node widget.

Description
XmHierarchyGetChildNodes() returns a list of widgets that name the node
widget as their XmNparentNode; that is, it returns the list of “node children” of
the node widget. Not that all the widgets are children (in the Xt sense) of the
XmHierarchy or its subclass. The returned list is NULL if there are no node
children.

Usage
XmHierarchyGetChildNodes() is a convenience routine that returns the
list of “node children” of the node widget. The array of widgets returned is
NULL-terminated. It should be freed with XtFree().

See Also
XmHierarchy(2).

XmHierarchyOpenAllAncestors Motif Functions and Macros

186 Motif Reference Manual

Name
XmHierarchyOpenAllAncestors – A Hierarchy function that opens all ancestors
of a given node.

Synopsis
#include <Xm/Hierarchy.h>

void XmHierarchyOpenAllAncestors (Widget widget)
Inputs

widget Specifies the node widget that wishes to be shown.
Outputs

value_return Returns the current slider position for the Scale.

Description
XmHierarchyOpenAllAncestors() opens all ancestors of the given node,
so that the node is displayed.

Usage
XmHierarchyOpenAllAncestors() is a convenience routine that opens all
ancestors of the given node.

See Also
XmHierarchy(2).

Motif Functions and Macros XmIconBoxIsCellEmpty

Motif Reference Manual 187

Name
XmIconBoxIsCellEmpty – An IconBox function that determines whether a cell
in the IconBox is empty.

Synopsis
#include <Xm/IconBox.h>

Boolean XmIconBoxIsCellEmpty (Widget widget,

Position cell_x

Position cell_y

Widget ignore)
Inputs

widget Specifies the IconBox widget.
cell_x Specifies the x location of the cell to check.
cell_y Specifies the y location of the cell to check.
ignore Specifies widget ID what will be ignored if it is present in

the specified cell.
Outputs

value_return Returns True if the specified cell contains no child, and
False otherwise.

Description
XmIconBoxIsCellEmpty() determines whether a cell in the IconBox is
empty.

Usage
XmIconBoxIsCellEmpty() is a convenience routine that determines whether
a cell in the IconBox is empty. If the widget id specified by ignore is present in
the specified cell, it will be ignored and the function will return True.

See Also
XmIconBox(2.

XmIm Motif Functions and Macros

188 Motif Reference Manual

Name
XmIm– introduction to input methods.

Synopsis
Public Header:

<Xm/XmIm.h>
Functions/Macros:

XmImCloseXIM(), XmImFreeXIC(), XmImGetXIC(), XmIm-
GetXIM(),
XmImMbLookupString(), XmImMbResetIC(), XmImRegister(),
XmImSetFocusValues(), XmImSetValues(), XmImSetXIC(),
XmImUnregister(), XmImUnsetFocus(), XmImVaSetFocusVal-
ues(),
XmImVaSetValues()

Availability
Motif 1.2 and later.

Description
Many languages are ideographic, and have considerably more characters than
there are keys on the keyboard: the Ascii keyboard was not originally designed
for languages that are not based upon the Latin alphabet. For such languages, in
order to provide a mapping between the alphabet and the keyboard, it is neces-
sary to represent particular characters by a key sequence rather than a single key-
stroke. An input method is the means by which X maps between the characters of
the language, and the representative key sequences. The most common use of an
input method is in implementing language-independent text widget input. As the
user types the key sequences, the input method displays the actual keystrokes
until the sequence completes a character, when the required character is dis-
played in the text widget. The process of composing a character from a key
sequence is called pre-editing.
In order to facilitate pre-editing, the input method may maintain several areas on
the screen: a status area, a pre-edit area, and an auxiliary area. The status area is
an output-only window which provides feedback on the interaction with the input
method. The pre-edit area displays the keyboard sequence as it is typed. The aux-
iliary area is used for popup menus, or for providing customized controls
required by the particular input method. The location of the pre-edit area is deter-
mined by the XmNpreeditType resource of VendorShell. The value OnTheSpot
displays the key sequence as it is typed into the destination text widget itself.
OverTheSpot superimposes an editing window over the top of the text widget.
OffTheSpot creates a dedicated editing window, usually at the bottom of the dia-

Motif Functions and Macros XmIm

Motif Reference Manual 189

log. Root uses a pre-edit window which is a child of the root window of the dis-
play.
To control the interaction between the application and the input method, X
defines a structure called an input context, which the programmer can fetch and
manipulate where the need arises. Each widget registered with the input method
has an associated input context, which may or may not be shared amongst the
registered widgets. Motif extends the mechanisms provided by the lower level X
libraries, and provides a caching mechanism whereby input contexts are shared
between widgets.

Usage
Input methods are usually supplied by the vendors of the hardware, and the appli-
cation generally connects to the input method without the need for any special
coding by the programmer. The Motif widgets are fully capable of connecting to
an input method when required, and although Motif provides a functional inter-
face to enable the programmer to interact with an input method, the interface is
not required for the Motif widgets. The exceptions are where the programmer is
writing new widgets, or where internationalized input is required for the Drawin-
gArea.

XmImRegister() registers a widget with an input method. XmImSetVal-
ues() manipulates an input context by registering callbacks which respond to
specific states. XmImSetFocusValues() is similar, except that after the input
context has been modified, the focus is reset to the widget providing the input.
XmImMbLookupString() performs the necessary key sequence to character
translation on behalf of the input widget. XmImUnRegister() unregisters the
widget with the input method. Typically, XmImRegister() is called within
the Initialize method of a widget, XmImUnRegister() is called by the Destroy
method, and XmImMbLookupString() is called within an action or callback
routine of the widget in response to an event. These are the primary functions
which a programmer may need to call, and are all that are required to implement
internationalized input for the Motif text widget.

Note that an input method does not need to support all styles of XmNpreedit-
Type.

See Also
XmImCloseXIM(1), XmImFreeXIC(1), XmImGetXIM(1),
XmImGetXIC(1), XmImMbLookupString(1), XmImMbResetIC(1),
XmImRegister(1), XmImSetFocusValues(1), XmImSetValues(1),
XmImSetXIC(1), XmImUnregister(1), XmImUnsetFocus(1),
XmImVaSetFocusValues(1), XmImVaSetValues(1).

XmImCloseXIM Motif Functions and Macros

190 Motif Reference Manual

Name
XmImCloseXIM – close all input contexts.

Synopsis
#include <Xm/XmIm.h>

void XmImCloseXIM (Widget widget)
Inputs

widget Specifies a widget used to determine the display connection.

Availability
Motif 2.0 and later.

Description
XmImCloseXIM() is a convenience function which closes all input contexts
associated with the current input method. The widget parameter is used to iden-
tify the XmDisplay object of the application.

Usage
XmImCloseXIM() uses the widget parameter to deduce the input method associ-
ated with the XmDisplay object. The application’s connection to the input
method is closed, and all widgets which are registered with any input context
associated with the input method are unregistered. In order to close the input con-
text associated with a single widget, rather than closing down all connections,
use XmImUnregister().

The Motif widgets internally register and unregister themselves with the input
manager using XmImRegister() and XmImUnregister() as required. The
VendorShell calls XmImCloseXIM() within its Destroy method once the last
VendorShell is destroyed in order to clean up the connection to the input method.
An application which dynamically switches between input methods in a multi-
language application may need to invoke XmImCloseXIM() because Motif only
supports a single input method at any given instance. Application programmers
will not normally need to use XmImCloseXIM() directly.

See Also
XmImRegister(1), XmImUnregister(1), XmIm(1).

Motif Functions and Macros XmImFreeXIC

Motif Reference Manual 191

Name
XmImFreeXIC – free an input context.

Synopsis
#include <Xm/XmIm.h>

void XmImFreeXIC (Widget widget, XIC xic)
Inputs

widget Specifies a widget from which the input context registry is
deduced.
xic Specifies the input context which is to be freed.

Availability
Motif 2.0 and later.

Description
XmImFreeXIC() is a convenience function which unregisters all widgets asso-
ciated with the input context xic, and then frees the input context.

Usage
XmImFreeXIC() uses the widget parameter to deduce an ancestral VendorShell,
from which the X input context registry is found. All widgets associated with the
input context xic within the registry are unregistered, and the input context is
freed.

See Also
XmImGetXIC(1), XmImRegister(1). XmImSetXIC(1),
XmImUnregister(1), XmIm(1).

XmImGetXIC Motif Functions and Macros

192 Motif Reference Manual

Name
XmImGetXIC – create an input context for a widget.

Synopsis
#include <Xm/XmIm.h>

XIC XmImGetXIC (Widget widget, XmInputPolicy input_policy, ArgList
arglist, Cardinal argcount)

Inputs
widget Specifies a widget for which the input context is required.
input_policy Specifies the policy for creating input contexts.
arglist Specifies a list of arguments consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Returns
The input context associated with widget.

Availability
Motif 2.0 and later.

Description
XmImGetXIC() creates and registers a new input context for a widget, depend-
ing upon the input_policy. If input_policy is XmPER_WIDGET, a new input
context is created for the widget. If the value is XmPER_SHELL, a new input
context is created only if an input context associated with the ancestral shell of
widget does not already exist, otherwise the widget is registered with the existing
input context. If the policy is XmINHERIT_POLICY, the input policy is inher-
ited by taking the value of the XmNinputPolicy resource from the nearest ances-
tral VendorShell. The set of attributes for the input context is specified through
the resource list arglist, each element of the list being a structure containing a
name/value pair. The number of elements within the list is given by argcount.
The name/value pairs are passed through to the function XCreateIC() if the
input context is created. XmImGetXIC() returns either the input context which is
newly created if the input policy is XmPER_WIDGET, otherwise it returns the
shared context.

Motif Functions and Macros XmImGetXIC

Motif Reference Manual 193

Usage
In Motif 1.2, the supported attributes for configuring the created input context are
XmNbackground, XmNforeground, XmNbackgroundPixmap, XmNspotLoca-
tion, XmNfontList, and XmNarea.

In Motif 2.0 and later, the list is extended to include XmNpreeditCaretCallback,
XmNpreeditDoneCallback, XmNpreeditDrawCallback, and XmNpreeditStart-
Callback resources.

You are referred to the XCreateIC() entry within the Xlib Reference Manual
for the interpretation of each of the resource types. The function allocates storage
associated with the created input context, and it is the responsibility of the pro-
grammer to reclaim the space at a suitable point by calling XmImFreeXIC().

Structures
The enumerated type XmInputPolicy has the following possible values:

XmINHERIT_POLICY
XmPER_WIDGET
XmPER_SHELL

See Also
XmImFreeXIC(1), XmImSetXIC(1), XmIm(1).

XmImGetXIM Motif Functions and Macros

194 Motif Reference Manual

Name
XmImGetXIM – retrieve the input method for a widget.

Synopsis
#include <Xm/XmIm.h>

XIM XmImGetXIM (Widget widget)
Inputs

widget Specifies a widget registered with the input manager.
Returns

The input method associated with widget.

Availability
Motif 1.2 and later.

Description
XmImGetXIM() returns a pointer to an opaque data structure which represents
the input method which the input manager has opened for the specified widget.

Usage
Widgets are normally registered with the input manager through a call to XmIm-
Register(). If no input method is associated with the widget, the procedure
uses any specified XmNinputMethod resource of the nearest ancestral Vendor-
Shell in order to open an input method. If the resource is NULL, the input
method associated with the current locale is opened. If no input method can be
opened, the function returns NULL.

XmImGetXIM() allocates storage for the opaque data structure which is
returned, and it is the responsibility of the programmer to reclaim the space by a
call to XmImCloseXIM() at a suitable point. XmImGetXIM() is not a procedure
which an application programmer needs to use: the routine is of more use to the
programmer of new widgets.

See Also
XmImRegister(1), XmImCloseXIM(1), XmIm(1).

Motif Functions and Macros XmImMbLookupString

Motif Reference Manual 195

Name
XmImMbLookupString – retrieve a composed string from an input method.

Synopsis
#include <Xm/XmIm.h>

int XmImMbLookupString (Widget widget,
XKeyPressedEvent *event,
char *buffer,
int num_bytes,
KeySym *keysym,
int *status)

Inputs
widget Specifies a widget registered with the input manager.
event Specifies a key press event.
num_bytes Specifies the length of the buffer array.

Outputs
buffer Returns the composed string.
keysym Returns any keysym associated with the input keyboard event.
status Returns the status of the lookup.

Returns
The length of the composed string in bytes.

Availability
Motif 1.2 and later.

Description
XmImMbLookupString() translates an event into a composed character, and/
or a keysym, using the input context associated with a given widget. Any com-
posed string which can be deduced from the event is placed in buffer; the com-
posed string consists of multi-byte characters in the encoding of the locale of the
input context. If a keysym is associated with the event, this is returned at the
address specified by keysym. The function returns the number of bytes placed
into buffer.

XmImMbLookupString Motif Functions and Macros

196 Motif Reference Manual

Usage
A widget is registered with an input method through the function XmImRegis-
ter(). If no input context is associated with the widget, the function uses
XLookupString() to map the key event into composed text. Otherwise the
function calls XmbLookupString() with the input context as the first parame-
ter. If the programmer is not interested in keysym values, a NULL value can be
passed as the keysym parameter. XmImMbLookupString() places into buffer
any composed character string associated with the key event: if the event at the
given point in the input sequence does not signify a unique character in the lan-
guage of the current locale, the function returns zero: subsequent key events may
be required before a character is composed.

Structures
The possible values returned in status are the same as those returned from
XmbLookupString(): you are referred to the Xlib Reference Manual for a full
description and interpretation of the values.

XBufferOverflow /* buffer size insufficient to hold composed sequence */
XLookupNone /* no character sequence matching the input exists */
XLookupChars /* input characters were composed */
XLookupKeysym /* input is keysym rather than composed character */
XLookupBoth /* both a keysym and composed character are returned */

See Also
XmImRegister(1), XmIm(1).

Motif Functions and Macros XmImMbResetIC

Motif Reference Manual 197

Name
XmImMbResetIC – reset an input context.

Synopsis
#include <Xm/XmIm.h>

void XmImMbResetIC (Widget widget, char **mb_text)
Inputs

widget Specifies a widget registered with the Input Manager.
Outputs

mb_text Returns pending input on the input context.

Availability
Motif 2.0 and later.

Description
XmImMbResetIC() resets the input context associated with a widget.

Usage
XmImMbResetIC() is a convenience function which resets an input context to
the initial state. The function is no more than a wrapper onto the function
XmbResetIC(), which clears the pre-edit area and updates the status area of the
input context. The return value of XmbResetIC() is placed into the address
specified by mb_text. This data is implementation dependent, and may be NULL.
If data is returned, the programmer is responsible for freeing it by calling
XFree().

See Also
XmImRegister(1), XmIm(1).

XmImRegister Motif Functions and Macros

198 Motif Reference Manual

Name
XmImRegister – register a widget with an Input Manager.

Synopsis
#include <Xm/XmIm.h>

void XmImRegister (Widget widget, unsigned int reserved)
Inputs

widget Specifies a widget to register with the input manager.
reserved This parameter is current unused.

Availability
Motif 1.2 and later.

Description
XmImRegister() is a convenience function which registers a widget with the
input manager to establish a connection to the current input method. The function
is called when an application needs to specially arrange for internationalized
input to a widget.

Usage
The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires inter-
nationalized input for the DrawingArea needs to call XmImRegister()
directly. If the VendorShell ancestor containing the widget already has an associ-
ated input context, the function simply returns. Otherwise, the XmNinputPolicy
resource of the nearest VendorShell ancestor is fetched to determine whether to
share an existing input context. The function opens an input method by inspect-
ing the XmNinputMethod resource of the VendorShell. If the resource is NULL,
a default input method is opened using information from the current locale.
XmImRegister() should not be called twice using the same widget parameter
without unregistering the widget from the input method first.

The programmer is responsible for closing down the connection to the input
method by calling XmImUnregister(). The Destroy method of the widget is
an appropriate place to call this.

See Also
XmImUnregister(1), XmIm(1).

Motif Functions and Macros XmImSetFocusValues

Motif Reference Manual 199

Name
XmImSetFocusValues – set the values and focus for an input context.

Synopsis
#include <Xm/XmIm.h>

void XmImSetFocusValues (Widget widget, ArgList arglist, Cardinal argcount)
Inputs

widget Specifies a widget registered with the input manager.
arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Availability
Motif 1.2 and later.

Description
XmImSetFocusValues() notifies the input manager that a widget has
received the input focus. If the previous values of the input context associated
with the widget do not allow the context to be reused, the old context is unregis-
tered, and a new one registered with the widget.

Usage
XmImSetFocusValues() is identical in all respects to XmImSetValues(),
except that after the input context has been reset, the focus window attribute of
the input context is set to the window of the input widget.

The Motif widgets invoke XmImSetFocusValues() as and when required.
For example, the Text and TextField widgets automatically invoke XmImSetFo-
cusValues() in response to FocusIn and EnterNotify events. A programmer who
is implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget receives the input focus.

See Also
XmImRegister(1), XmImSetValues(1), XmIm(1).

XmImSetValues Motif Functions and Macros

200 Motif Reference Manual

Name
XmImSetValues – set the values for an input context.

Synopsis
#include <Xm/XmIm.h>

void XmImSetValues (Widget widget, ArgList arglist, Cardinal argcount)
Inputs

widget Specifies a widget registered with the Input Manager.
arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Availability
Motif 1.2 and later.

Description
XmImSetValues() sets the attributes for the input context associated with the
specified widget. The set of attributes to be modified is specified through the
resource list arglist, each element of the list being a structure containing a name/
value pair. The number of elements within the list is given by argcount.

Usage
XmImSetValues() is a convenience routine which invokes XSetICValues()
in order to configure an input context. You are referred to the Xlib Reference
Manual for the set of attributes supported by XSetICValues(), and for their
interpretation.

The Motif widgets invoke XmImSetValues() as and when required. For exam-
ple, the Text and TextField widgets automatically invoke XmImSetValues()
when the widget is resized or the font changed. A programmer who is imple-
menting internationalized input for a DrawingArea or creating a new widget may
need to call this function when, for example, the widget needs to reconfigure the
spot location.

See Also
XmImSetFocusValues(1), XmImRegister(1), XmIm(1).

Motif Functions and Macros XmImSetXIC

Motif Reference Manual 201

Name
XmImSetXIC – register a widget with an existing input context.

Synopsis
#include <Xm/XmIm.h>

XIC XmImSetXIC (Widget widget, XIC xic)
Inputs

widget Specifies a widget to be registered with the input context.
xic Specifies an input context where the widget is to be registered.

Returns
The input context where the widget is registered.

Availability
Motif 2.0 and later.

Description
XmImSetXIC() is a convenience function which registers a widget with an input
context. If the widget is registered with another input context, the widget is firstly
unregistered with that context. The widget is then registered with the input con-
text xic. If xic is NULL, the function creates a new input context and registers the
widget with it. The function returns the input context where the widget is regis-
tered.

Usage
XmImSetXIC() allocates storage when it creates a new input context, and it is
the responsibility of the programmer to free the space at an appropriate point by
calling XmImFreeXIC().

See Also
XmImFreeXIC(1), XmImRegister(1), XmIm(1).

XmImUnregister Motif Functions and Macros

202 Motif Reference Manual

Name
XmImUnregister – unregister the input context for a widget.

Synopsis
#include <Xm/XmIm.h>

void XmImUnregister (Widget widget)
Inputs

widget Specifies a widget whose input context is to be unregistered.

Availability
Motif 1.2 and later.

Description
XmImUnregister() is a convenience function which unregisters the input
context associated with a given widget. The function is the inverse of XmImReg-
ister(), which is called when an application needs to specially arrange for
internationalized input to a widget.

Usage
The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires inter-
nationalized input for the DrawingArea needs to call XmImRegister()
directly. Where XmImRegister() has been called by the application, it is the
responsibility of the programmer to also call XmImUnregister(), usually
within the Destroy() method of the widget for which internationalized input is
required. XmImUnregister() uses the widget parameter to deduce the input
method associated with a display connection. Any input context associated with
the input method is unregistered.

See Also
XmImRegister(1), XmIm(1).

Motif Functions and Macros XmImUnsetFocus

Motif Reference Manual 203

Name
XmImUnsetFocus – unset focus for input context.

Synopsis
#include <Xm/XmIm.h>

void XmImUnsetFocus (Widget widget)
Inputs

widget Specifies a widget which has lost the input focus.

Availability
Motif 1.2 and later.

Description
XmImUnsetFocus() notifies the input manager that a widget has lost the input
focus.

Usage
XmImUnsetFocus() is a convenience routine which invokes XUnsetICFo-
cus() using the input context associated with the specified widget. The input
method is notified that no more input is expected from the widget.

The Motif widgets invoke XmImUnsetFocus() as and when required. For
example, the Text and TextField widgets automatically invoke XmImUnsetFo-
cus()1 in response to FocusOut and LeaveNotify events. A programmer who is
implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget loses the input focus.

See Also
XmImSetFocusValues(1), XmImVaSetFocusValues(1), XmIm(1).

1.Erroneously given as XmUnsetFocus() in 2nd edition.

XmImVaSetFocusValues Motif Functions and Macros

204 Motif Reference Manual

Name
XmImVaSetFocusValues – set the values and focus for an input context.

Synopsis
#include <Xm/XmIm.h>

void XmImVaSetFocusValues (Widget widget,....,NULL)
Inputs

widget Specifies a widget registered with the Input Manager.
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.

Availability
Motif 1.2 and later.

Description
XmImVaSetFocusValues() notifies the input manager that a widget has
received the input focus. If the previous values of the input context associated
with the widget do not allow the context to be reused, the old context is unregis-
tered, and a new one registered with the widget.

Usage
XmImVaSetFocusValues() is simply a convenience routine with a variable
length argument list which constructs internal arglist and argcount parameters to
a XmImSetFocusValues() call.

See Also
XmImSetFocusValues(1).

Motif Functions and Macros XmImVaSetValues

Motif Reference Manual 205

Name
XmImVaSetValues – set the values for an input context.

Synopsis
#include <Xm/XmIm.h>

void XmImVaSetValues (Widget widget,...,NULL)
Inputs

widget Specifies a widget registered with the Input Manager.
...,NULL A NULL-terminated variable-length list of resource name/value
pairs.

Availability
Motif 1.2 and later.

Description
XmImVaSetValues()1 sets the attributes for the input context associated with
the specified widget.

Usage
XmImVaSetValues() is simply a convenience routine with a variable length
argument list which constructs internal arglist and argcount parameters to a
XmImSetValues() call.

See Also
XmImSetValues(1).

1.Erroneously given as XmImSetValues() in 2nd edition.

XmInstallImage Motif Functions and Macros

206 Motif Reference Manual

Name
XmInstallImage – install an image in the image cache.

Synopsis
Boolean XmInstallImage (XImage *image, char *image_name)

Inputs
image Specifies the image to be installed.
image_name Specifies the string name of the image.

Returns
True on success or False if image or image_name is NULL or image_name
duplicates an image name already in the cache.

Description
XmInstallImage() installs the specified image in the image cache. The image
can later be used to create a pixmap. When the routine installs the image, it does
not make a copy of the image, so an application should not destroy the image
until it has been uninstalled. The routine also expands the resource converter that
handles images so that image_name can be used in a resource file. In order to
allow references from a resource file, XmInstallImage() must be called to
install an image before any widgets that use the image are created.

Usage
An application can use XmInstallImage() to install and cache images, so that
the images can be shared throughout the application. Once an image is installed,
it can be used to create a pixmap with XmGetPixmap(). The toolkit provides the
following pre-installed images that can be referenced in a resource file or used to
create a pixmap:

Image Name Image Description

background Solid background tile

25_foreground A 25% foreground, 75% background tile

50_foreground A 50% foreground, 50% background tile

75_foreground A 75% foreground, 25% background tile

horizontal_tile Horizontal lines tile, in Motif 1.2.3 and later.

vertical_tile Vertical lines tile, in Motif 1.2.3 and later.

horizontal As horizontal_tile: maintained for 1.2.2 compatibility.

vertical As vertical_tile: maintained for 1.2.2 compatibility.

slant_right Right slanting lines tile

slant_left Left slanting lines tile

Motif Functions and Macros XmInstallImage

Motif Reference Manual 207

Example
You might use the following code to define and install an image:

#define bitmap_width 16
#define bitmap_height 16

static char bitmap_bits[] = {
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF,
0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF

};

static XImage ximage = {
bitmap_width, /* width */
bitmap_height, /* height */
0, /* xoffset */
XYBitmap, /* format */
bitmap_bits, /* data */
MSBFirst, /* byte_order */
8, /* bitmap_unit */
LSBFirst, /* bitmap_bit_order */
8, /* bitmap_pad */
1, /* depth */
2, /* bytes_per_line */
NULL /* obdata */

};
...
XmInstallImage (&ximage, "image_name");
...

See Also

menu_cascade An arrow pointing to the right, in Motif 2.0 and later.

menu_cascade_rtol An arrow pointing to the left, in Motif 2.0 and later.

menu_checkmark A tick mark, in Motif 2.0 and later.

menu_dash A horizontal line, in Motif 2.0 and later.

collapsed A filled arrow pointing to the right, in Motif 2.0 and later.

collapsed_rtol A filled arrow pointing to the left, in Motif 2.0 and later.

expanded A filled arrow pointing downwards, in Motif 2.0 and later.

Image Name Image Description

XmInstallImage Motif Functions and Macros

208 Motif Reference Manual

XmDestroyPixmap(1), XmGetPixmap(1), XmUninstallImage(1).

Motif Functions and Macros XmInternAtom

Motif Reference Manual 209

Name
XmInternAtom – return an atom for a given property name string.

Synopsis
#include <Xm/AtomMgr.h>

Atom XmInternAtom (Display *display, String name, Boolean only_if_exists)
Inputs

display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

name Specifies the string name of the property for which you want the
atom.

only_if_exists Specifies a Boolean value that indicates whether or not the atom
is created if it does not exist.

Returns
An atom on success or None.

Availability
In Motif 2.0 and later, XInternAtom() is preferred.

Description
XmInternAtom() returns the atom that corresponds to the given property
name. This routine works like Xlib’s XInternAtom() routine, but the Motif
routine provides the added feature of client-side caching. If no atom exists with
the specified name and only_if_exists is True, XmInternAtom() does not create
a new atom; it simply returns None. If only_if_exists is False, the routine creates
the atom and returns it.

Usage
An atom is a number that identifies a property. Properties also have string names.
XmInternAtom() returns the atom associated with a property if it exists, or it may
create the atom if it does not exist. The atom remains defined even after the client
that defined it has exited. An atom does not become undefined until the last con-
nection to the X server closes. Predefined atoms are defined in <X11/Xatom.h>
and begin with the prefix XA_. Predefined atoms do not need to be interned with
XmInternAtom().

In Motif 2.0 and later, XmInternAtom() is no more than a convenience routine
which calls XInternAtom(). While XmInternAtom() is not yet officially
obsolete, XInternAtom() is to be preferred.

See Also
XmGetAtomName(1).

XmIsMotifWMRunning Motif Functions and Macros

210 Motif Reference Manual

Name
XmIsMotifWMRunning – check whether the Motif Window Manager (mwm) is
running.

Synopsis
Boolean XmIsMotifWMRunning (Widget shell)

Inputs
shell Specifies the shell widget whose screen is queried.

Returns
True if mwm is running or False otherwise.

Description
XmIsMotifWMRunning() checks for the presence of the
_MOTIF_WM_INFO property on the root window of the screen of the specified
shell to determine whether the Motif Window Manager (mwm) is running on the
screen.

Usage
mwm defines additional types of communication between itself and client pro-
grams. This communication is optional, so an application should not depend on
the communication or the presence of mwm for any functionality. XmIsMo-
tifWMRunning() allows an application to check if mwm is running and act
accordingly.

See Also
mwm(4).

Motif Functions and Macros XmIs<Emphasis>Object<Default Para Font>

Motif Reference Manual 211

Name
XmIsObject – determine whether a widget is a subclass of a class.

Synopsis
#include <Xm/Gadget.h>
Boolean XmIsGadget (Widget widget)

#include <Xm/Manager.h>
Boolean XmIsManager (Widget widget)

#include <Xm/Primitive.h>
Boolean XmIsPrimitive (Widget widget)

#include <Xm/ArrowB.h>
Boolean XmIsArrowButton (Widget widget)

#include <Xm/ArrowBG.h>
Boolean XmIsArrowButtonGadget (Widget widget)

#include <Xm/BulletinB.h>
Boolean XmIsBulletinBoard (Widget widget)

#include <Xm/CascadeB.h>
Boolean XmIsCascadeButton (Widget widget)

#include <Xm/CascadeBG.h>
Boolean XmIsCascadeButtonGadget (Widget widget)

#include <Xm/ComboBox.h>
Boolean XmIsComboBox (Widget widget)

#include <Xm/Command.h>
Boolean XmIsCommand (Widget widget)

#include <Xm/Container.h>
Boolean XmIsContainer (Widget widget)

#include <Xm/DialogS.h>
Boolean XmIsDialogShell (Widget widget)

#include <Xm/Display.h>
Boolean XmIsDisplay (Widget widget)

#include <Xm/DragC.h>
Boolean XmIsDragContext (Widget widget)

#include <Xm/DragIcon.h>
Boolean XmIsDragIconObjectClass (Widget widget)

XmIs<Emphasis>Object<Default Para Font> Motif Functions and Macros

212 Motif Reference Manual

#include <Xm/DrawingA.h>
Boolean XmIsDrawingArea (Widget widget)

#include <Xm/DrawnB.h>
Boolean XmIsDrawnButton (Widget widget)

#include <Xm/DropSMgr.h>
Boolean XmIsDropSiteManager (Widget widget)

#include <Xm/DropTrans.h>
Boolean XmIsDropTransfer (Widget widget)

#include <Xm/FileSB.h>
Boolean XmIsFileSelectionBox (Widget widget)

#include <Xm/Form.h>
Boolean XmIsForm (Widget widget)

#include <Xm/Frame.h>
Boolean XmIsFrame (Widget widget)

#include <Xm/GrabShell.h>
Boolean XmIsGrabShell (Widget widget)

#include <Xm/IconG.h>
Boolean XmIsIconGadget (Widget widget)

#include <Xm/Label.h>
Boolean XmIsLabel (Widget widget)

#include <Xm/LabelG.h>
Boolean XmIsLabelGadget (Widget widget)

#include <Xm/List.h>
Boolean XmIsList (Widget widget)

#include <Xm/MainW.h>
Boolean XmIsMainWindow (Widget widget)

#include <Xm/MenuShell.h>
Boolean XmIsMenuShell (Widget widget)

#include <Xm/MessageB.h>
Boolean XmIsMessageBox (Widget widget)

#include <Xm/Notebook.h>
Boolean XmIsNotebook (Widget widget)

#include <Xm/PanedW.h>
Boolean XmIsPanedWindow (Widget widget)

Motif Functions and Macros XmIs<Emphasis>Object<Default Para Font>

Motif Reference Manual 213

#include <Xm/PrintS.h>
Boolean XmIsPrintShell (Widget widget)

#include <Xm/PushB.h>
Boolean XmIsPushButton (Widget widget)

#include <Xm/PushBG.h>
Boolean XmIsPushButtonGadget (Widget widget)

#include <Xm/RowColumn.h>
Boolean XmIsRowColumn (Widget widget)

#include <Xm/Scale.h>
Boolean XmIsScale (Widget widget)

#include <Xm/Screen.h>
Boolean XmIsScreen (Widget widget)

#include <Xm/ScrollBar.h>
Boolean XmIsScrollBar (Widget widget)

#include <Xm/ScrolledW.h>
Boolean XmIsScrolledWindow (Widget widget)

#include <Xm/SelectioB.h>
Boolean XmIsSelectionBox (Widget widget)

#include <Xm/Separator.h>
Boolean XmIsSeparator (Widget widget)

#include <Xm/SeparatoG.h>
Boolean XmIsSeparatorGadget (Widget widget)

#include <Xm/Text.h>
Boolean XmIsText (Widget widget)

#include <Xm/TextF.h>
Boolean XmIsTextField (Widget widget)

#include <Xm/ToggleB.h>
Boolean XmIsToggleButton (Widget widget)

#include <Xm/ToggleBG.h>
Boolean XmIsToggleButtonGadget (Widget widget)

#include <Xm/VendorS.h>
Boolean XmIsVendorShell (Widget widget)

Inputs
widget Specifies the widget ID of the widget whose class is to be checked.

XmIs<Emphasis>Object<Default Para Font> Motif Functions and Macros

214 Motif Reference Manual

Returns
True if widget is of the specified class or False otherwise.

Availability
XmIsDisplay(), XmIsDragContext(), XmIsDragIconObject-
Class(), XmIsDropSiteManager(), XmIsDropTransfer(), and
XmIsScreen() are only available in Motif 1.2 and later.

XmIsComboBox(), XmIsContainer(), XmIsNotebook(), XmIsIcon-
Gadget(), and XmIsGrabShell() are available in Motif 2.0 and later.

XmIsPrintShell() is available in Motif 2.1. Note that although the SpinBox
class is available in Motif 2.0, and the SimpleSpinBox class in Motif 2.1, neither
XmIsSpinBox() nor XmIsSimpleSpinBox() are defined. 1

Description
The XmIs*() routines are macros that check the class of the specified widget. The
macros returns True if widget is of the specified class or a subclass of the speci-
fied class. Otherwise, the macros return False.

Usage
An application can use the XmIs*() macros to check the class of a particular
widget. All of the macros use XtIsSubclass() to determine the class of the
widget.

Example
The missing macro XmIsSpinBox() could be defined as follows:

#include <Xm/SpinB.h>
#ifndef XmIsSpinBox
#define XmIsSpinBox(w) XtIsSubclass(w, xmSpinBoxWidgetClass)
#endif /* XmIsSpinBox */

1.Be warned that certain platforms, although they ship the PrintShell headers, do not compile the component into the
native Motif toolkit. Sun Solaris is a case in point.

Motif Functions and Macros XmIs<Emphasis>Object<Default Para Font>

Motif Reference Manual 215

See Also
XmCreateObject(1), VendorShell(2), XmArrowButton(2),
XmArrowButtonGadget(2), XmBulletinBoard(2),
XmCascadeButton(2), XmCascadeButtonGadget(2),
XmComboBox(2), XmCommand(2), XmContainer(2),
XmDialogShell(2), XmDisplay(2), XmDragContext(2),
XmDragIcon(2), XmDrawingArea(2), XmDrawnButton(2),
XmDropSite(2), XmDropTransfer(2),
XmFileSelectionBox(2), XmForm(2), XmFrame(2),
XmGadget(2), XmGrabShell(2), XmIconGadget(2),
XmLabel(2), XmLabelGadget(2), XmList(2),
XmMainWindow(2), XmManager(2), XmMenuShell(2),
XmMessageBox(2), XmNotebook(2), XmPanedWindow(2),
XmPrimitive(2), XmPrintShell(2), XmPushButton(2),
XmPushButtonGadget(2), XmRowColumn(2), XmScale(2),
XmScreen(2), XmScrollBar(2), XmScrolledWindow(2),
XmSelectionBox(2), XmSeparator(2),
XmSeparatorGadget(2), XmSpinBox(2),
XmSimpleSpinBox(2), XmText(2), XmTextField(2),
XmToggleButton(2), XmToggleButtonGadget(2).

XmIsTraversable Motif Functions and Macros

216 Motif Reference Manual

Name
XmIsTraversable – determine whether or not a widget can receive the keyboard
focus.

Synopsis
Boolean XmIsTraversable (Widget widget)

Inputs
widget Specifies the widget whose traversability state is to be returned.

Returns
True if widget is eligible to receive the keyboard focus or False otherwise.

Availability
Motif 1.2 and later.

Description
XmIsTraversable() determines whether or not the specified widget can
receive the keyboard focus. The routine returns True if the widget is eligible to
receive the keyboard focus; otherwise it returns False.

Usage
In order for a widget to receive the keyboard focus, it and all of its ancestors must
not be in the process of being destroyed and they must be sensitive to input. The
widget and its ancestors must also have their XmNtraversalOn resources set to
True. If the widget is viewable, which means that it and its ancestors are man-
aged, mapped, and realized and some part of the widget is visible, then the
widget is eligible to receive the keyboard focus. A fully-obscured widget is not
eligible to receive the focus unless part of it is within the work area of a Scrolled-
Window with an XmNscrollingPolicy of XmAUTOMATIC that has an XmNtra-
verseObscuredCallback.

Primitive widgets and gadgets can receive the keyboard focus, while most man-
ager widgets cannot, even if they have traversable children. However, some man-
agers may be eligible to receive the keyboard focus under certain conditions. For
example, a DrawingArea can receive the keyboard focus if it meets the condi-
tions above and it does not have any children with the XmNtraversalOn resource
set to True.

See Also
XmGetFocusWidget(1), XmGetTabGroup(1), XmGetVisibility(1),
XmProcessTraversal(1), XmManager(2), XmScrolledWindow(2).

Motif Functions and Macros XmListAddItem

Motif Reference Manual 217

Name
XmListAddItem, XmListAddItems – add an item/items to a list.

Synopsis
#include <Xm/List.h>

void XmListAddItem (Widget widget, XmString item, int position)
void XmListAddItems (Widget widget, XmString *items, int item_count, int
position)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be added.
items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.
position Specifies the position at which to add the new item(s).

Description
XmListAddItem() inserts the specified item into the list, while XmListAd-
dItems() inserts the specified list of items. If item_count is smaller than the
number of items, only the first item_count items of the array are added. The posi-
tion argument specifies the location of the new item(s) in the list. A position
value of 1 indicates the first item, a position value of 2 indicates the second item,
and so on. A value of 0 (zero) specifies the last item in the list. An inserted item
appears selected if it matches an item in the XmNselectedItems list.

Usage
XmListAddItem() and XmListAddItems() are convenience routines that
allow you to add items to a list. The routines add items to the list by internally
manipulating the arrays of compound strings specified by the XmNitems,
XmNitemCount, XmNselectedItems, and XmNselectedItemCount resources. If
an item being added to the list duplicates an item that is already selected, the new
item appears as selected. You should only use these routines if the list supports
multiple selections and you want to select the new items whose duplicates are
already selected. In order to add items with these routines, you have to create a
compound string for each item.

See Also
XmListAddItemUnselected(1), XmListReplaceItems(1),
XmListReplaceItemsPos(1),
XmListReplaceItemsPosUnselected(1),
XmListReplacePositions(1), XmList(2).

XmListAddItemUnselected Motif Functions and Macros

218 Motif Reference Manual

Name
XmListAddItemUnselected, XmListAddItemsUnselected – add an item/items to
a list.

Synopsis
#include <Xm/List.h>

void XmListAddItemUnselected (Widget widget, XmString item, int position)
void XmListAddItemsUnselected (Widget widget, XmString *items, int
item_count, int position)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be added.
items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.
position Specifies the position at which to add the new item(s).

Availability
XmListAddItemsUnselected() is only available in Motif 1.2 and later.

Description
XmListAddItemUnselected() inserts the specified item into the list, while
XmListAddItemsUnselected() inserts the specified list of items. If
item_count is smaller than the number of items, only the first item_count items of
the array are added. The position argument specifies the location of the new
item(s) in the list. A position value of 1 indicates the first item, a position value
of 2 indicates the second item, and so on. A value of 0 (zero) specifies the last
item in the list. An inserted item does not appear selected, even if it matches an
item in the XmNselectedItems list.

Usage
XmListAddItemUnselected() and XmListAddItemsUnselected()
are convenience routines that allow you to add items to a list. These routines add
items to the list by internally manipulating the array of compound strings speci-
fied by the XmNitems and XmNitemCount resources. If an item being added to
the list duplicates an item that is already selected, the new item does not appear
as selected. In order to add items with these routines, you have to create a com-
pound string for each item.

Example
The following callback routine shows how to use of XmListAddItemUnse-
lected() to insert an item into a list in alphabetical order:

void add_item (Widget text_w,

Motif Functions and Macros XmListAddItemUnselected

Motif Reference Manual 219

XtPointer client_data,
XtPointer call_data)

{
char *text, *newtext = XmTextFieldGetString
(text_w);
XmString str, *strlist;
int u_bound, l_bound = 0;
Widget list_w = (Widget) client_data;

/* newtext is the text typed in the TextField
widget */
if (!newtext || !*newtext) {

XtFree (newtext);
return;

}

/* get the current entries (and number of entries)
from the List */
XtVaGetValues (list_w, XmNitemCount, &u_bound,

XmNitems, &strlist, NULL);

u_bound--;

/* perform binary search */
while (u_bound >= l_bound) {

int i = l_bound + (u_bound - l_bound)/2;

text = (char *) XmStringUnparse (strlist[i],
NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

if (!text)
break;

if (strcmp (text, newtext) > 0)
u_bound = i-1;

else
l_bound = i+1;

XtFree (text);
}

/* insert item at appropriate location */

XmListAddItemUnselected Motif Functions and Macros

220 Motif Reference Manual

str = XmStringCreateLocalized (newtext);
XmListAddItemUnselected (list_w, str, l_bound+1);
XmStringFree (str);
XtFree (newtext);

}

See Also
XmListAddItem(1), XmListReplaceItems(1),
XmListReplaceItemsPos(1),
XmListReplaceItemsPosUnselected(1),
XmListReplaceItemsUnselected(1),
XmListReplacePositions(1), XmList(2).

Motif Functions and Macros XmListDeleteAllItems

Motif Reference Manual 221

Name
XmListDeleteAllItems – delete all of the items from a list.

Synopsis
#include <Xm/List.h>

void XmListDeleteAllItems (Widget widget)
Inputs

widget Specifies the List widget.

Description
XmListDeleteAllItems() removes all of the items from the specified List
widget.

Usage
XmListDeleteAllItems() is a convenience routine that allows you to
remove all of the items from a list. The routine removes items from the list by
internally manipulating the array of compound strings specified by the
XmNitems and XmNitemCount resources.

See Also
XmListDeleteItem(1), XmListDeleteItemsPos(1),
XmListDeletePos(1), XmListDeletePositions(1), XmList(2).

XmListDeleteItem Motif Functions and Macros

222 Motif Reference Manual

Name
XmListDeleteItem, XmListDeleteItems – delete an item/items from a list.

Synopsis
#include <Xm/List.h>

void XmListDeleteItem (Widget widget, XmString item)
void XmListDeleteItems (Widget widget, XmString *items, int item_count)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be deleted.
items Specifies a list of items that are to be deleted.
item_count Specifies the number of items to be deleted.

Description
XmListDeleteItem()1 removes the first occurrence of the specified item
from the list, while XmListDeleteItems() removes the first occurrence of
each of the elements of items. If an item does not exist, a warning message is dis-
played.

Usage
XmListDeleteItem() and XmListDeleteItems() are convenience rou-
tines that allow you to remove items from a list. The routines remove items from
the list by internally manipulating the array of compound strings specified by the
XmNitems and XmNitemCount resources. If there is more than one occurrence
of an item in the list, the routines only remove the first occurrence. In order to
remove items with these routines, you have to create a compound string for each
item. The routines use a linear search to locate the items to be deleted.

See Also
XmListDeleteAllItems(1), XmListDeleteItemsPos(1),
XmListDeletePos(1), XmListDeletePositions(1), XmList(2).

1.Erroneously given as ListDeleteItem() in 1st and 2nd editions.

Motif Functions and Macros XmListDeleteItemsPos

Motif Reference Manual 223

Name
XmListDeleteItemsPos – delete items starting at a specified position from a list.

Synopsis
#include <Xm/List.h>

void XmListDeleteItemsPos (Widget widget, int item_count, int position)
Inputs

widget Specifies the List widget.
item_count Specifies the number of items to be deleted.
position Specifies the position from which to delete items.

Description
XmListDeleteItemsPos() removes item_count items from the list, starting
at the specified position. A position value of 1 indicates the first item, a position
value of 2 indicates the second item, and so on. If the number of items between
position and the end of the list is less than item_count, the routine deletes all of
the items up through the last item in the list.

Usage
XmListDeleteItemsPos() is a convenience routine that allows you to
remove items from a list. The routine removes items from the list by internally
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. Since you are specifying the position of the items to
be removed, you do not have to create compound strings for the items. The rou-
tine does not have to search for the items, so it avoids the linear search that is
used by XmListDeleteItems().

See Also
XmListDeleteAllItems(1), XmListDeleteItem(1),
XmListDeletePos(1), XmListDeletePositions(1), XmList(2).

XmListDeletePos Motif Functions and Macros

224 Motif Reference Manual

Name
XmListDeletePos – delete an item at the specified position from a list.

Synopsis
#include <Xm/List.h>

void XmListDeletePos (Widget widget, int position)
Inputs

widget Specifies the List widget.
position Specifies the position from which to delete an item.

Description
XmListDeletePos() removes the item at the specified position from the list.
A position value of 1 indicates the first item, a position value of 2 indicates the
second item, and so on. A value of 0 (zero) specifies the last item in the list. If the
list does not have the specified position, a warning message is displayed.

Usage
XmListDeletePos() is a convenience routine that allows you to remove an
item from a list. The routine removes items from the list by internally manipulat-
ing the array of compound strings specified by the XmNitems and XmNitem-
Count resources. Since you are specifying the position of the item to be removed,
you do not have to create a compound string for the item. The routine does not
have to search for the item, so it avoids the linear search that is used by
XmListDeleteItem().

See Also
XmListDeleteAllItems(1), XmListDeleteItem(1),
XmListDeleteItemsPos(1), XmListDeletePositions(1),
XmList(2).

Motif Functions and Macros XmListDeletePositions

Motif Reference Manual 225

Name
XmListDeletePositions – delete items at the specified positions from a list.

Synopsis
#include <Xm/List.h>

void XmListDeletePositions (Widget widget, int *position_list, int
position_count)

Inputs
widget Specifies the List widget.
position_list Specifies a list of positions from which to delete items.
position_count Specifies the number of positions to be deleted.

Availability
Motif 1.2 and later.

Description
XmListDeletePositions() removes the items that appear at the positions
specified in position_list from the list. A position value of 1 indicates the first
item, a value of 2 indicates the second item, and so on. If the list does not have
the specified position, a warning message is displayed. If position_count is
smaller than the number of positions in position_list, only the first position_count
items of the array are deleted.

Usage
XmListDeletePositions() is a convenience routine that allows you to
remove items from a list. The routine remove the items by modifying the
XmNitems and XmNitemCount resources. Since you are specifying the positions
of the items to be removed, you do not have to create compound strings for the
items. The routine does not have to search for the items, so it avoids the linear
search that is used by XmListDeleteItems().

See Also
XmListDeleteAllItems(1), XmListDeleteItem(1),
XmListDeleteItemsPos(1), XmListDeletePos(1), XmList(2).

XmListDeselectAllItems Motif Functions and Macros

226 Motif Reference Manual

Name
XmListDeselectAllItems – deselect all items in a list.

Synopsis
#include <Xm/List.h>

void XmListDeselectAllItems (Widget widget)
Inputs

widget Specifies the List widget.

Description
XmListDeselectAllItems() unhighlights all of the selected items in the
specified widget and removes these items from the XmNselectedItems list. If the
list is in normal mode, the item with the keyboard focus remains selected; if the
list is in add mode, all of the items are deselected.

Usage
XmListDeselectAllItems() is a convenience routine that allows you to
deselect all of the items in a list. The routine deselects items in the list by inter-
nally manipulating the array of compound strings specified by the XmNselecte-
dItems and XmNselectedItemCount resources. This routine does not invoke any
selection callbacks for the list when the items are deselected.

See Also
XmListDeselectItem(1), XmListDeselectPos(1),
XmListSelectItem(1), XmListSelectPos(1),
XmListUpdateSelectedList(1), XmList(2).

Motif Functions and Macros XmListDeselectItem

Motif Reference Manual 227

Name
XmListDeselectItem – deselect an item from a list.

Synopsis
#include <Xm/List.h>

void XmListDeselectItem (Widget widget, XmString item)
Inputs

widget Specifies the List widget.
item Specifies the item that is to be deselected.

Description
XmListDeselectItem() unhighlights and removes from the XmNselecte-
dItems list the first occurrence of the specified item.

Usage
XmListDeselectItem() is a convenience routine that allows you to deselect
an item in a list. The routine deselects items in the list by internally manipulating
the array of compound strings specified by the XmNselectedItems and XmNse-
lectedItemCount resources. This routine does not invoke any selection callbacks
for the list when the item is deselected. If there is more than one occurrence of an
item in the list, the routine only deselects the first occurrence. In order to deselect
an item with this routine, you have to create a compound string for the item. The
routine uses a linear search to locate the item to be deselected.

See Also
XmListDeselectAllItems(1), XmListDeselectPos(1),
XmListSelectItem(1), XmListSelectPos(1),
XmListUpdateSelectedList(1), XmList(2).

XmListDeselectPos Motif Functions and Macros

228 Motif Reference Manual

Name
XmListDeselectPos – deselect an item at the specified position from a list.

Synopsis
#include <Xm/List.h>

void XmListDeselectPos (Widget widget, int position)
Inputs

widget Specifies the List widget.
position Specifies the position at which to deselect an item.

Description
XmListDeselectPos() unhighlights the item at the specified position in the
list and removes the item from the XmNselectedItems list. A position value of 1
indicates the first item, a position value of 2 indicates the second item, and so on.
A value of 0 (zero) specifies the last item in the list. If the list does not have the
specified position, the routine does nothing.

Usage
XmListDeselectPos() is a convenience routine that allows you to deselect
an item in a list. The routine deselects items in the list by internally manipulating
the array of compound strings specified by the XmNselectedItems and XmNse-
lectedItemCount resources. This routine does not invoke any selection callbacks
for the list when the item is deselected. Since you are specifying the position of
the item to be deselected, you do not have to create a compound string for the
item. The routine does not have to search for the item, so it avoids the linear
search that is used by XmListDeselectItem().

See Also
XmListDeselectAllItems(1), XmListDeselectPos(1),
XmListGetSelectedPos(1), XmListPosSelected(1),
XmListSelectItem(1), XmListSelectPos(1),
XmListUpdateSelectedList(1), XmList(2).

Motif Functions and Macros XmListGetKbdItemPos

Motif Reference Manual 229

Name
XmListGetKbdItemPos – get the position of the item in a list that has the location
cursor.

Synopsis
#include <Xm/List.h>

int XmListGetKbdItemPos (Widget widget)
Inputs

widget Specifies the List widget.
Returns

The position of the item that has the location cursor.

Availability
Motif 1.2 and later.

Description
XmListGetKbdItemPos() retrieves the position of the item in the specified
List widget that has the location cursor. A returned value of 1 indicates the first
item, a value of 2 indicates the second item, and so on. The value 0 (zero) speci-
fies that the list is empty.

Usage
XmListGetKbdItemPos() provides a way to determine which item in a list
has the keyboard focus. This information is useful if you need to perform actions
based on the position of the location cursor in the list.

See Also
XmListSetAddMode(1), XmListSetKbdItemPos(1), XmList(2).

XmListGetMatchPos Motif Functions and Macros

230 Motif Reference Manual

Name
XmListGetMatchPos – get all occurrences of an item in a list.

Synopsis
#include <Xm/List.h>

Boolean XmListGetMatchPos (Widget widget, XmString item, int
**position_list, int *position_count)

Inputs
widget Specifies the List widget.
item Specifies the item whose positions are to be retrieved.

Outputs
position_list Returns a list of the positions of the item.
position_count Returns the number of items in position_list.

Returns
True if the item is in the list or False otherwise.

Description
XmListGetMatchPos() determines whether the specified item exists in the
list. If the list contains item, the routine returns True and position_list returns a
list of positions that specify the location(s) of the item. A position value of 1 indi-
cates the first item, a position value of 2 indicates the second item, and so on.
XmListGetMatchPos() allocates storage for the position_list array when the
item is found; the application is responsible for freeing this storage using
XtFree(). If the list does not contain item, the routine returns False, and
position_count is set to zero. In Motif 1.2.3 and earlier, the value of position_list
is undefined if item is not within the list. From Motif 1.2.4 and later, position_list
is set to NULL.

Usage
XmListGetMatchPos() is a convenience routine that provides a way to locate
all of the occurrences of an item in a list. Alternatively, you could obtain this
information yourself using the XmNitems resource and XmListItemPos().

Example
The following code fragments show the use of XmListGetMatchPos():

Widget list_w;
int *pos_list;
int pos_cnt, i;
char *choice = "A Sample Text String";
XmString str = XmStringCreateLocalized (choice);

Motif Functions and Macros XmListGetMatchPos

Motif Reference Manual 231

if (!XmListGetMatchPos (list_w, str, &pos_list,
&pos_cnt))

XtWarning ("Can’t get items in list");
else {

printf ("%s exists at %d positions:", choice,
pos_cnt);

for (i = 0; i < pos_cnt; i++)
printf (" %d", pos_list[i]);

puts ("");

XtFree (pos_list);
}

XmStringFree (str);

See Also
XmListGetSelectedPos(1), XmList(2).

XmListGetSelectedPos Motif Functions and Macros

232 Motif Reference Manual

Name
XmListGetSelectedPos – get the positions of the selected items in a list.

Synopsis
#include <Xm/List.h>

Boolean XmListGetSelectedPos (Widget widget, int **position_list, int
*position_count)

Inputs
widget Specifies the List widget.

Outputs
position_list Returns a list of the positions of the selected items.
position_count Returns the number of items in position_list.

Returns
True if there are selected items in the list or False otherwise.

Description
XmListGetSelectedPos() determines whether there are any selected items
in the list. If the list has selected items, the routine returns True and position_list
returns a list of positions that specify the location(s) of the items. A position
value of 1 indicates the first item, a position value of 2 indicates the second item,
and so on. XmListGetSelectedPos() allocates storage for the position_list
array when there are selected items; the application is responsible for freeing this
storage using XtFree(). If the list does not contain any selected items, the routine
returns False and position_count is set to zero. In Motif 1.2.3 and earlier, the
value of position_list is undefined if there are no selected items within the list.
From Motif 1.2.4 and later, position_list is set to NULL.

Usage
XmListGetSelectedPos() is a convenience routine that provides a way to
determine the positions of all of the selected items in a list. Alternatively, you
could obtain this information yourself using the XmNselectedItems resource and
XmListItemPos().

See Also
XmListGetMatchPos(1), XmList(2).

Motif Functions and Macros XmListItemExists

Motif Reference Manual 233

Name
XmListItemExists – determine if a specified item is in a list.

Synopsis
#include <Xm/List.h>

Boolean XmListItemExists (Widget widget, XmString item)
Inputs

widget Specifies the List widget.
item Specifies the item whose presence in the list is checked.

Returns
True if the item is in the list or False otherwise.

Description
XmListItemExists() determines whether the list contains the specified item.
The routine returns True if the item is present and False if it is not.

Usage
XmListItemExists() is a convenience routine that determines whether or
not an item is in a list. In order to use the routine, you have to create a compound
string for the item. The routine uses a linear search to locate the item. You may
be able to obtain this information more effectively by searching the XmNitems
list using your own search procedure.

See Also
XmListGetMatchPos(1), XmListItemPos(1), XmList(2).

XmListItemPos Motif Functions and Macros

234 Motif Reference Manual

Name
XmListItemPos – return the position of an item in a list.

Synopsis
#include <Xm/List.h>

int XmListItemPos (Widget widget, XmString item)
Inputs

widget Specifies the List widget.
item Specifies the item whose position is returned.

Returns
The position of the item in the list or 0 (zero) if the item is not in the list.

Description
XmListItemPos() returns the position of the first occurrence of the specified
item in the list. A position value of 1 indicates the first item, a position value of 2
indicates the second item, and so on. If item is not in the list, XmListItem-
Pos() returns 0 (zero).

Usage
XmListItemPos() is a convenience routine that finds the position of an item in
a list. If there is more than one occurrence of the item in the list, the routine only
returns the position of the first occurrence. In order to use the routine, you have
to create a compound string for the item. The routine uses a linear search to
locate the item.

Example
The following routines show how to make sure that a given item in a list is visi-
ble:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition,
&top,

XmNvisibleItemCount,
&visible,

NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

Motif Functions and Macros XmListItemPos

Motif Reference Manual 235

}

void MakeItemVisible (Widget list_w, XmString item)
{

int item_no = XmListItemPos (list_w, item);

if (item_no > 0)
MakePosVisible (list_w, item_no);

}

See Also
XmListItemExists(1), XmListPosSelected(1), XmList(2).

XmListPosSelected Motif Functions and Macros

236 Motif Reference Manual

Name
XmListPosSelected – check if the item at a specified position is selected in a list.

Synopsis
#include <Xm/List.h>

Boolean XmListPosSelected (Widget widget, int position)
Inputs

widget Specifies the List widget.
position Specifies the position that is checked.

Returns
True if the item is selected or False if the item is not selected or the position is
invalid.

Availability
Motif 1.2 and later.

Description
XmListPosSelected() determines whether or not the list item at the speci-
fied position is selected. A position value of 1 indicates the first item, a position
value of 2 indicates the second item, and so on. The value 0 (zero) specifies the
last item in the list. The routine returns True if the list item is selected. It returns
False if the item is not selected or the list does not have the specified position.

Usage
XmListPosSelected() is a convenience routine that lets you check if an item at a
particular position is selected. Alternatively, you could check the list of positions
returned by XmListGetSelectedPos() to see if the item at a position is
selected.

See Also
XmListDeselectPos(1), XmListGetSelectedPos(1),
XmListSelectPos(1), XmListUpdateSelectedList(1), XmList(2).

Motif Functions and Macros XmListPosToBounds

Motif Reference Manual 237

Name
XmListPosToBounds – return the bounding box of an item at the specified posi-
tion in a list.

Synopsis
#include <Xm/List.h>

Boolean XmListPosToBounds (Widget widget,
int position,
Position *x,
Position *y,
Dimension *width,
Dimension *height)

Inputs
widget Specifies the List widget.
position Specifies the position of the item for which to return the bounding
box.

Outputs
x Returns the x-coordinate of the bounding box for the item.
y Returns the y-coordinate of the bounding box for the item.
width Returns the width of the bounding box for the item.
height Returns the height of the bounding box for the item.

Returns
True if item at the specified position is visible or False otherwise.

Availability
Motif 1.2 and later.

Description
XmListPosToBounds() returns the bounding box of the item at the specified
position in the list. A position value of 1 indicates the first item, a position value
of 2 indicates the second item, and so on. A value of 0 (zero) specifies the last
item in the list. The routine returns the x and y coordinates of the upper left corner
of the bounding box in relation to the upper left corner of the List widget.
XmListPosToBounds() also returns the width and height of the bounding
box. Passing a NULL value for any of the x, y, width, or height parameters indi-
cates that the value for the parameter should not be returned. If the item at the
specified position is not visible, XmListPosToBounds() returns False and the
return values are undefined.

XmListPosToBounds Motif Functions and Macros

238 Motif Reference Manual

Usage
XmListPosToBounds() provides a way to determine the bounding box of an
item in a list. This information is useful if you want to perform additional event
processing or draw special graphics for the list item.

See Also
XmListYToPos(1), XmList(2).

Motif Functions and Macros XmListReplaceItems

Motif Reference Manual 239

Name
XmListReplaceItems – replace specified items in a list.

Synopsis
#include <Xm/List.h>

void XmListReplaceItems (Widget widget,
XmString *old_items,
int item_count,
XmString *new_items)

Inputs
widget Specifies the List widget.
old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Description
XmListReplaceItems() replaces the first occurrence of each item in the
old_items list with the corresponding item from the new_items list. If an item in
the old_items list does not exist in the specified List widget, the corresponding
item in new_items1 is skipped. If item_count is smaller than the number of
old_items or new_items, only the first item_count items are replaced. A new item
appears selected if it matches an item in the XmNselectedItems list.

Usage
XmListReplaceItems() is a convenience routine that allows you to replace
particular items in a list. The routine replaces items by manipulating the array of
compound strings specified by the XmNitems and XmNitemCount resources. If a
new item duplicates an item that is already selected, the new item appears as
selected. You should only use this routine if the list supports multiple selections
and you want to select the new items whose duplicates are already selected. In
order to replace items with this routine, you have to create compound strings for
all of the old and new items. The routine uses a linear search to locate the items to
be replaced.

See Also
XmListAddItem(1), XmListAddItemUnselected(1),
XmListReplaceItemsPos(1),
XmListReplaceItemsPosUnselected(1),
XmListReplaceItemsUnselected(1),
XmListReplacePositions(1), XmList(2).

1.Erroneously given as new_list in 1st and 2nd edition.

XmListReplaceItemsPos Motif Functions and Macros

240 Motif Reference Manual

Name
XmListReplaceItemsPos – replace specified items in a list.

Synopsis
#include <Xm/List.h>

void XmListReplaceItemsPos (Widget widget, XmString *new_items, int
item_count, int position)

Inputs
widget Specifies the List widget.
new_items Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.

Description
XmListReplaceItemsPos() replaces a consecutive number of items in the
list with items from the new_items list. The first item that is replaced is located at
the specified position and each subsequent item is replaced by the corresponding
item from new_items. A position value of 1 indicates the first item, a position
value of 2 indicates the second item, and so on. If item_count is smaller than the
number of new_items, only the first item_count items are replaced. If the number
of items between position and the end of the list is less than item_count, the rou-
tine replaces all of the items up through the last item in the list. A new item
appears selected if it matches an item in the XmNselectedItems list.

Usage
XmListReplaceItemsPos() is a convenience routine that allows you to
replace a contiguous sequence of items in a list. The routine replaces items by
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine if the
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, you
have to create compound strings for all of the new items. The routine does not
have to search for the items, so it avoids the linear searches that are used by
XmListReplaceItems().

See Also
XmListAddItem(1), XmListAddItemUnselected(1),
XmListReplaceItems(1),
XmListReplaceItemsPosUnselected(1),
XmListReplaceItemsUnselected(1),
XmListReplacePositions(1), XmList(2).

Motif Functions and Macros XmListReplaceItemsPosUnselected

Motif Reference Manual 241

Name
XmListReplaceItemsPosUnselected – replace specified items in a list.

Synopsis
#include <Xm/List.h>

void XmListReplaceItemsPosUnselected (Widget widget,
XmString *new_items,
int item_count,
int position)

Inputs
widget Specifies the List widget.
new_items Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.

Availability
Motif 1.2 and later.

Description
XmListReplaceItemsPosUnselected() replaces a consecutive number
of items in the list with items from the new_items list. The first item that is
replaced is located at the specified position and each subsequent item is replaced
by the corresponding item from new_items. A position value of 1 indicates the
first item, a position value of 2 indicates the second item, and so on. If
item_count is smaller than the number of new_items, only the first item_count
items are replaced. If the number of items between position and the end of the list
is less than item_count, the routine replaces all of the items up through the last
item in the list. A new item does not appear selected, even if it matches an item in
the XmNselectedItems list.

Usage
XmListReplaceItemsPosUnselected() is a convenience routine that
allows you to replace a contiguous sequence of items in a list. The routine
replaces items by modifying the array of compound strings specified through the
XmNitems and XmNitemCount resources. If a new item duplicates an item that
is already selected, the new item does not appear as selected. In order to replace
items with this routine, you have to create compound strings for all of the new
items. The routine does not have to search for the items, so it avoids the linear
searches that are used by XmListReplaceItemsUnselected().

XmListReplaceItemsPosUnselected Motif Functions and Macros

242 Motif Reference Manual

See Also
XmListAddItem(1), XmListAddItemUnselected(1),
XmListReplaceItems(1), XmListReplaceItemsPos(1),
XmListReplaceItemsUnselected(1),
XmListReplacePositions(1), XmList(2).

Motif Functions and Macros XmListReplaceItemsUnselected

Motif Reference Manual 243

Name
XmListReplaceItemsUnselected – replace specified items in a list.

Synopsis
#include <Xm/List.h>

void XmListReplaceItemsUnselected (Widget widget,
XmString *old_items,
int item_count,
XmString *new_items)

Inputs
widget Specifies the List widget.
old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Availability
Motif 1.2 and later.

Description
XmListReplaceItemsUnselected() replaces the first occurrence of each
item in the old_items list with the corresponding item from the new_items list. If
an item in the old_items list does not exist in the specified List widget, the corre-
sponding item in new_items1 is skipped. If item_count is smaller than the number
of old_items or new_items, only the first item_count items are replaced. A new
item does not appear selected, even if it matches an item in the XmNselecte-
dItems list.

Usage
XmListReplaceItemsUnselected() is a convenience routine that allows
you to replace particular items in a list. The routine replaces items by modifying
the array of compound strings specified through the XmNitems and XmNitem-
Count resources. If a new item duplicates an item that is already selected, the
new item does not appear as selected. In order to replace items with this routine,
you have to create compound strings for all of the old and new items. The routine
uses a linear search to locate the items to be replaced.

See Also
XmListAddItem(1), XmListAddItemUnselected(1),
XmListReplaceItems(1), XmListReplaceItemsPos(1),
XmListReplaceItemsPosUnselected(1),

1.Erroneously given as new_list in 1st and 2nd editions.

XmListReplaceItemsUnselected Motif Functions and Macros

244 Motif Reference Manual

XmListReplacePositions(1), XmList(2).

Motif Functions and Macros XmListReplacePositions

Motif Reference Manual 245

Name
XmListReplacePositions – replace items at the specified positions in a list.

Synopsis
#include <Xm/List.h>

void XmListReplacePositions (Widget widget, int *position_list, XmString
*item_list, int item_count)

Inputs
widget Specifies the List widget.
position_list Specifies a list of positions at which to replace items.
item_list Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.

Availability
Motif 1.2 and later.

Description
XmListReplacePositions() replaces the items that appear at the positions
specified in position_list with the corresponding items from item_list. A position
value of 1 indicates the first item, a value of 2 indicates the second item, and so
on. If the list does not have the specified position, a warning message is dis-
played. If item_count is smaller than the number of positions in position_list,
only the first item_count items are replaced. A new item appears selected if it
matches an item in the XmNselectedItems list.

Usage
XmListReplacePositions() is a convenience routine that allows you to
replace items at particular positions in a list. The routine replaces items by modi-
fying the array of compound strings specified through the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine if the
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, you
have to create compound strings for all of the new items. The routine does not
have to search for the items, so it avoids the linear searches that are used by
XmListReplaceItems().

See Also
XmListAddItem(1), XmListAddItemUnselected(1),
XmListReplaceItems(1), XmListReplaceItemsPos(1),
XmListReplaceItemsPosUnselected(1),
XmListReplaceItemsUnselected(1), XmList(2).

XmListSelectItem Motif Functions and Macros

246 Motif Reference Manual

Name
XmListSelectItem – select an item from a list.

Synopsis
#include <Xm/List.h>

void XmListSelectItem (Widget widget, XmString item, Boolean notify)
Inputs

widget Specifies the List widget.
item Specifies the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.

Description
XmListSelectItem() highlights and selects the first occurrence of the speci-
fied item in the list. If the XmNselectionPolicy resource of the list is
XmMULTIPLE_SELECT, the routine toggles the selection state of item. For any
other selection policy, XmListSelectItem() replaces the currently selected
item(s) with item. The XmNselectedItems resource specifies the current selection
of the list. If notify is True, XmListSelectItem() invokes the selection call-
back for the current selection policy.

Usage
XmListSelectItem() is a convenience routine that allows you to select an
item in a list. The routine selects the item by modifying the array of compound
strings specified by the XmNselectedItems and XmNselectedItemCount
resources. In order to select an item with this routine, you have to create a com-
pound string for the item. The routine uses a linear search to locate the item to be
selected. XmListSelectItem() only allows you to select a single item; there are no
routines for selecting multiple items. If you need to select more than one item,
use XtSetValues() to set XmNselectedItems and XmNselectedItemCount.

The notify parameter indicates whether or not the selection callbacks for the cur-
rent selection policy are invoked. You can avoid redundant code by setting this
parameter to True. If you are calling XmListSelectItem() from a selection
callback routine, you probably want to set the parameter to False to avoid the
possibility of an infinite loop. Calling XmListSelectItem() with notify set to
True causes the callback routines to be invoked in a way that is indistinguishable
from a user-initiated selection action.

See Also
XmListDeselectAllItems(1), XmListDeselectItem(1),
XmListDeselectPos(1), XmListSelectPos(1),
XmListUpdateSelectedList(1), XmList(2).

Motif Functions and Macros XmListSelectPos

Motif Reference Manual 247

Name
XmListSelectPos – select an item at the specified position from a list.

Synopsis
#include <Xm/List.h>

void XmListSelectPos (Widget widget, int position, Boolean notify)
Inputs

widget Specifies the List widget.
position Specifies the position of the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.

Description
XmListSelectPos() highlights and selects the item at the specified position
in the list. A position value of 1 indicates the first item, a position value of 2 indi-
cates the second item, and so on. A value of 0 (zero) specifies the last item in the
list. If the XmNselectionPolicy resource of the list is XmMULTIPLE_SELECT,
the routine toggles the selection state of the item. For any other selection policy,
XmListSelectPos() replaces the currently selected item with the specified
item. The XmNselectedItems resource lists the current selection of the list. If
notify is True, XmListSelectPos() invokes the selection callback for the cur-
rent selection policy.

Usage
XmListSelectPos() is a convenience routine that allows you to select an
item at a particular position in a list. The routine selects the item by modifying
the array of compound strings specified through the XmNselectedItems and
XmNselectedItemCount resources. Since you are specifying the position of the
item to be selected, you do not have to create a compound string for the item. The
routine does not have to search for the item, so it avoids the linear search that is
used by XmListSelectItem(). XmListSelectPos() only allows you to
select a single item; there are no routines for selecting multiple items. If you need
to select more than one item, use XtSetValues() to set XmNselectedItems and
XmNselectedItemCount.

The notify parameter indicates whether or not the selection callbacks for the cur-
rent selection policy are invoked. You can avoid redundant code by setting this
parameter to True. If you are calling XmListSelectPos() from a selection callback
routine, you probably want to set the parameter to False to avoid the possibility
of an infinite loop. Calling XmListSelectPos() with notify set to True causes
the callback routines to be invoked in a way that is indistinguishable from a user-
initiated selection action.

XmListSelectPos Motif Functions and Macros

248 Motif Reference Manual

See Also
XmListDeselectAllItems(1), XmListDeselectItem(1),
XmListDeselectPos(1), XmListGetSelectedPos(1),
XmListPosSelected(1), XmListSelectItem(1), XmList(2).

Motif Functions and Macros XmListSetAddMode

Motif Reference Manual 249

Name
XmListSetAddMode – set add mode in a list.

Synopsis
#include <Xm/List.h>

void XmListSetAddMode (Widget widget, Boolean mode)
Inputs

widget Specifies the List widget.
mode Specifies whether to set add mode on or off.

Description
XmListSetAddMode() sets the state of add mode when the XmNselectionPol-
icy is XmEXTENDED_SELECT. If mode is True, add mode is turned on; if
mode is False, add mode is turned off. When a List widget is in add mode, the
user can move the location cursor without disturbing the current selection.

Usage
XmListSetAddMode() provides a way to change the state of add mode in a list.
The distinction between normal mode and add mode is only important for mak-
ing keyboard-based selections. In normal mode, the location cursor and the selec-
tion move together, while in add mode, the location cursor and the selection can
be separate.

See Also
XmListGetKbdItemPos(1), XmListSetKbdItemPos(1), XmList(2).

XmListSetBottomItem Motif Functions and Macros

250 Motif Reference Manual

Name
XmListSetBottomItem – set the last visible item in a list.

Synopsis
#include <Xm/List.h>

void XmListSetBottomItem (Widget widget, XmString item)
Inputs

widget Specifies the List widget.
item Specifies the item that is made the last visible item.

Description
XmListSetBottomItem() scrolls the List widget so that the first occurrence
of the specified item appears as the last visible item in the list.

Usage
XmListSetBottomItem() provides a way to make sure that a particular item
is visible in a list. The routine changes the viewable portion of the list so that the
specified item is displayed at the bottom of the viewport. If there is more than one
occurrence of the item in the list, the routine uses the first occurrence. In order to
use this routine, you have to create a compound string for the item. The routine
uses a linear search to locate the item.

See Also
XmListSetBottomPos(1), XmListSetHorizPos(1),
XmListSetItem(1), XmListSetPos(1), XmList(2).

Motif Functions and Macros XmListSetBottomPos

Motif Reference Manual 251

Name
XmListSetBottomPos – set the last visible item in a list.

Synopsis
#include <Xm/List.h>

void XmListSetBottomPos (Widget widget, int position)
Inputs

widget Specifies the List widget.
position Specifies the position of the item that is made the last visible item.

Description
XmListSetBottomPos() scrolls the List widget so that the item at the speci-
fied position appears as the last visible item in the list. A position value of 1 indi-
cates the first item, a position value of 2 indicates the second item, and so on. A
value of 0 (zero) specifies the last item in the list.

Usage
XmListSetBottomPos() provides a way to make sure that an item at a partic-
ular position is visible in a list. The routine changes the viewable portion of the
list so that the item at the specified position is displayed at the bottom of the
viewport. Since you are specifying the position of the item, you do not have to
create a compound string for the item. The routine does not have to search for the
item, so it avoids the linear search that is used by XmListSetBottomItem().

Example
The following routine shows how to make sure that an item at a given position in
a list is visible:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition, &top, XmNvisibleItem-
Count, &visible, NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

}

See Also
XmListSetBottomItem(1), XmListSetHorizPos(1),
XmListSetItem(1), XmListSetPos(1), XmList(2).

XmListSetHorizPos Motif Functions and Macros

252 Motif Reference Manual

Name
XmListSetHorizPos – set the horizontal position of a list.

Synopsis
#include <Xm/List.h>

void XmListSetHorizPos (Widget widget, int position)
Inputs

widget Specifies the List widget.
position Specifies the horizontal position.

Description
XmListSetHorizPos() scrolls the list to the specified horizontal position. If
XmNlistSizePolicy is set to XmCONSTANT or XmRESIZE_IF_POSSIBLE and
the horizontal scroll bar is visible, XmListSetHorizPos() sets the XmNvalue
resource of the horizontal scroll bar to the specified position and updates the vis-
ible area of the list.

Usage
When a list item is too long to fit horizontally inside the viewing area of a List
widget, the widget either expands horizontally or adds a horizontal scroll bar,
depending on the value of the XmNlistSizePolicy resource. Calling XmListSe-
tHorizPos() is equivalent to the user moving the horizontal scroll bar to the
specified location.

See Also
XmListSetBottomItem(1), XmListSetBottomPos(1),
XmListSetItem(1), XmListSetPos(1), XmList(2).

Motif Functions and Macros XmListSetItem

Motif Reference Manual 253

Name
XmListSetItem – set the first visible item in a list.

Synopsis
#include <Xm/List.h>

void XmListSetItem (Widget widget, XmString item)
Inputs

widget Specifies the List widget.
item Specifies the item that is made the first visible item.

Description
XmListSetItem() scrolls the List widget so that the first occurrence of the
specified item appears as the first visible item in the list.

Usage
XmListSetItem() provides a way to make sure that a particular item is visible
in a list. The routine changes the viewable portion of the list so that the specified
item is displayed at the top of the viewport. Using this routine is equivalent to set-
ting the XmNtopItemPosition resource. If there is more than one occurrence of
the item in the list, the routine uses the first occurrence. In order to use this rou-
tine, you have to create a compound string for the item. The routine uses a linear
search to locate the item.

See Also
XmListSetBottomItem(1), XmListSetBottomPos(1),
XmListSetHorizPos(1), XmListSetPos(1), XmList(2).

XmListSetKbdItemPos Motif Functions and Macros

254 Motif Reference Manual

Name
XmListSetKbdItemPos – set the position of the location cursor in a list.

Synopsis
#include <Xm/List.h>

Boolean XmListSetKbdItemPos (Widget widget, int position)
Inputs

widget Specifies the List widget.
position Specifies the position where the location cursor is set.

Returns
True on success or False if there is not item at position or the list is empty.

Availability
Motif 1.2 and later.

Description
XmListSetKbdItemPos() sets the location cursor at the specified position. A
position value of 1 indicates the first item, a position value of 2 indicates the sec-
ond item, and so on. A value of 0 (zero) specifies the last item in the list. The rou-
tine does not check the selection state of the item at the specified location.

Usage
XmListSetKbdItemPos() provides a way to change which item in a list has
the keyboard focus. The routine is useful if you need to make sure that particular
item has the keyboard focus at a given time, such as when the list first receives
the keyboard focus.

See Also
XmListGetKbdItemPos(1), XmListSetAddMode(1), XmList(2).

Motif Functions and Macros XmListSetPos

Motif Reference Manual 255

Name
XmListSetPos – sets the first visible item in a list.

Synopsis
#include <Xm/List.h>

void XmListSetPos (Widget widget, int position)
Inputs

widget Specifies the List widget.
position Specifies the position of the item that is made the first visible item.

Description
XmListSetPos() scrolls the List widget so that the item at the specified posi-
tion appears as the first visible item in the list. A position value of 1 indicates the
first item, a position value of 2 indicates the second item, and so on. A value of 0
(zero) specifies the last item in the list.

Usage
XmListSetPos() provides a way to make sure that an item at a particular loca-
tion is visible in a list. The routine changes the viewable portion of the list so that
the item at the specified position is displayed at the top of the viewport. Using
this routine is equivalent to setting the XmNtopItemPosition resource. Since you
are specifying the position of the item, you do not have to create a compound
string for the item. The routine does not have to search for the item, so it avoids
the linear search that is used by XmListSetItem().

Example
The following routine shows how to make sure that an item at a given position in
a list is visible:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition, &top, XmNvisibleItem-
Count, &visible, NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

}

See Also
XmListSetBottomItem(1), XmListSetBottomPos(1),

XmListSetPos Motif Functions and Macros

256 Motif Reference Manual

XmListSetHorizPos(1), XmListSetItem(1), XmList(2).

Motif Functions and Macros XmListUpdateSelectedList

Motif Reference Manual 257

Name
XmListUpdateSelectedList – update the list of selected items in a list.

Synopsis
#include <Xm/List.h>

void XmListUpdateSelectedList (Widget widget)
Inputs

widget Specified the List widget.

Availability
Motif 1.2 and later.

Description
XmListUpdateSelectedList() updates the array of compound strings
specified through the XmNselectedItems resource. The routine frees the current
selected array, and then traverses the array of compound strings specified by the
XmNitems resource, adding each currently selected item to the XmNselecte-
dItems list.

Usage
XmListUpdateSelectedList() provides a way to update the list of
selected items in a list. This routine is useful if the actual items that are selected
are not synchronized with the value of the XmNselectedItems resource. This situ-
ation might arise if you are using internal list functions and modifying internal
data structures. If you are using the defined list routines, the situation should
never occur.

See Also
XmListDeselectAllItems(1), XmListDeselectItem(1),
XmListDeselectPos(1), XmListGetSelectedPos(1),
XmListPosSelected(1), XmListSelectItem(1),
XmListSelectPos(1), XmList(2).

XmListYToPos Motif Functions and Macros

258 Motif Reference Manual

Name
XmListYToPos – get the position of the item at the specified y-coordinate in a
list.

Synopsis
#include <Xm/List.h>

int XmListYToPos (Widget widget, Position y)
Inputs

widget Specifies the List widget.
y Specifies the y-coordinate.

Returns
The position of the item at the specified y-coordinate.

Availability
Motif 1.2 and later.

Description
XmListYToPos() retrieves the position of the item at the specified y-coordinate
in the list. The y-coordinate is specified in the coordinate system of the list. A
returned value of 1 indicates the first item, a value of 2 indicates the second item,
and so on. The value 0 (zero) specifies that there is no item at the specified loca-
tion.

As of Motif 1.2, a return value of 0 (zero) indicates the first item, a value of 1
indicates the second item, and so on. In Motif 1.2.3 and earlier, the value that is
returned may not be a valid position in the list, so an application should check the
value with respect to the value of XmNitemCount before using it. In Motif 1.2.4
and later, the returned position may not exceed the value of XmNitemCount.

Usage
XmListYToPos() provides a way to translate a y-coordinate into a list position.
This routine is useful if you are processing events that report a pointer position
and you need to convert the location of the event into an item position.

See Also
XmListPosToBounds(1), XmList(2).

Motif Functions and Macros XmMainWindowSep1

Motif Reference Manual 259

Name
XmMainWindowSep1, XmMainWindowSep2, XmMainWindowSep3 – get the
widget ID of a MainWindow Separator.

Synopsis
#include <Xm/MainW.h>

Widget XmMainWindowSep1 (Widget widget)
Widget XmMainWindowSep2 (Widget widget)
Widget XmMainWindowSep3 (Widget widget)

Inputs
widget Specifies the MainWindow widget.

Returns
The widget ID of the particular MainWindow Separator.

Availability
In Motif 2.0 and later, these routines are marked as deprecated.

Description
XmMainWindowSep1() returns the widget ID of the MainWindow widget’s
first Separator, which is located directly below the MenuBar.
XmMainWindowSep2() returns the widget ID of the second Separator in the
Main Window, which is between the Command and ScrolledWindow widgets.
XmMainWindowSep3() returns the widget ID of the MainWindow’s third Sep-
arator, which is located just above the message window. The three Separator
widgets in a MainWindow are visible only when the XmNshowSeparator
resource is set to True.

Usage
XmMainWindowSep1(), XmMainWindowSep2(), and
XmMainWindowSep3() provide access to the three Separator widgets that can
be displayed by a MainWindow widget. With the widget IDs, you can change the
visual attributes of the individual Separators.

In Motif 2.0 and later, the function XtNameToWidget() is the preferred
method of obtaining the MainWindow components. You should pass widget as
the first parameter, and "Separator1", "Separator2", or "Separator3" as the second
parameter to this procedure.

See Also
XmMainWindowSetAreas(1), XmMainWindow(2),
XmScrolledWindow(2).

XmMainWindowSetAreas Motif Functions and Macros

260 Motif Reference Manual

Name
XmMainWindowSetAreas – specify the children for a MainWindow.

Synopsis
#include <Xm/MainW.h>

void XmMainWindowSetAreas (Widget widget,
Widget menu_bar,
Widget command_window,
Widget horizontal_scrollbar,
Widget vertical_scrollbar,
Widget work_region)

Inputs
widget Specifies the MainWindow widget.
menu_bar Specifies the widget ID of the MenuBar.
command_window Specifies the widget ID of the command window.
horizontal_scrollbar Specifies the widget ID of the horizontal ScrollBar.
vertical_scrollbar Specifies the widget ID of the vertical ScrollBar.
work_region Specifies the widget ID of the work window.

Availability
In Motif 2.0 and later, the procedure is marked as deprecated.

Description
XmMainWindowSetAreas() sets up the standard regions of the MainWindow
widget for an application. The MainWindow must be created before the routine is
called. XmMainWindowSetAreas() specifies the MenuBar, the work window,
the command window, and the horizontal and vertical ScrollBars for the Main-
Window. If an application does not have one of these regions, the corresponding
argument can be specified as NULL. Each region may have child widgets, and
this routine determines which of those children will be actively managed by the
MainWindow.

Usage
Each of the MainWindow regions is associated with a MainWindow resource;
XmMainWindowSetAreas() sets the associated resources. The associated
resources that correspond to the last five arguments to the routine are XmNmenu-
Bar, XmNcommand, XmNhorizontalScrollBar, XmNverticalScrollBar, and
XmNworkWindow. XmMainWindowSetAreas() does not provide a way to
set up the message area; this region must be set up by specifying the XmNmes-
sageWindow resource.

Motif Functions and Macros XmMainWindowSetAreas

Motif Reference Manual 261

If an application does not call XmMainWindowSetAreas(), the widget may
still set some of the standard regions. When a MenuBar child is added to a Main-
Window, if XmNmenuBar has not been set, it is set to the MenuBar child. When
a Command child is added to a MainWindow, if XmNcommand has not been set,
it is set to the Command child. If ScrollBars are added as children, the XmNhori-
zontalScrollBar and XmNverticalScrollBar resources may be set if they have not
already been specified. Any child that is not one of these types is used for the
XmNworkWindow. If you want to be certain about which widgets are used for
the different regions, it is wise to call XmMainWindowSetAreas() explicitly.

In Motif 2.0 and later, XmMainWindowSetAreas(), is deprecated. The pro-
grammer should use XtSetValues() in order to specify the XmNcommand-
Window, XmNmenuBar, XmNworkWindow, XmNhorizontalScrollBar, and
XmNverticalScrollBar resources of the MainWindow. XmMainWindowSe-
tAreas() does not handle the XmNmessageWindow resource in any case.

Example
The following code fragment shows how to set some of the regions of a Main-
Window:

Widget top, main_w, menubar, command_w, text_w, scrolled_text_w;
Arg args[4];

main_w = XtVaCreateManagedWidget("main_w", xmMainWindowWidget-
Class, top, NULL);
menubar = XmCreateMenuBar (main_w, "menubar", NULL, 0);
XtManageChild (menubar);

XtSetArg (args[0], XmNrows, 24);
XtSetArg (args[1], XmNcolumns, 80);
XtSetArg (args[2], XmNeditable, False);
XtSetArg (args[3], XmNeditMode, XmMULTI_LINE_EDIT);
text_w = XmCreateScrolledText (main_w, "text_w", args, 4);
XtManageChild (text_w);

scrolled_text_w = XtParent (text_w);
command_w = XmCreateText (main_w, "command_w", (Arg *) 0, 0);
XtManageChild (command_w);

#if (XmVERSION > 1)
XtVaSetValues (main_w,

XmNmenuBar, menubar,
XmNcommandWindow, command_w,
XmNhorizontalScrollBar, NULL,
XmNverticalScrollBar, NULL,

XmMainWindowSetAreas Motif Functions and Macros

262 Motif Reference Manual

XmNworkWindow, scrolled_text_w,
0);

#else /* XmVERSION > 1 */
XmMainWindowSetAreas (main_w, menubar, command_w, NULL, NULL,
scrolled_text_w);
#endif /* XmVERSION > 1 */

See Also
XmMainWindowSep(1), XmMainWindow(2), XmScrolledWindow(2).

Motif Functions and Macros XmMapSegmentEncoding

Motif Reference Manual 263

Name
XmMapSegmentEncoding – get the compound text encoding format for a font
list element tag.

Synopsis
char * XmMapSegmentEncoding (char *fontlist_tag)

Inputs
fontlist_tag Specifies the compound string font list element tag.

Returns
A character string that contains a copy of the compound text encoding format or
NULL if the font list element tag is not found in the registry.

Availability
Motif 1.2 and later.

Description
XmMapSegmentEncoding() retrieves the compound text encoding format
associated with the specified fontlist_tag. The toolkit stores the mappings
between compound text encodings and font list elements tags in a registry.
XmMapSegmentEncoding() searches the registry for a compound text encod-
ing format associated with the specified fontlist_tag and returns a copy of the for-
mat. If fontlist_tag is not in the registry, the routine returns NULL.
XmMapSegmentEncoding() allocates storage for the returned character
string; the application is responsible for freeing the storage using XtFree().

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication.

XmCvtXmStringToCT() converts a compound string into compound text by
using the font list tag of each compound string segment to select a compound text
format from the registry for the segment. XmMapSegmentEncoding() pro-
vides a way for an application to determine the compound text format that would
be used for a particular font list element tag.

See Also
XmCvtXmStringToCT(1), XmRegisterSegmentEncoding(1).

XmMenuPosition Motif Functions and Macros

264 Motif Reference Manual

Name
XmMenuPosition – position a popup menu.

Synopsis
#include <Xm/RowColumn.h>

void XmMenuPosition (Widget menu, XButtonPressedEvent *event)
Inputs

menu Specifies the PopupMenu.
event Specifies the event that was passed to the action procedure manag-
ing the PopupMenu.

Description
XmMenuPosition() positions a popup menu, using the values of the x_root
and y_root fields from the specified event. An application must call this routine
before managing the popup menu, except when the application is positioning the
menu itself.

Usage
The event parameter for XmMenuPosition() is defined to be of type XButton-
PressedEvent *; using another type of event might lead to toolkit problems. The
x_root and y_root fields in the event structure are used to position the menu at the
location of the mouse button press. You can modify these fields to position the
menu at another location.

In Motif 2.0 and later, a menu whose XmNpopupEnabled resource is
XmPOPUP_AUTOMATIC or XmPOPUP_AUTOMATIC_RECURSIVE has an
installed event handler which calls XmMenuPosition() directly without the
need for an application to intervene in posting the menu.

Example
The following routine shows the use of an event handler to post a popup menu.

void PostIt (Widget w, XtPointer client_data, XEvent *event, Boolean *dispatch)
{

Widget popup = (Widget) client_data;
XButtonPressedEvent *bevent = (XButtonPressedEvent *) event;

if ((bevent->type != ButtonPress) && (bevent->button != 3))
return;

XmMenuPosition (popup, bevent);
XtManageChild (popup);

}

Motif Functions and Macros XmMenuPosition

Motif Reference Manual 265

...
extern Widget some_widget; /* Where the menu is posted */
extern Widget my_menu; /* The menu to post */

XtAddEventHandler(some_widget, ButtonPressMask, False, PostIt, (XtPointer)
my_menu) ;

See Also
XmRowColumn(2), XmPopupMenu(2).

XmMessageBoxGetChild Motif Functions and Macros

266 Motif Reference Manual

Name
XmMessageBoxGetChild – get the specified child of a MessageBox widget.

Synopsis
#include <Xm/MessageB.h>

Widget XmMessageBoxGetChild (Widget widget, unsigned char child)
Inputs

widget Specifies the MessageBox widget.
child Specifies the child of the MessageBox widget. Pass one of the val-
ues from the list below.

Returns
The widget ID of the specified child of the MessageBox.

Availability
As of Motif 2.0, the toolkit abstract child fetch routines are marked for depreca-
tion. You should give preference to XtNameToWidget(), except when fetching
the MessageBox default button.

Description
XmMessageBoxGetChild() returns the widget ID of the specified child of the
MessageBox widget.

Usage
The child values XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. A child value of
XmDIALOG_DEFAULT_BUTTON specifies the current default button. The
value XmDIALOG_SYMBOL_LABEL specifies the label used to display the
message symbol, while XmDIALOG_MESSAGE_LABEL specifies the mes-
sage label. XmDIALOG_SEPARATOR specifies the separator that is posi-
tioned between the message and the action buttons. For more information on the
different children of the MessageBox, see the manual page in Section 2, Motif
and Xt Widget Classes.

Widget Hierarchy
As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON child using a public interface except
through XmMessageBoxGetChild(), the routine should not be considered
truly deprecated. For consistency with the preferred new style, when fetching all
other child values, consider giving preference to the Intrinsics routine XtNam-
eToWidget(), passing one of the following names as the second parameter:

Motif Functions and Macros XmMessageBoxGetChild

Motif Reference Manual 267

“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)

Structures
The possible values for child are:

XmDIALOG_CANCEL_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DEFAULT_BUTTON XmDIALOG_SEPARATOR
XmDIALOG_HELP_BUTTON
XmDIALOG_SYMBOL_LABEL
XmDIALOG_MESSAGE_LABEL

See Also
XmBulletinBoard(2), XmBulletinBoardDialog(2), XmErrorDialog(2),
XmInformationDialog(2), XmManager(2), XmMessageBox(2),
XmMessageDialog(2), XmQuestionDialog(2),
XmTemplateDialog(2), XmWarningDialog(2),
XmWorkingDialog(2).

XmMultiListDeselectItems Motif Functions and Macros

268 Motif Reference Manual

Name
XmMultiListDeselectItems–clear the selection state of items of a MultiList.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListDeselectItems (Widget widget, XmString item, int column)
Inputs

widget Specifies the MultiList widget.
item Specifies XmString to use as selection key.
column Specifies a column number to match.

Description
XmMultiListDeselectItems() clears the selection state of the MultiList widget by
matching column entries to item.

Usage
The column specifies the column number in the MultiList starting from 0 or
XmANY_COLUMN.

See Also
XmMultiList(2).

Motif Functions and Macros XmMultiListDeselectRow

Motif Reference Manual 269

Name
XmMultiListDeselectRow – clear the selection state of a specified row of a Mul-
tiList widget.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListDeselectRow (Widget widget, int row)
Inputs

widget Specifies the MultiList widget.
child Specifies a row to select.

Description
XmMultiListDeselectRow() clears the selection state of the row of a MultiList
widget.

Usage
The row specifies the row number in the MultiList starting from 0.

See Also
XmMultiList(2).

XmMultiListGetSelectedRowArray Motif Functions and Macros

270 Motif Reference Manual

Name
XmMultiListGetSelectedRowArray – returns NULL-terminated array of pointers
to selected rows of MultiList.

Synopsis
#include <Xm/MultiList.h>

int * XmMultiListGetSelectRowArray (Widget widget, int *num_rows)
Inputs

widget Specifies the MultiList widget.
Outputs

num_row Returns the number of returned rows.
Returns

NULL-terminated array of pointers to selected rows of MultiList.

Description
XmMultiListGetSelectedRowArray() returns NULL_terminated array
of pointers to selected rows of MultiList. XmMultiListGetSelectedRo-
wArray() allocated storage for the returned array; the application is responsible
for freeing this storage using XtFree().

Usage
XmMultiListGetSelectedRowArray() is a convenience routine that pro-
vides a way to obtain numbers of selected rows in a list.

See Also
XmMultiList(2).

Motif Functions and Macros XmMultiListGetSelectedRows

Motif Reference Manual 271

Name
XmMultiListGetSelectedRows — An Extended List function that returns the
rows that currently are selected.

Synopsis
#include <Xm/MultiList.h>
XmMultiListRowInfo ** XmMultiListGetSelectedRows(Widget widget);

Inputs
widget Specifies the ID of the Extended list widget.

Outputs
Xm18RowInfo ** Contains a NULL terminated array of Xm18RowInfo

pointers.

Availability
Motif 2.2 and later.

Description
This function return an a NULL terminated array of Xm18RowInfo pointers. The
calling routine is responsible for freeing the returned pointer with XtFree(). The
function will return NULL if no elements are selected.

Usage
Use this routine to find the rows that currently are selected in an extended list.

See Also
XmMultiList(2).

XmMultiListMakeRowVisible Motif Functions and Macros

272 Motif Reference Manual

Name
XmMultiListMakeRowVisible – make row of a MultiList widget visible.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListMakeRowVisible (Widget widget, int row)
Inputs

widget Specifies the MultiList widget.
row Specifies a row to be made visible.

Description
XmMultiListMakeRowVisible() scrolls the MultiList to make the specified row
visible.

Usage
The row specifies the row number in the MultiList starting from 0.

See Also
XmMultiList(2).

Motif Functions and Macros XmMultiListSelectAllItems

Motif Reference Manual 273

Name
XmMultiListSelectAllItems – set the selection state on all rows of a MultiList.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListSelectAllItems (Widget w, Boolean notify)
Inputs

widget Specifies the MultiList widget.
notify Specifies whether to call XmNsingleSelectionCallback for each item
in a list.

Description
XmMultiListSelectAllItems() sets the selection state of the MultiList widget on
all rows.

See Also
XmMultiList(2).

XmMultiListSelectItems Motif Functions and Macros

274 Motif Reference Manual

Name
XmMultiListSelectItems – set the selection state of items of a MultiList.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListSelectItems(Widget widget, XmString item, int column,
Boolean notify)

Inputs
widget Specifies the MultiList widget.
item Specifies XmString to use as a selection key.
column Specifies a column number to match.
notify Specifies whether to call XmNsingleSelectionCallback.

Description
XmMultiListSelectItems() sets the selection state of the MultiList widget by
matching column entries to item.

Usage
The column specifies the column number in the MultiList starting from 0 or
XmANY_COLUMN.

See Also
XmMultiList(2).

Motif Functions and Macros XmMultiListSelectRow

Motif Reference Manual 275

Name
XmMultiListSelectRow –set the selection state of a specified row of a MultiList
widget.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListSelectRow (Widget widget, int row, Boolean notify)
Inputs

widget Specifies the MultiList widget.
child Specifies a row to select.
notify Specifies whether to call XmNsingleSelectionCallback for the row.

Description
XmMultiListSelectRow() toggles the selection state of the row of the MultiList
widget.

Usage
The row specifies the row number in the MultiList starting from 0.

See Also
XmMultiList(2).

XmMultiListToggleRow Motif Functions and Macros

276 Motif Reference Manual

Name
XmMultiListToggleRow–toggle the selection state of a specified row of a Multi-
List widget.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListToggleRow (Widget widget, short row)
Inputs

widget Specifies the MultiList widget.
child Specifies a row of the MultiList widget.

Description
XmMultiListToggleRow() returns the selection state of the MultiList widget.

Usage
The row specifies the row number in the MultiList starting from 0.

See Also
XmMultiList(2).

Motif Functions and Macros XmMultiListUnselectAllItems

Motif Reference Manual 277

Name
XmMultiListUnselectAllItems — An Extended List function that deselects all
rows of the list

Synopsis
#include <Xm/MultiList.h>

void XmMultiListUnselectAllItems(Widget widget);
Inputs

widget Specifies the ID of the Extended list widget

Availability
Motif 2.2 and later.

Description
XmMultiListUnselectAllItems() unhightlights all of the selected items in the
specified widget.

Usage
XmMultiListUnselectAllItems() is a convience routine that allows you to dese-
lect all items in a list.

See Also
XmMultiList(2).

XmMultiListUnselectItem Motif Functions and Macros

278 Motif Reference Manual

Name
XmMultiListUnselectItem — An Extended List function that deselects the speci-
fied item of the list.

Synopsis
#include <Xm/MultiList.h>

void XmMultiListUnselectItem(Widget widget, Xm18RowInfo *row_info);
Inputs

widget Specifies the ID of the Extended list widget
row_info Specifies the pointer to the row which is to be unselected.

Availability
Motif 2.2 and later.

Description
XmMultiListUnselectItem unselects the row designated by row_info of the
passed extended list widget.

Usage
XmMultiListUnselectItem() is a convience routine that allows you to deselect an
item in a list.

See Also
XmMultiList(2)

Motif Functions and Macros XmNotebookGetPageInfo

Motif Reference Manual 279

Name
XmNotebookGetPageInfo – return information about a Notebook page.

Synopsis
#include <Xm/Notebook.h>

XmNotebookPageStatus XmNotebookGetPageInfo (Widget
widget,

int
page_number,

XmNotebookPageInfo
*page_info)

Inputs
widget Specifies the Notebook widget.
page_number Specifies a logical page number.

Outputs
page_info Returns a structure into which the requested page information is
placed.

Returns
The status of the search for the requested information.

Availability
Motif 2.0 and later.

Description
XmNotebookGetPageInfo() returns information associated with a logical
page of the Notebook.

The Notebook searches through the list of its children, looking for those which
are associated with the logical page number specified by page_number. The
Notebook principally searches for page children, but collects data in passing on
any status area child with a matching logical number, or major and minor tab
children whose logical page number does not exceed page_number. The function
returns within the page_info structure the data collected for each of the child
widget types.

If the requested page_number is greater than the value of the Notebook XmNlast-
PageNumber resource, or less than the Notebook XmNfirstPageNumber value,
the function returns XmPAGE_INVALID.

Otherwise, if exactly one matching page child is found, the function returns
XmPAGE_FOUND. If more than one matching page child is found, the routine
returns XmPAGE_DUPLICATED. For no matching page child, the return value
is XmPAGE_EMPTY.

XmNotebookGetPageInfo Motif Functions and Macros

280 Motif Reference Manual

Usage
XmNotebookGetPageInfo performs a linear search through the children of the
Notebook for widgets whose XmNpageNumber constraint resource matches the
requested page_number. If a matching child is found with the XmNnotebook-
ChildType resource set to XmPAGE, the widget ID is stored within the
page_widget element of the page_info structure. If a matching child is of type
XmSTATUS_AREA, the widget ID is placed in the status_area_widget element.
If during the search a child widget is found which is of type XmMAJOR_TAB,
and the logical page number of the child does not exceed page_number, the
widget ID is stored within the major_tab_widget element. Again, if a child
widget is found of type XmMINOR_TAB, and the logical page number of the
child does not exceed page_number, the widget ID is stored within the
minor_tab_widget element of page_info.

The page_widget, status_area_widget, major_tab_widget, and
minor_tab_widget elements of the page_info structure are set during the search
as each Notebook child is compared, even if no XmPAGE child is found, or if
page_number exceeds the Notebook first and last page resources. An element of
the page_info structure can be NULL if no child of the associated type is found
with a logical page number which meets the matching criteria.

The Notebook automatically sorts children into ascending logical page order, and
the search is terminated as soon as any child has a logical page number which
exceeds the requested page_number.

Structures
XmNotebookPageInfo is defined as follows:

typedef struct {
int page_number; /* the requested page number */
Widget page_widget; /* any matching page widget */
Widget status_area_widget; /* any matching status area widget */
Widget major_tab_widget; /* the nearest major tab widget */
Widget minor_tab_widget; /* the nearest minor tab widget */

} XmNotebookPageInfo;

A XmNotebookPageStatus can have one of the following values:

XmPAGE_FOUND XmPAGE_INVALID
XmPAGE_EMPTY XmPAGE_DUPLICATED

See Also
XmNotebook(2).

Motif Functions and Macros XmObjectAtPoint

Motif Reference Manual 281

Name
XmObjectAtPoint – determine the child nearest to a point.

Synopsis
#include <Xm/Xm.h>

Widget XmObjectAtPoint (Widget widget, Position x, Position y)
Inputs

widget Specifies a composite widget.
x Specifies an X coordinate relative to the widget left side.
y Specifies an Y coordinate relative to the widget top side.

Returns
The widget most closely associated with the coordinate x, y.

Availability
Motif 2.0 or later.

Description
XmObjectAtPoint() searches the list of children of widget, and returns the
widget ID of the child associated with the x, y coordinate. x and y are interpreted
as pixel values, relative to the top left of the Manager widget.

Usage
XmObjectAtPoint() calls the object_at_point method associated with a Man-
ager widget, in order to determine the child of the Manager most closely associ-
ated with the coordinate specified by x and y. Each widget class may override the
object_at_point method inherited from Manager, to redefine what is meant by
"associated".

The default Manager class method returns the last managed gadget which con-
tains the coordinate.

The DrawingArea overrides the default method, and performs a simple linear
search for the first managed child, widget or gadget, which contains the coordi-
nate.

The Container overrides the object_at_point method, by searching through the
list of logical child nodes, using any XmQTpointIn trait held by each child to
determine a logical match with the coordinate. If no XmQTpointIn is held by the
child, the Container simply checks whether the coordinate is within the child
dimensions. The IconGadget holds the XmQTpointIn trait, although neither this
fact nor the trait itself is otherwise documented.

See Also
XmContainer(2), XmDrawingArea(2), XmGadget(2),

XmObjectAtPoint Motif Functions and Macros

282 Motif Reference Manual

XmIconGadget(2), XmManager(2).

Motif Functions and Macros XmOptionButtonGadget

Motif Reference Manual 283

Name
XmOptionButtonGadget – get the CascadeButtonGadget in an option menu

Synopsis
#include <Xm/RowColumn.h>

Widget XmOptionButtonGadget (Widget option_menu)
Inputs

option_menu Specifies the option menu.
Returns

The widget ID of the internal CascadeButtonGadget.

Description
XmOptionButtonGadget() returns the widget ID for the internal Cascade-
ButtonGadget that is created when the specified option_menu widget is created.
An option menu is a RowColumn widget containing two gadgets: a CascadeBut-
tonGadget that displays the current selection and posts the submenu and a Label-
Gadget that displays the XmNlabelString resource.

Usage
XmOptionButtonGadget() provides a way for an application to access the
internal CascadeButtonGadget that is part of an option menu. Once you have
retrieved the gadget, you can alter its appearance. In Motif 1.2, you can also
specify resources for the gadget using the widget name OptionButton.

See Also
XmOptionLabelGadget(1), XmCascadeButtonGadget(2),
XmLabelGadget(2), XmOptionMenu(2), XmRowColumn(2).

XmOptionLabelGadget Motif Functions and Macros

284 Motif Reference Manual

Name
XmOptionLabelGadget – get the LabelGadget in an option menu.

Synopsis
#include <Xm/RowColumn.h>

Widget XmOptionLabelGadget (Widget option_menu)
Inputs

option_menu Specifies the option menu.

Description
XmOptionLabelGadget() returns the widget ID for the internal LabelGadget
that is created when the specified option_menu widget is created. An option
menu is a RowColumn widget containing two gadgets: a LabelGadget that dis-
plays the XmNlabelString resource, and a CascadeButtonGadget that displays
the current selection and posts the submenu.

Usage
XmOptionLabelGadget() provides a way for an application to access the
internal LabelGadget that is part of an option menu. Once you have retrieved the
gadget, you can alter its appearance. In Motif 1.2, you can also specify resources
for the gadget using the widget name OptionLabel.

See Also
XmOptionButtonGadget(1), XmCascadeButtonGadget(2),
XmLabelGadget(2), XmOptionMenu(2), XmRowColumn(2).

Motif Functions and Macros XmPanedGetPanes

Motif Reference Manual 285

Name
XmPanedGetPanes – A Paned function that retrieves the panes in the widget.

Synopsis
#include <Xm/Paned.h>

void XmPanedGetPanes (Widget widget, WidgetList *panes_returned, int
*num_panes_returned)

Inputs
widget Specifies the widget ID of the Paned window.
panes_returned Specifies the list of panes in the Paned window widget.
num_panes_returnedSpecifies the number of panes in the Paned window widget.

Description
XmPanedGetPanes() retrieves the panes in the widget. Because the Paned
widget adds children other than the panes, these values are not the same as those
retrieved with the XmNchildren and XmNnumChildren resources.

Usage
XmPanedGetPanes() is a convenience routine that retrieves the panes in the
widget.

See Also
XmPaned(2).

XmParseMappingCreate Motif Functions and Macros

286 Motif Reference Manual

Name
XmParseMappingCreate – create a parse mapping.

Synopsis
XmParseMapping XmParseMappingCreate (Arg *arg_list, Cardinal arg_count)

Inputs
arg_list Specifies an argument list, consisting of resource name/value pairs.
arg_count Specifies the number of arguments in arg_list.

Returns
An allocated parse mapping.

Availability
Motif 2.0 and later.

Description
XmParseMappingCreate() creates a parse mapping, which is an entry in a
parse table. A parse mapping consists minimally of a match pattern, and a substi-
tution pattern or procedure, which can be used by string parsing functions in
order to compare against and subsequently transform text. A parse mapping is
created through a resource style argument list, where arg_list is an array of
resource name/value pairs, and arg_count is the number of such pairs.

Usage
A parse table is an array of parse mappings. XmParseMappingCreate() cre-
ates a parse mapping using a resource style parameter list. The parse table can
subsequently be passed to XmStringParseText() in order to filter or modify
an input string.

XmParseMappingCreate() allocates storage associated with the returned
parse mapping object. It is the responsibility of the programmer to free the allo-
cated memory by a call to XmParseMappingFree() at the appropriate
moment.

Example
The following code fragment creates a parse mapping which performs a simple
swap of occurrences of two characters within an input string:

char *swapover (char *input, /* input string */
char *a, /* only first character in array used */
char *b) /* only first character in array used */

{
XmString tmp;
XmParseMapping parse_mapping;

Motif Functions and Macros XmParseMappingCreate

Motif Reference Manual 287

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
Cardinal parse_table_index = 0;
Arg argv[4];
Cardinal argc = 0;
char *output = (char *) 0;

/* create a XmParseMapping object to swap *a with *b */

argc = 0;
tmp = XmStringCreateLocalized (a);
XtSetArg (argv[argc], XmNincludeStatus, XmINSERT);
argc++;
XtSetArg (argv[argc], XmNsubstitute, tmp);
argc++;
XtSetArg (argv[argc], XmNpattern, b);
argc++;
XtSetArg (argv[argc], XmNpatternType, XmCHARSET_TEXT);
argc++;
parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmStringFree (tmp);

/* create a XmParseMapping object to swap *b with *a */
argc = 0;
tmp = XmStringCreateLocalized (b);
XtSetArg (argv[argc], XmNincludeStatus, XmINSERT);
argc++;
XtSetArg (argv[argc], XmNsubstitute, tmp);
argc++;
XtSetArg (argv[argc], XmNpattern, a);
argc++;
XtSetArg (argv[argc], XmNpatternType, XmCHARSET_TEXT);
argc++;
parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmStringFree (tmp);

/* substitute using the XmParseMapping. */

tmp = XmStringParseText ((XtPointer) input, NULL, NULL,
XmCHARSET_TEXT,
parse_table, parse_table_index, NULL);

XmParseTableFree (parse_table, parse_table_index);

XmParseMappingCreate Motif Functions and Macros

288 Motif Reference Manual

/* convert XmString to String */
if (tmp != (XmString) 0) {

output = (char *) XmStringUnparse (tmp, NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT, NULL,
0, XmOUTPUT_ALL);1

XmStringFree (tmp);
}

return output;
}

See Also
XmParseMappingFree(1), XmParseMappingGetValues(1),
XmParseMappingSetValues(1), XmParseTableFree(1),
XmStringParseText(1), XmStringUnparse(1),
XmParseMapping(2).

1.The code sample in the 2nd edition used XmStringGetLtoR() to convert the compound string. Xm-
StringGetLtoR() is deprecated as of Motif 2.0.

Motif Functions and Macros XmParseMappingFree

Motif Reference Manual 289

Name
XmParseMappingFree – free the memory used by a parse mapping.

Synopsis
void XmParseMappingFree (XmParseMapping parse_mapping)

Inputs
parse_mapping Specifies a parse mapping.

Availability
Motif 2.0 and later.

Description
XmParseMappingFree() deallocates storage used by the specified parse
mapping object.

Usage
The XmParseMapping type is opaque, and represents an entry in a parse table,
which can be used for transforming text. A parse mapping is created by
XmParseMappingCreate(), which allocates storage for the object repre-
sented by the type, and it is the responsibility of the programmer to reclaim the
memory when the parse mapping is no longer required.

It is important to call XmParseMappingFree() rather than XtFree() upon
redundant parse mappings, otherwise compound strings internally referenced by
the object are not deallocated.

See Also
XmParseMappingCreate(1), XmParseMappingGetValues(1),
XmParseMappingSetValues(1), XmParseTableFree(1),
XmStringParseText(1), XmParseMapping(2).

XmParseMappingGetValues Motif Functions and Macros

290 Motif Reference Manual

Name
XmParseMappingGetValues – fetch resources from a parse mapping object.

Synopsis
void XmParseMappingGetValues (XmParseMapping parse_mapping,

Arg *arg_list,
Cardinal arg_count)

Inputs
parse_mapping Specifies a parse mapping object.
arg_count Specifies the number of arguments in the list arg_list.

Outputs
arg_list Specifies the argument list of name/value pairs that contain the

resource names and addresses into which the resource values
are to be stored.

Availability
Motif 2.0 and later.

Description
XmParseMappingGetValues() fetches selected attributes from
parse_mapping. The set of attributes retrieved is specified through the resource
list arg_list, each element of the list being a structure containing a name/value
pair. The number of elements within the list is given by arg_count.

Usage
If the XmNsubstitute attribute of the parse mapping is retrieved, the procedure
returns a copy of the internal value. It is the responsibility of the programmer to
recover the allocated space at a suitable point by calling XmStringFree().

Example
The following code illustrates fetching the values from an XmParseMapping:

XtPointer pattern;
XmTextType pattern_type;
XmString substitute;
XmParseProc parse_proc;
XtPointer client_data;
XmIncludeStatus include_status;
Arg argv[6];
Cardinal argc = 0;

/* construct a resource-style argument list for all XmParseMapping values */
XtSetArg (argv[argc], XmNpattern, &pattern); argc++;
XtSetArg (argv[argc], XmNpatternType, &pattern_type); argc++;

Motif Functions and Macros XmParseMappingGetValues

Motif Reference Manual 291

XtSetArg (argv[argc], XmNsubstitute, &substitute); argc++;
XtSetArg (argv[argc], XmNinvokeParseProc, &parse_proc); argc++;
XtSetArg (argv[argc], XmNclientData, &client_data); argc++;
XtSetArg (argv[argc], XmNincludeStatus, &include_status); argc++;

/* fetch the values. parse_mapping here is an unspecified XmParseMapping */
XmParseMappingGetValues (parse_mapping, argv, argc);
...
/* XmParseMappingGetValues returns a copy of the XmNsubstitute value */
/* which must be freed when no longer required by the application */
XmStringFree (substitute);

See Also
XmParseMappingCreate(1), XmParseMappingFree(1),
XmParseMappingSetValues(1), XmParseTableFree(1),
XmParseMapping(2).

XmParseMappingSetValues Motif Functions and Macros

292 Motif Reference Manual

Name
XmParseMappingSetValues – sets resources for a parse mapping object.

Synopsis
void XmParseMappingSetValues (XmParseMapping parse_mapping,

Arg *arg_list,
Cardinal arg_count)

Inputs
parse_mapping Specifies a parse mapping object.
arg_list Specifies the list of name/value pairs containing resources to

be modified.
arg_count Specifies the number of arguments in the list arg_list.

Availability
Motif 2.0 and later.

Description
XmParseMappingSetValues() sets selected attributes within
parse_mapping. The set of attributes which is modified is specified through the
resource list arg_list, each element of the list being a structure containing a
name/value pair. The number of elements within the list is given by arg_count.

Usage
If the XmNsubstitute attribute of the parse mapping is set, the procedure inter-
nally takes a copy of the supplied value. It is the responsibility of the programmer
to recover the allocated space at a suitable point by calling XmStringFree().

Example
The following skeleton code illustrates changing the values of a parse mapping:

XmIncludeStatus map_tab (XtPointer *in_out,
XtPointer text_end, /* unused

*/
XmTextType type, /* unused

*/
XmStringTag tag, /* unused

*/
XmParseMapping entry, /* unused

*/
int pattern_length, /* unused

*/
XmString *str_out,

Motif Functions and Macros XmParseMappingSetValues

Motif Reference Manual 293

XtPointer call_data) /* unused
*/
{

/* Insert an XmString Tab component into the output stream */
*str_out = XmStringComponentCreate
(XmSTRING_COMPONENT_TAB, 0, NULL);
*in_out = (*in_out + 1);

return XmINSERT;

}

/* change a parse mapping to invoke the above parse procedure */
void set_parse_tab_mapping (XmParseMapping parse_mapping)
{

Arg argv[4];
Cardinal argc = 0;

/* construct resource-style argument list for XmParseMapping values */
XtSetArg (argv[argc], XmNpattern, "\t");
argc++;
XtSetArg (argv[argc], XmNpatternType, XmCHARSET_TEXT);
argc++;
XtSetArg (argv[argc], XmNincludeStatus, XmINVOKE);
argc++;
XtSetArg (argv[argc], XmNinvokeParseProc, map_tab);
argc++;

/* change the values */
XmParseMappingSetValues (parse_mapping, argv, argc);

}

See Also
XmParseMappingCreate(1), XmParseMappingFree(1),
XmParseMappingGetValues(1), XmParseTableFree(1),
XmParseMapping(2),

XmParseTableFree Motif Functions and Macros

294 Motif Reference Manual

Name
XmParseTableFree – free the memory used by a parse table.

Synopsis
void XmParseTableFree (XmParseTable parse_table, Cardinal parse_count)

Inputs
parse_table Specifies a parse table.
parse_count Specifies the number of entries in the parse table.

Availability
Motif 2.0 and later.

Description
XmParseTableFree() deallocates storage used by the specified parse_table.
In addition, the function deallocates storage used by any parse mapping elements
of the table. parse_count indicates the number of mapping elements within the
table.

Usage
A parse table is an array of XmParseMapping objects. The XmParseMapping is
an opaque type, which is used when transforming text. Each parse mapping
object allocates memory in addition to any memory allocated by the parse table
array. It is important to call XmParseTableFree() rather than XtFree()
when deallocating storage associated with a parse table, otherwise objects con-
stituent within the array, and compound strings internally referenced by the parse
mapping objects, are not deallocated. The function should be called when a parse
table is no longer needed.

Example
/* Allocate a parse table */
XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
Cardinal parse_table_index = 0;
XmParseMapping parse_mapping;
Arg argv[MAX_ARGS];
Cardinal argc = 0;

/* Create a XmParseMapping object */
argc = 0;
...
parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;

Motif Functions and Macros XmParseTableFree

Motif Reference Manual 295

/* Create another XmParseMapping object */
argc = 0;
...
parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;

/* Use the XmParseTable. */
tmp = XmStringParseText ((XtPointer) input, NULL, NULL,

XmCHARSET_TEXT, parse_table,
parse_table_index, NULL);

/* Free the parse table: this also frees the parse mappings */
XmParseTableFree (parse_table, parse_table_index);

See Also
XmParseMappingCreate(1), XmParseMappingFree(1),
XmParseMappingGetValues(1), XmParseMappingSetValues(1),
XmParseMapping(2).

XmPrintPopupPDM Motif Functions and Macros

296 Motif Reference Manual

Name
XmPrintPopupPDM – notify the Print Display Manager.

Synopsis
#include <Xm/Print.h>

XtEnum XmPrintPopupPDM (Widget print_shell, Widget video_shell)
Inputs

print_shell Specifies a PrintShell widget.
video_shell Specifies the widget on whose behalf the PDM dialog is
required.

Returns
Returns XmPDM_NOTIFY_SUCCESS if the PDM was notified,
XmPDM_NOTIFY_FAIL otherwise.

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell within
the native Motif toolkit.1

Description
XmPrintPopupPDM() sends a notification to start a Print Display Manager for
the application. The notification is issued to either the display associated with
print_shell, or the display of video_shell, depending upon the value of the envi-
ronment variable XPDMDISPLAY. XPDMDISPLAY can only be set to "print"
or "video". If the value is "print", the notification is sent to the display of
print_shell, and similarly the value "video" sends the notification to the display
of video_shell. If the notification could be sent, the function returns
XmPDM_NOTIFY_SUCCESS, otherwise the return value is
XmPDM_NOTIFY_FAIL.

Usage
XmPrintPopupPDM() is a convenience function which issues a notification
through the X selection mechanisms in order to start a Print Dialog Manager. The
notification is issued asynchronously: the return value
XmPDM_NOTIFY_SUCCESS indicates that the message has successfully been
issued, not that any PDM is now initialized. In order to track the status of the
PDM, the programmer registers an XmNpdmNotificationCallback with the
widget print_shell, which must be an instance of the PrintShell widget class. To
ensure that the contents of the video_shell is not modified whilst the PDM is ini-

1.Sun Solaris being a case in point.

Motif Functions and Macros XmPrintPopupPDM

Motif Reference Manual 297

tializing, XmPrintPopupPDM() creates an input-only window over the top of
video_shell, and the window is only removed when the PDM indicates that it is
present, or if the selection XmIPDM_START times out. The timeout period is set
at two minutes.

See Also
XmPrintSetup(1), XmPrintToFile(1), XmRedisplayWidget(1),
XmPrintShell(2).

XmPrintSetup Motif Functions and Macros

298 Motif Reference Manual

Name
XmPrintSetup – create a Print Shell widget.

Synopsis
#include <Xm/Print.h>

Widget XmPrintSetup (Widget video_widget,
Screen *print_screen,
String name
ArgList arg_list,
Cardinal arg_count)

Inputs
video_widget Specifies a widget from which video application data is

fetched.
print_screen Specifies the screen on which the PrintShell is created.
name Specifies the name of the created PrintShell.
arg_list Specifies an argument list of name/value pairs that contain

resources for the PrintShell.
arg_count Specifies the number of arguments in the list arg_list.

Returns
The created PrintShell, or NULL if no ApplicationShell can be found from
video_widget,

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the PrintShell in their
native toolkit.1

Description
XmPrintSetup() creates a PrintShell widget with the given name on the
screen print_screen. The new PrintShell is returned to the application. Resources
which configure the new print shell are supplied through an array of structures
which contain name/value pairs. The array of resources is arg_list, and the
number of items in the array is arg_count.

Usage
XmPrintSetup() creates a new ApplicationShell on the screen specified by
print_screen, and thereafter creates a PrintShell as a popup child. The new Appli-
cationShell is created with the same name and class as the ApplicationShell from
which video_widget is descended. The XmNmappedWhenManaged resource of

1.For example, Sun Solaris includes the headers, but does not compile the widget into the Motif library.

Motif Functions and Macros XmPrintSetup

Motif Reference Manual 299

the PrintShell is set to False under the assumption that subsequent notification of
the start of a job or page is the correct time to map the widget. The print shell is
finally realized, and returned.

See Also
XmPrintPopupPDM(1), XmPrintToFile(1), XmRedisplayWidget(1),
XmPrintShell(2).

XmPrintToFile Motif Functions and Macros

300 Motif Reference Manual

Name
XmPrintToFile – save X Print Server data to file.

Synopsis
#include <Xm/Print.h>

XtEnum XmPrintToFile (Display *display,
String file_name,
XPFinishProc finish_proc,
XPointer client_data)

Inputs
display Specifies the print connection to the X server.
file_name Specifies the name of the file to contain the print output.
finish_proc Specifies a procedure called when printing is finished.
client_data Specifies application data to be passed to finish_proc.

Returns
True if printing can be initiated, otherwise False.

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell in their
native toolkits.1

Description
XmPrintToFile() is a convenience function which provides a simple inter-
face onto the X Print mechanisms, in order to save print data to the file
file_name. Printing takes place asynchronously, and the programmer receives
notification of the status of the printing task by supplying finish_proc, which is
called when the task is finished. The display parameter is the print connection to
the X server, and is used to deduce an application name and class.

Usage
If XmPrintToFile() cannot open the file file_name for writing, create a pipe,
or fork off a child process, the procedure returns False. An application name and
class is deduced using the display parameter, and these are used by the child
process, which creates a new application context, and opens a new display con-
nection using the same name and class as the application process. Data is
retrieved from the X server through a call to XpGetDocumentData(). The
parent process does not wait for the child to complete, but returns immediately

1.For example, Sun Solaris supply the widget headers, but do not compile the component into the Motif library.

Motif Functions and Macros XmPrintToFile

Motif Reference Manual 301

after initiating the child process. The return value True therefore does not mean
that the print task is complete, merely that the task is initiated.

The application is notified of task completion by supplying an XPFinishProc.
The status parameter passed to the finish procedure when the task is completed is
set to XPGetDocFinished on successful completion. If for any reason the child
process fails to print the data, the file file_name is both closed and removed. The
file is closed in any case prior to calling the XPFinishProc.

XpStartJob() must be called by the application before XmPrintToFile()
can be called.

Structures
An XPFinishProc is specified as follows:

typedef void (*XPFinishProc)(Display *display,
XPContext context,
XPGetDocStatus status,
XPointer client_data);

If status is XPGetDocFinished, the print task has completed successfully.

See Also
XmPrintPopupPDM(1), XmPrintSetup(1), XmRedisplayWidget(1),
XmPrintShell(2).

XmProcessTraversal Motif Functions and Macros

302 Motif Reference Manual

Name
XmProcessTraversal – set the widget that has the keyboard focus.

Synopsis
Boolean XmProcessTraversal (Widget widget, XmTraversalDirection direction)

Inputs
widget Specifies the widget whose hierarchy is to be traversed.
direction Specifies the direction in which to traverse the hierarchy. Pass one

of the values from the list below.
Returns

True on success or False otherwise.

Description
XmProcessTraversal() causes the input focus to change to another widget
under application control, rather than as a result of keyboard traversal events
from a user. widget specifies the widget whose hierarchy is traversed up to the
shell widget. If that shell has the keyboard focus, XmProcessTraversal()
changes the keyboard focus immediately. If that shell does not have the focus,
the routine does not have an effect until the shell receives the focus.

The direction argument specifies the nature of the traversal to be made. In each
case, the routine locates the hierarchy that contains the specified widget and then
performs the action that is particular to the direction. If the new setting succeeds,
XmProcessTraversal() returns True. The routine returns False if the key-
board focus policy is not XmEXPLICIT, if no traversable items exist, or if the
arguments are invalid.

Usage
For XmTRAVERSE_CURRENT, if the tab group that contains widget is inac-
tive, it is made the active tab group. If widget is in the active tab group, it is given
the keyboard focus; if widget is the active tab group, the first traversable item in
it is given the keyboard focus. For XmTRAVERSE_UP,
XmTRAVERSE_DOWN, XmTRAVERSE_LEFT, and
XmTRAVERSE_RIGHT, in the hierarchy that contains widget, the item in the
specified direction from the active item is given the keyboard focus. For
XmTRAVERSE_NEXT and XmTRAVERSE_PREV, in the hierarchy that con-
tains widget, the next and previous items in child order from the active item are
given keyboard focus. For XmTRAVERSE_HOME, in the hierarchy that con-
tains widget, the first traversable item is given the keyboard focus. For
XmTRAVERSE_NEXT_TAB_GROUP and
XmTRAVERSE_PREV_TAB_GROUP, in the hierarchy that contains widget,

Motif Functions and Macros XmProcessTraversal

Motif Reference Manual 303

the next and previous tab groups from the active tab group are given the key-
board focus.

In Motif 2.0 and later, new XmTraversalDirection values
XmTRAVERSE_GLOBALLY_FORWARD and
XmTRAVERSE_GLOBALLY_BACKWARD are provided in order to imple-
ment the XmDisplay resource XmNenableButtonTab. If enabled, for
XmTRAVERSE_GLOBALLY_FORWARD navigation proceeds to the next (or
downwards, depending upon orientation) item within the current tab group,
unless the current location is the last item in the group, when navigation is into
the next tab group. Similarly, for XmTRAVERSE_GLOBALLY_BACKWARD
navigation proceeds to the previous (or upwards) item in the current tab group,
unless the current location is the first item in the group, when navigation is into
the previous tab group. The interpretation of the direction values
XmTRAVERSE_GLOBALLY_FORWARD and
XmTRAVERSE_GLOBALLY_BACKWARD is reversed where XmNlayoutDi-
rection is XmRIGHT_TO_LEFT.

XmProcessTraversal() does not allow traversal to widgets in different
shells or widgets that are not mapped. Calling XmProcessTraversal()
inside a XmNfocusCallback causes a segmentation fault.

Example
The following code fragments shows the use of XmProcessTraversal() as a
callback routine for a text widget. When the user presses the Return key, the key-
board focus is advanced to the next input area:

Widget form, label, text;

form = XtVaCreateWidget ("form", xmFormWidgetClass, parent,
XmNorientation, XmHORIZONTAL,
NULL);

label = XtVaCreateManagedWidget ("label", xmLabelGadgetClass, form,
XmNleftAttachment,
XmATTACH_FORM,
XmNtopAttachment,
XmATTACH_FORM,
XmNbottomAttachment,
XmATTACH_FORM,
NULL);

text = XtVaCreateManagedWidget ("text", xmTextWidgetClass, form,
XmNleftAttachment,
XmATTACH_WIDGET,
XmNleftWidget, label,

XmProcessTraversal Motif Functions and Macros

304 Motif Reference Manual

XmNtopAttachment,
XmATTACH_FORM,
XmNrightAttachment,
XmATTACH_FORM,
XmNbottomAttachment,
XmATTACH_FORM,
NULL);

XtAddCallback (text, XmNactivateCallback,
XmProcessTraversal, (XtPointer)
XmTRAVERSE_NEXT_TAB_GROUP);

XtManageChild (form);

Structures
The possible values for direction are:

XmTRAVERSE_CURRENT XmTRAVERSE_NEXT
XmTRAVERSE_UP XmTRAVERSE_PREV
XmTRAVERSE_DOWN XmTRAVERSE_HOME
XmTRAVERSE_LEFT
XmTRAVERSE_NEXT_TAB_GROUP
XmTRAVERSE_RIGHT
XmTRAVERSE_PREV_TAB_GROUP
XmTRAVERSE_GLOBALLY_FORWARD
XmTRAVERSE_GLOBALLY_BACKWARD

See Also
XmGetFocusWidget(1), XmGetTabGroup(1), XmGetVisibility(1),
XmIsTraversable(1).

Motif Functions and Macros XmRedisplayWidget

Motif Reference Manual 305

Name
XmRedisplayWidget – force widget exposure for printing.

Synopsis
#include <Xm/Print.h>

void XmRedisplayWidget (Widget widget)
Inputs

widget Specifies the widget to redisplay.

Availability
Motif 2.1 and later.

Note that not all operating system vendors compile the XmPrintShell into their
native Motif toolkits.1

Description
XmRedisplayWidget() forces widget to redisplay itself by invoking the
expose method of the widget. The routine is a convenience function which hides
the internals of the X11R6 Xp mechanisms, which use widget exposure in order
to implement printing.

Usage
XmRedisplayWidget() constructs a region which corresponds precisely to
the location and area occupied by a widget. The expose method of the widget is
called directly using the region in order to redisplay the widget. XmRedis-
playWidget() is synchronous in effect. Asynchronous printing is performed
by creating a PrintShell, and specifying XmNstartJobCallback, XmNendJobCall-
back, and XmNpageSetupCallback procedures which are invoked in response to
X Print events as they arrive.

XmRedisplayWidget() is not multi-thread safe, nor is the widget parameter
fully validated: it is implicitly assumed to be the descendant of a PrintShell.

1.Sun Solaris supplied the widget headers, but the widget itself is compiled out of the Motif library.

XmRedisplayWidget Motif Functions and Macros

306 Motif Reference Manual

Example
The following code synchronously prints the contents of a text widget:

Widget app_shell, app_text;
Screen print_screen;
Display print_display;
Widget print_shell, print_form, print_text;
short rows;
int lines, pages, page;
char *data;
...
/* create a connection to the X Print server */
print_shell = XmPrintSetup (app_shell, print_screen, "PrintShell", NULL, 0);

/* create a suitable print hierarchy */
print_form = XmCreateForm (print_shell,...);
print_text = XmCreateText (print_form,...);

/* configure and manage the print hierarchy */
...
/* copy the video text to the print text */
/* what is copied depends upon whether it is */
/* contents and/or visuals that are printed */
...
data = XmTextGetString (app_text);
XmTextSetString (print_text, data);
XtFree (data);
...
/* start a print job */
print_display = XtDisplay (print_shell);
XpStartJob (print_display, XPSpool);

/* deduce number of logical pages in the print text widget */
XtVaGetValues (print_text, XmNrows, &rows, XmNtotalLines, &lines, 0);

for (page = 0, pages = lines / rows; page < pages; page++) {
/* start of page notification */
XpStartPage (print_display, XtWindow (print_shell), False);

/* force the print text to expose itself */
XmRedisplayWidget (print_text);

/* end of page notification */
XpEndPage (print_display);

/* scroll to next page */

Motif Functions and Macros XmRedisplayWidget

Motif Reference Manual 307

XmTextScroll (print_text, rows);
}

/* end of print job notification */
XpEndJob (print_display);
...

See Also
XmPrintPopupPDM(1), XmPrintSetup(1), XmPrintToFile(1),
XmPrintShell(2).

XmRegisterSegmentEncoding Motif Functions and Macros

308 Motif Reference Manual

Name
XmRegisterSegmentEncoding – register a compound text encoding format for a
font list element tag.

Synopsis
char *XmRegisterSegmentEncoding (char *fontlist_tag, char *ct_encoding)

Inputs
fontlist_tag Specifies the compound string font list element tag.
ct_encoding Specifies the compound text character set.

Returns
The old compound text encoding format for a previously-registered font list ele-
ment tag or NULL for a new font list element tag.

Availability
Motif 1.2 and later.

Description
XmRegisterSegmentEncoding() registers the specified compound text
encoding format ct_encoding for the specified fontlist_tag. Both fontlist_tag and
ct_encoding must be NULL-terminated ISO8859-1 strings. If the font list tag is
already associated with a compound text encoding format, registering the font list
tag again overwrites the previous entry and the routine returns the previous com-
pound text format. If the font list tag is has not been registered before, the routine
returns NULL. If ct_encoding is NULL, the font list tag is unregistered. If
ct_encoding is the reserved value XmFONTLIST_DEFAULT_TAG, the font list
tag is mapped to the code set of the current locale. XmRegisterSegmentEn-
coding() allocates storage if the routine returns a character string; the applica-
tion is responsible for freeing the storage using XtFree().

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication.

XmCvtXmStringToCT() converts a compound string into compound text. The
routine uses the font list tag of each compound string segment to select a com-
pound text format for the segment. A mapping between font list tags and com-
pound text encoding formats is stored in a registry.
XmRegisterSegmentEncoding() provides a way for an application to map
particular font list element tags to compound text encoding formats.

See Also

Motif Functions and Macros XmRegisterSegmentEncoding

Motif Reference Manual 309

XmCvtXmStringToCT(1), XmMapSegmentEncoding(1).

XmRemoveFromPostFromList Motif Functions and Macros

310 Motif Reference Manual

Name
XmRemoveFromPostFromList – make a menu inaccessible from a widget.

Synopsis
#include <Xm/RowColumn.h>

void XmRemoveFromPostFromList (Widget menu, Widget widget)
Inputs

menu Specifies a menu widget
widget Specifies the widget which no longer posts menu.

Availability
In Motif 2.0 and later, the functional prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete. 1

Description
XmRemoveFromPostFromList() is the inverse of the procedure XmAddTo-
PostFromWidget(). The menu hierarchy associated with menu is made inac-
cessible from widget.

Usage
If the type of menu is XmMENU_PULLDOWN, the XmNsubMenuId resource
of widget is set to NULL. If the type of menu is XmMENU_POPUP, event han-
dlers presumably added to widget by XmAddToPostFromWidget() in order to
post the menu are removed.

No check is made to ensure that the XmNsubMenuId resource of widget is origi-
nally set to menu before clearing the value. Passing the wrong menu into the pro-
cedure can therefore have unwanted effects. There are implicit assumptions that
widget is a CascadeButton or CascadeButtonGadget when menu is
XmMENU_PULLDOWN, and that widget is not a Gadget when menu is
XmMENU_POPUP. These are not checked by the procedure.

See Also
XmAddToPostFromList(1), XmGetPostedFromWidget(1),
XmPopupMenu(2), XmPulldownMenu(2), XmRowColumn(2).

1.This is true of Motif 2.1.10, although the header reference is restored in the OpenMotif 2.1.30.

Motif Functions and Macros XmRemoveProtocolCallback

Motif Reference Manual 311

Name
XmRemoveProtocolCallback – remove client callback from a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmRemoveProtocolCallback (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.
callback Specifies the procedure that is to be removed.
closure Specifies any client data that is passed to the callback.

Description
XmRemoveProtocolCallback() removes the specified callback from the
list of callback procedures that are invoked when the client message correspond-
ing to protocol is received.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmRemoveProtocolCallback() allows
you to unregister one of these callback routines. The inverse routine is XmAd-
dProtocolCallback().

See Also
XmAddProtocolCallback(1), XmInternAtom(1),
XmRemoveWMProtocolCallback(1), VendorShell(2).

XmRemoveProtocols Motif Functions and Macros

312 Motif Reference Manual

Name
XmRemoveProtocols – remove protocols from the protocol manager.

Synopsis
#include <Xm/Protocols.h>

void XmRemoveProtocols (Widget shell, Atom property, Atom *protocols, Car-
dinal num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveProtocols() removes the specified protocols from the protocol
manager and deallocates the internal tables for the protocols. If the specified shell
is realized and at least one of the protocols is active, the routine also updates the
handlers and the property. The inverse routine is XmAddProtocols().

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmRemoveProtocols() allows you eliminate protocols that can be under-
stood by your application. The inverse routine is XmAddProtocols().

See Also
XmAddProtocols(1), XmInternAtom(1), XmRemoveWMProtocols(1),
VendorShell(2).

Motif Functions and Macros XmRemoveTabGroup

Motif Reference Manual 313

Name
XmRemoveTabGroup – remove a widget from a list of tab groups.

Synopsis
void XmRemoveTabGroup (Widget tab_group)

Inputs
tab_group Specifies the widget to be removed.

Availability
In Motif 1.1, XmRemoveTabGroup() is obsolete. It has been superseded by set-
ting XmNnavigationType to XmNONE.

Description
XmRemoveTabGroup() removes the specified tab_group widget from the list
of tab groups associated with the widget hierarchy. This routine is retained for
compatibility with Motif 1.0 and should not be used in newer applications. If
traversal behavior needs to be changed, this should be done by setting the XmN-
navigationType resource directly.

Usage
A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing
the Tab or Shift-Tab keys. The inverse routine is XmAddTabGroup().

See Also
XmAddTabGroup(1), XmGetTabGroup(1), XmManager(2),
XmPrimitive(2).

XmRemoveWMProtocolCallback Motif Functions and Macros

314 Motif Reference Manual

Name
XmRemoveWMProtocolCallback – remove client callbacks from a
XA_WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmRemoveWMProtocolCallback (Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
callback Specifies the procedure that is to be removed.
closure Specifies any client data that is passed to the callback.

Description
XmRemoveWMProtocolCallback() is a convenience routine that calls
XmRemoveProtocolCallback() with property set to
XA_WM_PROTOCOL, the window manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containing a property and protocol,
and the receiving client responds by calling the associated protocol callback rou-
tine. XmRemoveWMProtocolCallback() allows you to unregister one of
these callback routines with the window manager protocol property. The inverse
routine is XmAddWMProtocolCallback().

See Also
XmAddProtocolCallback(1), XmAddWMProtocolCallback(1),
XmInternAtom(1), XmRemoveProtocolCallback(1),
VendorShell(2).

Motif Functions and Macros XmRemoveWMProtocols

Motif Reference Manual 315

Name
XmRemoveWMProtocols – remove the XA_WM_PROTOCOLS protocols from
the protocol manager.

Synopsis
#include <Xm/Protocols.h>

void XmRemoveWMProtocols (Widget shell, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveWMProtocols() is a convenience routine that calls XmRemove-
Protocols() with property set to XA_WM_PROTOCOL, the window man-
ager protocol property. The inverse routine is XmAddWMProtocols().

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmRemoveWMProto-
cols() allows you to remove this protocol so that it is no longer understood by
your application. The inverse routine is XmAddWMProtocols().

See Also
XmAddProtocols(1), XmAddWMProtocols(1), XmInternAtom(1),
XmRemoveProtocols(1), VendorShell(2).

XmRenderTableAddRenditions Motif Functions and Macros

316 Motif Reference Manual

Name
XmRenderTableAddRenditions – add renditions to a render table.

Synopsis
XmRenderTable XmRenderTableAddRenditions (XmRenderTable
old_table,

XmRendition
*new_renditions,

 Cardinal
new_rendition_count,

XmMergeMode
merge_mode)

Inputs
old_table Specifies a render table.
new_renditions Specifies an array of renditions to merge with the
render table.
new_rendition_count Specifies the number of renditions in the array.
merge_mode Specifies the action to take if entries have the same
tag.

Returns
The newly allocated merged render table.

Availability
Motif 2.0 and later.

Description
A render table is a set of renditions which can be used to specify the way in
which XmStrings are drawn. XmRenderTableAddRenditions() creates a
new render table by merging the list of renditions specified by new_renditions
into the renditions contained within old_table. If a rendition with the same tag is
found in both old_table and new_renditions, merge_mode is used to give prece-
dence. The new render table is returned.

If old_table is NULL, a new render table is allocated which contains only the
renditions of new_renditions. If new_renditions is NULL or
new_rendition_count is zero, the old_table is returned unmodified. If a rendition
within old_table has the same tag as one within new_renditions, merge_mode
determines how to resolve the conflict. If merge_mode is
XmMERGE_REPLACE, the rendition within old_table is ignored, and the rendi-
tion within new_renditions is added to the new table. If the mode is
XmMERGE_SKIP, the new table contains the rendition from old_table, and that
from new_renditions is ignored. If the mode is XmMERGE_NEW, the rendition

Motif Functions and Macros XmRenderTableAddRenditions

Motif Reference Manual 317

within new_renditions is used, except that where any resources of the rendition
are unspecified, the value is copied from the matching rendition from the
old_table. A resource is unspecified if the value is XmAS_IS or NULL. Lastly, if
the mode is XmMERGE_OLD, it is the old_table rendition which is added to the
new table, and any unspecified resources are taken from the new rendition.

Usage
The reference count for the original table is decremented and deallocated where
necessary, and a newly allocated render table containing the merged data is
returned. It is the responsibility of the programmer to reclaim the allocated mem-
ory for the returned render table by calling XmRenderTableFree() at a suita-
ble point.

Example
The following specimen code creates a set of renditions and merges them into an
unspecified render table:

XmRendition new_renditions[2];
XmRenderTable new_table;
Arg argv[4];
Cardinal argc = 0;
Pixel fg =...;
Pixel bg =...;

XtSetArg (argv[argc], XmNfontName, "fixed");
argc++;
XtSetArg (argv[argc], XmNfontType, XmFONT_IS_FONT);
argc++;
XtSetArg (argv[argc], XmNloadModel, XmLOAD_DEFERRED);
argc++;
new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

argc = 0;
XtSetArg (argv[argc], XmNrenditionBackground, bg); argc++;
XtSetArg (argv[argc], XmNrenditionForeground, fg); argc++;
new_renditions[1] = XmRenditionCreate (widget, "colors", argv, argc);
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMERGE_REPLACE);)

XmRenderTableAddRenditions Motif Functions and Macros

318 Motif Reference Manual

See Also
XmRenderTableCopy(1), XmRenderTableFree(1),
XmRenderTableGetRendition(1),
XmRenderTableGetRenditions(1), XmRenderTableGetTags(1),
XmRenderTableRemoveRenditions(1), XmRenditionCreate(1),
XmRenditionFree(1), XmRenditionRetrieve(1),
XmRenditionUpdate(1), XmRendition(2).

Motif Functions and Macros XmRenderTableCopy

Motif Reference Manual 319

Name
XmRenderTableCopy – copy a render table.

Synopsis
XmRenderTable XmRenderTableCopy (XmRenderTable old_table, XmString-
Tag *tags, int tag_count)

Inputs
old_table Specifies the table containing the renditions to be copied.
tags Specifies an array of tags. Renditions with matching tags are
copied.
tag_count Specifies the number of items within the tags array.

Returns
A new render table containing renditions with matching tags, or NULL.

Availability
Motif 2.0 and later.

Description
An XmRenderTable is an array of XmRendition objects, which are used to
render compound strings. XmRenderTableCopy() creates a newly allocated
render table by copying renditions from an existing table, old_table. An array of
tags can be supplied which acts as a filter: only those renditions from old_table
which have a matching XmNtag resource are copied. The number of items within
any tags array is specified through tag_count. If tags is NULL, all of the rendi-
tions within old_table are copied. If old_table is NULL, the function returns
NULL.

Usage
The function allocates storage for the returned render table, including storage for
each of the newly copied renditions. It is the responsibility of the programmer to
reclaim the memory at an appropriate point by calling XmRenderTable-
Free().

In Motif 2.0 and later, the XmRenderTable supersedes the XmFontList, which is
now considered obsolete. For backwards compatibility, the XmFontList opaque
type is implemented through the render table.

See Also
XmRenderTableAddRenditions(1), XmRenderTableFree(1),
XmRenderTableGetRendition(1),
XmRenderTableGetRenditions(1), XmRenderTableGetTags(1),
XmRenderTableRemoveRenditions(1), XmRenditionCreate(1),
XmRenditionFree(1), XmRenditionRetrieve(1),

XmRenderTableCopy Motif Functions and Macros

320 Motif Reference Manual

XmRenditionUpdate(1), XmRendition(2).

Motif Functions and Macros XmRenderTableCvtFromProp

Motif Reference Manual 321

Name
XmRenderTableCvtFromProp – convert from a string representation into a
render table.

Synopsis
XmRenderTable XmRenderTableCvtFromProp (Widget widget, char *property,
unsigned int length)

Inputs
widget Specifies a destination widget in a data transfer.
property Specifies the render table in string representation format.
length Specifies the number of bytes in the property string.

Returns
The converted render table.

Availability
Motif 2.0 and later.

Description
XmRenderTableCvtFromProp() converts a string representation of a render
table into an XmRenderTable. The string representation to be converted is given
by property, and the size of the string in bytes is length.

Usage
Typically, the procedure is used within the destination callback of widget when it
is the target of a data transfer. The inverse function XmRenderTableCvtTo-
Prop() is called by the convert procedures of the source of the data transfer.
XmRenderTableCvtFromProp() returns allocated memory, and it is the
responsibility of the programmer to reclaim the space at a suitable point by call-
ing XmRenderTableFree().

See Also
XmRenderTableCvtToProp(1), XmRenderTableFree(1),
XmRendition(2).

XmRenderTableCvtToProp Motif Functions and Macros

322 Motif Reference Manual

Name
XmRenderTableCvtToProp – convert a render table into a string representation.

Synopsis
unsigned int XmRenderTableCvtToProp (Widget widget,

XmRenderTable render_table,
char

**property_return)
Inputs

widget Specifies a source widget for the render table.
render_table Specifies the render table to convert.

Outputs
property_return Returns the string representation of the converted render
table.

Returns
The number of bytes in the converted string representation.

Availability
Motif 2.0 and later.

Description
XmRenderTableCvtToProp() converts an XmRenderTable render_table
into a string representation at the address specified by property_return. The
length of the converted string is returned.

Usage
Typically, the procedure is used within the convert callback of widget when it is
the source of a data transfer. The procedure returns allocated memory within
property_return, and it is the responsibility of the programmer to reclaim the
space at a suitable point by calling XtFree().

The standard built-in conversion routines within the Uniform Transfer Model
internally call XmRenderTableCvtToProp() when asked to convert the
_MOTIF_RENDER_TABLE selection.

See Also
XmRenderTableCvtFromProp(1), XmRendition(2).

Motif Functions and Macros XmRenderTableFree

Motif Reference Manual 323

Name
XmRenderTableFree – free the memory used by a render table.

Synopsis
void XmRenderTableFree (XmRenderTable table)

Inputs
table Specifies the render table to free.

Availability
Motif 2.0 and later.

Description
XmRenderTableFree() is a convenience function which deallocates space
used by the render table table.

Usage
Render tables, and the renditions which they contain, are reference counted. It is
important to call XmRenderTableFree() on a render table rather than
XtFree() so that each rendition in the table is properly deallocated. Motif
caches and shares render tables and the renditions which they contain, and so an
improper XtFree() would not respect any sharing currently in place.
XmRenderTableFree() does not actually free the render table until the refer-
ence count is zero.

See Also
XmRenderTableAddRenditions(1), XmRenderTableCopy(1),
XmRenderTableRemoveRenditions(1), XmRenditionCreate(1),
XmRenditionFree(1), XmRendition(2).

XmRenderTableGetRendition Motif Functions and Macros

324 Motif Reference Manual

Name
XmRenderTableGetRendition – search a render table for a matching rendition.

Synopsis
XmRendition XmRenderTableGetRendition (XmRenderTable table, XmString-
Tag tag)

Inputs
table Specifies the render table to search.
tag Specifies the tag with which to find a rendition.

Returns
A Rendition which matches tag, otherwise NULL.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetRendition() is a convenience function which searches
table, and returns the rendition which matches tag.

Usage
XmRenderTableGetRendition() performs a linear search through the ren-
ditions contained within table, comparing the XmNtag resource value with the
search string given by tag. If no match is found, any XmNnoRenditionCallback1
callbacks registered with the XmDisplay object are invoked, supplying the table
as the render_table element of the XmDisplayCallbackStruct passed to the call-
backs. If the callbacks modify the render_table element, the linear search is
restarted. A copy of any matching rendition is returned, otherwise NULL.

XmRenderTableGetRendition() allocates space for the returned rendition,
and it is the responsibility of the programmer to reclaim the space at a suitable
point by calling XmRenditionFree().

See Also
XmRenderTableAddRenditions(1),
XmRenderTableGetRenditions(1),
XmRenderTableRemoveRenditions(1), XmRenditionFree(1),
XmRendition(2).

1.Erroneously given as XmNnoRendition in 2nd edition.

Motif Functions and Macros XmRenderTableGetRenditions

Motif Reference Manual 325

Name
XmRenderTableGetRenditions – search a render table for matching renditions.

Synopsis
XmRendition *XmRenderTableGetRenditions (XmRenderTable table,

XmStringTag *tags,
Cardinal tag_count)

Inputs
table Specifies the render table to search.
tags Specifies an array of tags for which matching renditions are
required.
tag_count Specifies the number of items in tags.

Returns
The array of renditions which have matching tags.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetRenditions() searches table for all renditions which
have a tag that matches an entry within the list tags. If the table is NULL, or if
tags is NULL, or if tag_count is zero, the function returns NULL. Otherwise,
the function returns an allocated array of matching rendition objects.

Usage
XmRenderTableGetRenditions() iterates through a set of tags, compar-
ing in turn each tag with the group of renditions contained within a render table.
If no match is found when comparing a tag, any XmNnoRenditionCallback1 call-
backs registered with the XmDisplay object are invoked, supplying the table as
the render_table element of the XmDisplayCallbackStruct passed to the call-
backs. If the callbacks modify the render_table element, the linear search is
restarted for that tag.

The documentation states that the function returns an allocated array, renditions
being copied into the array at the same index of the matching tag within the tags
array. For example, if the third tag in tags matches a rendition, that rendition is
copied into the third element of the returned array. If any tag in the tags list does
not match any rendition in the table, that slot in the returned array is set to NULL.

The sources, however, do not match the documentation: renditions are copied
into the array in the order which they are matched, ignoring any slots which do

1.Erroneously given as XmNnoRendition in 2nd edition.

XmRenderTableGetRenditions Motif Functions and Macros

326 Motif Reference Manual

not match. Thus if the first tag in tags results in a NULL match, any rendition
found from the second tag is placed into the first slot. If the number of matched
renditions is less than the number of supplied tags, then memory for the returned
array is reallocated to match the number of found renditions. In the absence of a
XmNnoRenditionCallback callback, it is not possible to deduce the size of the
returned rendition array.

The function allocates space for both the returned rendition array and the constit-
uent renditions, and it is the responsibility of the programmer to reclaim the
space at a suitable point by calling XmRenditionFree() on each of the ele-
ments in the returned array, and subsequently XtFree() on the array itself.

Example
The following specimen code illustrates the basic outline of a call to
XmRenderTableGetRenditions():

XmRendition *match_renditions;
XmStringTag tags[MAX_TAGS];
int i;

tags[0] = XmFONTLIST_DEFAULT_TAG;
tags[1] = XmS; /* "" */

...
/* search an unspecified render table */
match_renditions = XmRenderTableGetRenditions (render_table, tags,
MAX_TAGS);

/* use the matched set of renditions */
...

/* free the returned space */
if (match_renditions != NULL) {

/* ASSUMPTION: XtNumber (match_renditions) == MAX_TAGS */
/* Not a valid assumption if a tag does not match */

for (i = 0; i < MAX_TAGS; i++) {
XmRenditionFree (match_renditions[i]);

}

XtFree (match_renditions);
}

See Also
XmRenderTableAddRenditions(1), XmRenderTableGetRendition(1),
XmRenderTableRemoveRenditions(1), XmRenditionFree(1),
XmRendition(2).

Motif Functions and Macros XmRenderTableGetTags

Motif Reference Manual 327

Name
XmRenderTableGetTags – fetch the list of rendition tags from a render table.

Synopsis
int XmRenderTableGetTags (XmRenderTable table, XmStringTag **tag_list)

Inputs
table Specifies the render table.

Outputs
tag_list Returns the list of rendition tags.

Returns
The number of tags within the returned tag_list.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetTags() is a convenience function which iterates through
a render table, collecting all the tags from the individual renditions within the
table, and returning them to the programmer. The number of tags placed at the
address tag_list by the function is returned.

Usage
XmRenderTableGetTags() allocates an array, and places in the array a copy
of the XmNtag resource for each rendition within the table. The array is returned
at the address specified by the tag_list parameter. If the table is NULL, tag_list is
initialized to NULL, and the function returns zero. It is the responsibility of the
programmer to reclaim the space by calling XtFree() on each of the items
within the allocated array, and then subsequently calling XtFree() on the array
itself.

Example
The following specimen code illustrates the basic outline of a call to
XmRenderTableGetTags():

XmStringTag *tags;
int count, i;

/* fetch the tags from an unspecified render table */
count = XmRenderTableGetTags (render_table, &tags);

/* use the tags */
...

/* free the returned space */

XmRenderTableGetTags Motif Functions and Macros

328 Motif Reference Manual

if (tags != (XmStringTag *) 0) {
for (i = 0; i < count; i++) {

XtFree (tags[i]);
}

XtFree (tags);
}

See Also
XmRenditionFree(1), XmRendition(2).

Motif Functions and Macros XmRenderTableRemoveRenditions

Motif Reference Manual 329

Name
XmRenderTableRemoveRenditions – copy a render table, excluding specified
renditions.

Synopsis
XmRenderTable XmRenderTableRemoveRenditions (XmRenderTable
old_table,

XmStringTag *tags,
int

tag_count)
Inputs

old_table Specifies a render table.
tags Specifies an array of rendition tags. Any rendition which

matches an item in the array is not copied from old_table.
tag_count Specifies the number of items in the tags array.

Returns
A new render table with matching renditions removed.

Availability
Motif 2.0 and later.

Description
XmRenderTableRemoveRenditions() creates a new render table by copy-
ing from old_table only those renditions which do not have a tag matching items
within the array tags. If tags is NULL, or if tag_count is zero, or if no renditions
are removed, the function returns the old_table unmodified. Otherwise, old_table
is deallocated, and the reference counts for any excluded renditions are decre-
mented, before the function returns the newly allocated render table.

Usage
A rendition is not copied into the returned table if it has a XmNtag resource value
the same as any item within the tags list. When the returned render table differs
from the original old_table parameter, the function allocates space for the new
table, and it is the responsibility of the programmer to reclaim the space by call-
ing XmRenderTableFree().

See Also
XmRenderTableAddRenditions(1), XmRenderTableFree(1),
XmRendition(2).

XmRenditionCreate Motif Functions and Macros

330 Motif Reference Manual

Name
XmRenditionCreate – create a rendition object.

Synopsis
XmRendition XmRenditionCreate (Widget widget, XmStringTag tag, Arg
*arglist, Cardinal argcount)

Inputs
widget Specifies a widget.
tag Specifies a tag for the rendition object.
arglist Specifies an argument list, consisting of resource name/value pairs.
argcount Specifies the number of arguments in arglist.

Returns
The new rendition object.

Availability
Motif 2.0 and later.

Description
XmRenditionCreate() creates a new rendition object, which can be used as
an entry in a render table used for rendering XmStrings. widget is used to find a
connection to the X server and an application context. tag is used as the XmNtag
resource of the new rendition object. Resources for the new object are supplied in
the arglist array.

Usage
The implementation of XmRendition is through a pseudo widget: although not a
true widget, the object has resources and a resource style interface for setting and
fetching values of the rendition. Typically, a rendition is merged into an existing
render table through the function XmRenderTableAddRenditions(). Com-
pound strings are rendered by successively matching tags within the compound
string with the XmNtag resources of renditions in the table, and then using the
resources of matched renditions to display the string components.

XmRenditionCreate() allocates storage for the returned rendition object. It
is the responsibility of the programmer to reclaim the storage at a suitable point
by calling XmRenditionFree(). Renditions are reference counted, and it is
important to call XmRenditionFree() rather than XtFree() in order to main-
tain the references.

Example
The following specimen code creates a pair of renditions and merges them into
an unspecified render table:

XmRendition new_renditions[2];

Motif Functions and Macros XmRenditionCreate

Motif Reference Manual 331

XmRenderTable new_table;
Arg argv[4];
Cardinal argc = 0;
Pixel fg =...;
Pixel bg =...;

/* create a rendition with fonts specified */
argc = 0;
XtSetArg (argv[argc], XmNfontName, "fixed");
argc++;
XtSetArg (argv[argc], XmNfontType, XmFONT_IS_FONT);
argc++;
XtSetArg (argv[argc], XmNloadModel, XmLOAD_DEFERRED);
argc++;
new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

/* create a rendition with line style specified */
argc = 0;
XtSetArg (argv[argc], XmNrenditionBackground, bg);
argc++;
XtSetArg (argv[argc], XmNrenditionForeground, fg);
argc++;
XtSetArg (argv[argc], XmNunderlineType, XmSINGLE_LINE);
argc++;
XtSetArg (argv[argc], XmNstrikethruType, XmSINGLE_LINE);
argc++;
new_renditions[1] = XmRenditionCreate (widget, "lineStyle", argv, argc);

/* merge into an unspecified render table */
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMERGE_REPLACE);

See Also
XmRenderTableAddRenditions(1), XmRenditionFree(1),
XmRenditionRetrieve(1), XmRenditionUpdate(1),
XmRendition(2).

XmRenditionFree Motif Functions and Macros

332 Motif Reference Manual

Name
XmRenditionFree – free the memory used by a rendition.

Synopsis
void XmRenditionFree (XmRendition rendition)

Inputs
rendition Specifies the rendition that is to be freed.

Availability
Motif 2.0 and later.

Description
XmRenditionFree() deallocates storage used by the specified rendition. The
routine does not free any XFontSet or XFontStruct data structures associated
with the rendition object.

Usage
XmRenditionFree() frees the storage used by the rendition object, but does
not free font data structures associated with the XmNfont resource of the object.
It is important to call XmRenditionFree() rather than XtFree() because
Motif reference counts rendition objects. XmRenditionFree() decrements the
reference count for the rendition; the rendition is not actually freed until the refer-
ence count reaches 0 (zero).

See Also
XmRenditionCreate(1), XmRendition(2).

Motif Functions and Macros XmRenditionRetrieve

Motif Reference Manual 333

Name
XmRenditionRetrieve – fetch rendition object resources.

Synopsis
void XmRenditionRetrieve (XmRendition rendition, Arg *arg_list, Cardinal
arg_count)

Inputs
rendition Specifies the rendition whose resources are fetched.
arg_count Specifies the number of arguments in arg_list.

Outputs
arg_list Specifies an argument list, consisting of resource name/value pairs.

Availability
Motif 2.0 and later.

Description
XmRenditionRetrieve() fetches selective resource values of a rendition
object. The set of resources retrieved is specified through the resource list
arg_list, each element of the list being a structure containing a name/value pair.
The number of elements within the list is given by arg_count.

Usage
XmRenditionRetrieve() directly returns the values of the rendition
resources, and not copies of them. The programmer should not inadvertently
modify a returned value, but should take a copy of any pointer-valued resource
which is to be changed. For example, the XmNtag and XmNfontName resources
should be copied into a separate address space before modifying or manipulating
the values.

If the XmNloadModel of the rendition object is XmLOAD_DEFERRED, and the
font specified by the XmNfont resource is NULL, but the XmNfontName value
is not NULL, and if the programmer has specified that the font is to be retrieved
within arg_list, then XmRenditionRetrieve() automatically changes the
load model to XmLOAD_IMMEDIATE and directly calls a procedure to load
the font indicated by XmNfontName before returning the requested resource val-
ues.

Example
The following specimen code illustrates fetching resources from an unspecified
rendition object:

Pixel bg;
Pixel fg;
XtPointer font;

XmRenditionRetrieve Motif Functions and Macros

334 Motif Reference Manual

String font_name;
XmFontType font_type;
unsigned char load_model;
unsigned char strike_type;
XmTabList tab_list;
XmStringTag tag;
unsigned char ul_type;
Arg av[10];
Cardinal ac = 0;

XtSetArg (av[ac], XmNrenditionForeground, &fg); ac++;
XtSetArg (av[ac], XmNrenditionBackground, &bg); ac++;
XtSetArg (av[ac], XmNfont, &font); ac++;
XtSetArg (av[ac], XmNfontName, &font_name); ac++;
XtSetArg (av[ac], XmNfontType, &font_type); ac++;
XtSetArg (av[ac], XmNloadModel, &load_model); ac++;
XtSetArg (av[ac], XmNstrikethruType, &strike_type); ac++;
XtSetArg (av[ac], XmNtabList, &tab_list); ac++;
XtSetArg (av[ac], XmNtag, &tag); ac++;
XtSetArg (av[ac], XmNunderlineType, &ul_type); ac++;

XmRenditionRetrieve (rendition, av, ac);

See Also
XmRenditionCreate(1), XmRenditionFree(1),
XmRenditionUpdate(1), XmRendition(2).

Motif Functions and Macros XmRenditionRetrieve

Motif Reference Manual 335

Name
XmRenditionUpdate – set rendition object resources.

Synopsis
void XmRenditionUpdate (XmRendition rendition, Arg *arg_list, Cardinal
arg_count)

Inputs
rendition Specifies the rendition whose resources are to be changed.
arg_list Specifies an argument list, consisting of resource name/value pairs.
arg_count Specifies the number of arguments within arg_list.

Availability
Motif 2.0 and later.

Description
XmRenditionUpdate() is a convenience function which sets the resources
for a rendition object. The attributes to change are specified through an array of
name/value pairs, similar to the resource-style interface of XtSetValues().

Usage
Modifying the value of the XmNfontName resource initially resets the XmNfont
resource to NULL, irrespective of whether the load model for the new font is
XmLOAD_IMMEDIATE or XmLOAD_DEFERRED.

Example
The following specimen code illustrates setting resources for an unspecified ren-
dition object:

Pixel bg =...;
Pixel fg =...;
Arg av[10];
Cardinal ac = 0;

XtSetArg (av[ac], XmNrenditionForeground, fg);
ac++;
XtSetArg (av[ac], XmNrenditionBackground, bg);
ac++;
XtSetArg (av[ac], XmNfontType, XmFONT_IS_FONT);
ac++;
XtSetArg (av[ac], XmNfontName, "fixed");
ac++;
XtSetArg (av[ac], XmNloadModel, XmLOAD_DEFERRED);
ac++;

XmRenditionRetrieve Motif Functions and Macros

336 Motif Reference Manual

XtSetArg (av[ac], XmNstrikethruType, XmSINGLE_LINE);
ac++;
XtSetArg (av[ac], XmNunderlineType, XmSINGLE_LINE);
ac++;

XmRenditionUpdate (rendition, av, ac);

See Also
XmRenditionCreate(1), XmRenditionFree(1),
XmRenditionRetrieve(1), XmRendition(2).

Motif Functions and Macros XmRepTypeAddReverse

Motif Reference Manual 337

Name
XmRepTypeAddReverse – install the reverse converter for a representation type.

Synopsis
#include <Xm/RepType.h>

void XmRepTypeAddReverse (XmRepTypeId rep_type_id)
Inputs

rep_type_id Specifies the ID number of the representation type.

Availability
Motif 1.2 and later.

Description
XmRepTypeAddReverse() installs a reverse converter for a previously regis-
tered representation type. The reverse converter converts numerical representa-
tion type values to string values. The rep_type_id argument specifies the ID
number of the representation type. If the representation type contains duplicate
values, the reverse converter uses the first name in the value_names list that
matches the specified numeric value.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeAddReverse() provides a way for an application to install a converter
that converts numeric values to their string values.

See Also
XmRepTypeGetId(1), XmRepTypeRegister(1).

XmRepTypeGetId Motif Functions and Macros

338 Motif Reference Manual

Name
XmRepTypeGetId – get the ID number of a representation type.

Synopsis
#include <Xm/RepType.h>

XmRepTypeId XmRepTypeGetId (String rep_type)
Inputs

rep_type Specifies the string name of a representation type.
Returns

The ID number of the representation type or XmREP_TYPE_INVALID if the
representation type is not registered.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetId() retrieves the ID number of the specified representation
type rep_type from the representation type manager. The rep_type string is the
string name of a representation type that has been registered with XmRepTy-
peRegister(). XmRepTypeGetId() returns the ID number if the represen-
tation type has been registered. This value is used in other representation type
manager routines to identify a particular type. Otherwise, the routine returns
XmREP_TYPE_INVALID.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetId() provides a way for an application get the ID of a representation
type, which can be used to identify the type to other representation manager rou-
tine.

See Also
XmRepTypeGetNameList(1), XmRepTypeGetRecord(1),
XmRepTypeGetRegistered(1), XmRepTypeRegister(1).

Motif Functions and Macros XmRepTypeGetNameList

Motif Reference Manual 339

Name
XmRepTypeGetNameList – get the list of value names for a representation type.

Synopsis
#include <Xm/RepType.h>

String * XmRepTypeGetNameList (XmRepTypeId rep_type_id, Boolean
use_uppercase_format)

Inputs
rep_type_id Specifies the ID number of the representation type.
use_uppercase_format Specifies whether or not the names are in uppercase
characters.

Returns
A pointer to an array of value names.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetNameList() retrieves the list of value names associated with
the specified rep_type_id. The routine returns a pointer to a NULL-terminated
list of value names for the representation type, where each value name is a
NULL-terminated string. If use_uppercase_format is True, the value names are
in uppercase characters with Xm prefixes. Otherwise, the value names are in low-
ercase characters without Xm prefixes. XmRepTypeGetNameList() allocates
storage for the returned data. The application is responsible for freeing the stor-
age using XtFree() on each of the elements in the returned array, and subse-
quently upon the array pointer itself.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetNameList() provides a way for an application to get the named
values for a particular representation type.

See Also
XmRepTypeGetId(1), XmRepTypeGetRecord(1),
XmRepTypeGetRegistered(1), XmRepTypeRegister(1).

XmRepTypeGetRecord Motif Functions and Macros

340 Motif Reference Manual

Name
XmRepTypeGetRecord – get information about a representation type.

Synopsis
#include <Xm/RepType.h>

XmRepTypeEntry XmRepTypeGetRecord (XmRepTypeId rep_type_id)
Inputs

rep_type_id Specifies the ID number of the representation type.
Returns

A pointer to a representation type entry structure.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetRecord() retrieves information about the representation type
specified by rep_type_id. The routine returns a XmRepTypeEntry, which is a
pointer to a representation type entry structure. This structure contains informa-
tion about the value names and values for the enumerated type. XmRep-
TypeGetRecord() allocates storage for the returned data. The application is
responsible for freeing the storage using XtFree().

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetRecord() provides a way for an application to retrieve information
about a particular representation type.

Structures
The XmRepTypeEntry is defined as follows:

typedef struct {
String rep_type_name; /* name of representation type */
String *value_names; /* array of value names */
unsigned char *values; /* array of numeric values */
unsigned char num_values; /* number of values */
Boolean reverse_installed; /* reverse converter installed flag */
XmRepTypeId rep_type_id; /* representation type ID */

Motif Functions and Macros XmRepTypeGetRecord

Motif Reference Manual 341

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-
TypeList;

See Also
XmRepTypeGetId(1), XmRepTypeGetNameList(1),
XmRepTypeGetRegistered(1), XmRepTypeRegister(1).

XmRepTypeGetRegistered Motif Functions and Macros

342 Motif Reference Manual

Name
XmRepTypeGetRegistered – get the registered representation types.

Synopsis
#include <Xm/RepType.h>

XmRepTypeList XmRepTypeGetRegistered (void)
Returns

A pointer to the registration list of representation types.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetRegistered() retrieves the whole registration list for the
representation type manager. The routine returns a copy of the registration list,
which contains information about all of the registered representation types. The
registration list is an array of XmRepTypeList structures, where each structure
contains information about the value names and values for a single representation
type. The end of the registration list is indicated by a NULL pointer in the
rep_type_name field. XmRepTypeGetRegistered allocates storage for the
returned data. The application is responsible for freeing this storage using
XtFree(). The list of value names (the value of the value_names field), the list
of values (the value of the values field), and the array of structures all need to be
freed.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetRegistered() provides a way for an application to get information
about all of the registered representation types.

Example
The following code fragment shows the use of XmRepTypeGetRegis-
tered() to print the value names and values of all of the registered representa-
tion types:

XmRepTypeList replist; int i;
replist = XmRepTypeGetRegistered();

Motif Functions and Macros XmRepTypeGetRegistered

Motif Reference Manual 343

while (replist->rep_type_name != NULL) {
printf ("Representation type name: %s\n", replist->rep_type_name);
printf ("Value names and associated values: \n");

for (i = 0; i < replist->num_values; i++) {
printf ("%s: ", replist->value_names[i]);
printf ("%d\n", replist->values[i]);

}

replist++;
XtFree ((char *)replist->values);
XtFree ((char *)replist->value_names);

}

XtFree ((char *)replist);

Structures
The XmRepTypeList is defined as follows:

typedef struct {
String rep_type_name; /* name of representation type
*/
String *value_names; /* array of value names */
unsigned char *values; /* array of numeric values */
unsigned char num_values; /* number of values */
Boolean reverse_installed; /* reverse converter installed flag
*/
XmRepTypeId rep_type_id; /* representation type ID */

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-
TypeList;

See Also
XmRepTypeGetRecord(1), XmRepTypeGetNameList(1),
XmRepTypeRegister(1).

XmRepTypeInstallTearOffModelConverter Motif Functions and Macros

344 Motif Reference Manual

Name
XmRepTypeInstallTearOffModelConverter – install the resource converter for
the RowColumn XmNtearOffModel resource.

Synopsis
#include <Xm/RepType.h>

void XmRepTypeInstallTearOffModelConverter (void)

Availability
Motif 1.2 and later. In Motif 2.0 and later, the converter for the XmNtearOff-
Model resource is internally installed, and this function is obsolete.

Description
XmRepTypeInstallTearOffModelConverter() installs the resource
converter for the RowColumn XmNtearOffModel resource. This resource con-
trols whether or not PulldownMenus and PopupMenus in an application can be
torn off. Once the converter is installed, the value of XmNtearOffModel can be
specified in a resource file.

Usage
In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown-
Menu supports tear-off menus. When a menu is torn off, it remains on the screen
after a selection is made so that additional selections can be made. A menu pane
that can be torn off contains a tear-off button at the top of the menu. The
XmNtearOffModel resource controls whether or not tear-off functionality is
available for a menu. This resource can take the values
XmTEAR_OFF_ENABLED or XmTEAR_OFF_DISABLED.

In Motif 1.2, the resource converter for XmNtearOffModel is not installed by
default. Some existing applications depend on receiving a callback when a menu
is mapped; since torn-off menus are always mapped, these applications might fail
if a user is allowed to enable tear-off menus from a resource file. XmRepTy-
peInstallTearOffModelConverter() registers the converter that allows
the resource to be set from a resource file.

See Also
XmRowColumn(2).

Motif Functions and Macros XmRepTypeRegister

Motif Reference Manual 345

Name
XmRepTypeRegister – register a representation type resource.

Synopsis
#include <Xm/RepType.h>

XmRepTypeId XmRepTypeRegister (String rep_type,
String *value_names,
unsigned char *values,
unsigned char num_values)

Inputs
rep_type Specifies the string name for the representation type.
value_names Specifies an array of value names for the representation type.

IP values 1i Specifies an array of values for the representa-
tion type.

num_values Specifies the number of items in value_names and values.
Returns

The ID number of the representation type.

Availability
Motif 1.2 and later.

Description
XmRepTypeRegister() registers a representation type with the representation
type manager. The representation type manager provides resource conversion
facilities for enumerated values. XmRepTypeRegister() installs a resource
converter that converts string values to numerical representation type values. The
strings in the value_names array specify the value names for the representation
type. The strings are specified in lowercase characters, with underscore charac-
ters separating words and without Xm prefixes.

If the values argument is NULL, the order of the strings in the value_names array
determines the numerical values for the enumerated type. In this case, the names
are assigned consecutive values starting with 0 (zero). If values is non-NULL, it
is used to assign values to the names. Each name in the value_names array is
assigned the corresponding value in the values array, so it is possible to have
nonconsecutive values or duplicate names for the same value.

XmRepTypeRegister() returns the ID number that is assigned to the repre-
sentation type. This value is used in other representation type manager routines to
identify a particular type. A representation type can only be registered once. If a
type is registered more than once, the behavior of the representation type man-
ager is undefined.

XmRepTypeRegister Motif Functions and Macros

346 Motif Reference Manual

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRepTy-
peRegister() provides a way for an application to register representation
types for application-specific resources or for new widget classes.

See Also
XmRepTypeAddReverse(1), XmRepTypeGetId(1),
XmRepTypeGetNameList(1), XmRepTypeGetRecord(1),
XmRepTypeGetRegistered(1), XmRepTypeValidValue(1).

Motif Functions and Macros XmRepTypeValidValue

Motif Reference Manual 347

Name
XmRepTypeValidValue – determine the validity of a numerical value for a rep-
resentation type.

Synopsis
#include <Xm/RepType.h>

Boolean XmRepTypeValidValue (XmRepTypeId rep_type_id,
unsigned char test_value,
Widget enable_default_warning)

Inputs
rep_type_id Specifies the ID number of the representation type.
test_value Specifies the value that is to be tested.
enable_default_warning Specifies a widget that is used to generate a default
warning message.

Returns
True if the specified value is valid or False otherwise.

Availability
Motif 1.2 and later.

Description
XmRepTypeValidValue() checks the validity of the specified test_value for
the representation type specified by rep_type_id. The routine returns True if the
value is valid. Otherwise, it returns False. If the enable_default_warning parame-
ter is non-NULL, XmRepTypeValidValue() uses the specified widget to gen-
erate a default warning message if the value is invalid. If
enable_default_warning is NULL, no default warning message is provided.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRepType-
ValidValue() provides a way for an application to check if a value is valid for
a particular representation type.

See Also
XmRepTypeGetId(1), XmRepTypeRegister(1).

XmResolveAllPartOffsets Motif Functions and Macros

348 Motif Reference Manual

Name
XmResolveAllPartOffsets – ensure upward-compatible widgets and applications.

Synopsis
void XmResolveAllPartOffsets (WidgetClass widget_class,

XmOffsetPtr *offset,
XmOffsetPtr *constraint_offset)

Inputs
widget_class Specifies the widget class pointer.

Outputs
offset Returns the widget offset record.
constraint_offset Returns the constraint offset record.

Description
XmResolveAllPartOffsets() ensures that an application or a widget will
be upwardly compatible with the records in a widget structure. In other words, if
the size of a widget structure changes in the future, this routine can be used to
calculate the locations of the new offsets. This routine and XmResolvePart-
Offsets() are similar. During the creation of a widget, both routines modify
the widget structure by allocating an array of offset values. XmResolvePartOff-
sets() affects only the widget instance record, while XmResolveAllPart-
Offsets() affects the widget instance and constraint records.

Usage
If you are subclassing a Motif widget, you should use XmResolveAllPart-
Offsets() and XmResolvePartOffsets() to ensure that your widget will
be compatible with future releases of the toolkit.

See Also
XmResolvePartOffsets(1).

Motif Functions and Macros XmResolvePartOffsets

Motif Reference Manual 349

Name
XmResolvePartOffsets – ensure upward-compatible widgets and applications.

Synopsis
void XmResolvePartOffsets (WidgetClass widget_class, XmOffsetPtr *offset)

Inputs
widget_class Specifies the widget class pointer.

Outputs
offset Returns the widget offset record.

Description
XmResolvePartOffsets() ensures that an application or a widget will be
upwardly compatible with the records in a widget structure. In other words, if the
size of a widget structure changes in the future, this routine can be used to calcu-
late the locations of the new offsets. This routine and XmResolveAllPart-
Offsets() are similar. During the creation of a widget, both routines modify
the widget structure by allocating an array of offset values. XmResolvePart-
Offsets() affects only the widget instance record, while XmResolveAll-
PartOffsets() affects the widget instance and constraint records.

Usage
If you are subclassing a Motif widget, you should use XmResolvePartOff-
sets() and XmResolveAllPartOffsets() to ensure that your widget will
be compatible with future releases of the toolkit.

See Also
XmResolveAllPartOffsets(1).

XmScaleGetValue Motif Functions and Macros

350 Motif Reference Manual

Name
XmScaleGetValue – get the slider value for a Scale widget.

Synopsis
#include <Xm/Scale.h>

void XmScaleGetValue (Widget widget, int *value_return)
Inputs

widget Specifies the Scale widget.
Outputs

value_return Returns the current slider position for the Scale.

Description
XmScaleGetValue() returns the current position of the slider within the spec-
ified Scale widget.

Usage
XmScaleGetValue() is a convenience routine that returns the value of the
XmNvalue resource for the Scale widget. Calling the routine is equivalent to call-
ing XtGetValues() for that resource, although XmScaleGetValue()
accesses the value through the widget instance structure rather than through
XtGetValues().

See Also
XmScaleSetValue(1), XmScale(2).

Motif Functions and Macros XmScaleSetTicks

Motif Reference Manual 351

Name
XmScaleSetTicks – set tick marks for a Scale widget.

Synopsis
#include <Xm/Scale.h>

void XmScaleSetTicks (Widget widget,
int big_every,
Cardinal num_med,
Cardinal num_small,
Dimension size_big,
Dimension size_med,
Dimension size_small)

Inputs
widget Specifies a scale widget.
big_every Specifies the number of scale values between large ticks.
num_med Specifies the number of medium-sized ticks between the large
tick marks.
num_small Specifies the number of small-sized ticks between the
medium-sized tick marks.
size_big Specifies the size of the large ticks.
size_med Specifies the size of the medium ticks.
size_small Specifies the size of the small ticks.

Availability
Motif 2.0 and later.

Description
XmScaleSetTicks() places tick marks along the edges of a Scale widget. Ticks
may be of three types: big, medium, and small, and the size (in pixels) of each
type is specified by size_big, size_med, and size_small respectively. The location
of each big tick is given by big_every, which simply specifies the number of
scale values between each big tick. The number of medium-sized ticks between
each big tick is given by num_med, and the number of small-sized ticks between
each medium-sized tick is num_small.

Usage
XmScaleSetTicks() is a convenience function which places tick marks along the
edge of a Scale by creating a series of SeparatorGadget children at evenly spaced
intervals. If size_big is zero, XmScaleSetTicks() simply returns. If size_med or
size_small is zero, num_med and num_small are forced to zero respectively. The
number of medium and small tick marks required may be zero, but the number of
large tick marks must not be less than 2.

XmScaleSetTicks Motif Functions and Macros

352 Motif Reference Manual

SeparatorGadgets are created with the names "BigTic", "MedTic", and "Small-
Tic", the XmNseparatorType resource of each is forced to XmSINGLE_LINE.
XmScaleSetTicks() does not delete any existing ticks when invoked on any par-
ticular Scale, neither does the Scale recalculate proper positions for the tick
marks if the scale orientation is changed after tick marks are added. In each case,
existing tick marks must be erased and subsequently redrawn or re-specified.

Example
The following code ensures that any tick marks are erased before adding new
ticks to a Scale:

#include <Xm/Scale.h>
#include <Xm/SeparatoG.h>

void ScaleEraseSetTicks (Widget scale,
int big_every,
Cardinal num_med,
Cardinal num_small,
Dimension size_big,
Dimension size_med,
Dimension size_med)

{
WidgetList children = (WidgetList) 0;
Cardinal num_children = (Cardinal) 0;
int i;
String name;

/* fetch scale children. */
XtVaGetValues (scale, XmNchildren, &children, XmNnumChildren,
&num_children, 0)

/* destroy old ticks. */
/* some optimization to reuse correctly */
/* placed ticks might be in order here... */
for (i = 0; i < num_children; i++) {

if (XmIsSeparatorGadget (children[i])) {
if ((name = XtName (children[i])) != (String) 0) {

if ((strcmp (name, "BigTic") == 0) ||
(strcmp (name, "MedTic") == 0) ||
(strcmp (name, "SmallTic") == 0)) {
XtDestroyWidget (children[i]);}

}
}

}

Motif Functions and Macros XmScaleSetTicks

Motif Reference Manual 353

/* create new ticks. */
XmScaleSetTicks (scale, big_every, num_med, num_small, size_big,
size_med, size_small);

}

See Also
XmScaleSetValues(1). XmScale(2), XmSeparatorGadget(2).

XmScaleSetValue Motif Functions and Macros

354 Motif Reference Manual

Name
XmScaleSetValue – set the slider value for a Scale widget.

Synopsis
#include <Xm/Scale.h>

void XmScaleSetValue (Widget widget, int value)
Inputs

widget Specifies the Scale widget.
value Specifies the value of the slider.

Description
XmScaleSetValue() sets the current position of the slider to value in the
specified Scale widget. The value must be in the range XmNminimum to XmN-
maximum.

Usage
XmScaleSetValue() is a convenience routine that sets the value of the XmN-
value resource for the Scale widget. Calling the routine is equivalent to calling
XtSetValues() for that resource, although XmScaleSetValue() accesses
the value through the widget instance structure rather than through XtSetVal-
ues().

See Also
XmScaleGetValue(1), XmScale(2).

Motif Functions and Macros XmScrollBarGetValues

Motif Reference Manual 355

Name
XmScrollBarGetValues – get information about the current state of a ScrollBar
widget.

Synopsis
#include <Xm/ScrollBar.h>

void XmScrollBarGetValues (Widget widget,
int *value_return,
int *slider_size_return,
int *increment_return,
int *page_increment_return)

Inputs
widget Specifies the ScrollBar widget.

Outputs
value_return Returns the current slider position.
slider_size_return Returns the current size of the slider.
increment_return Returns the current increment and decrement level.
page_increment_return Returns the current page increment and decrement
level.

Description
XmScrollBarGetValues() returns the current state information for the spec-
ified ScrollBar widget. This information consists of the position and size of the
slider, as well as the increment and page increment values.

Usage
XmScrollBarGetValues() is a convenience routine that returns the values
of the XmNvalue, XmNsliderSize, XmNincrement, and XmNpageIncrement
resources for the ScrollBar widget. Calling the routine is equivalent to calling
XtGetValues() for those resources, although XmScrollBarGetValues()
accesses the values through the widget instance structure rather than through
XtGetValues().

See Also
XmScrollBarSetValues(1), XmScrollBar(2).

XmScrollBarSetValues Motif Functions and Macros

356 Motif Reference Manual

Name
XmScrollBarSetValues – set the current state of a ScrollBar widget.

Synopsis
#include <Xm/ScrollBar.h>

void XmScrollBarSetValues (Widget widget,
int value,
int slider_size,
int increment,
int page_increment,
Boolean notify)

Inputs
widget Specifies the ScrollBar widget.
value Specifies the slider position.
slider_size Specifies the size of the slider.
increment Specifies the increment and decrement level.
page_increment Specifies the page increment and decrement level.
notify Specifies whether or not the value changed callback is
invoked.

Description
XmScrollBarSetValues() sets the current state of the specified ScrollBar
widget. The position of the slider is set to value, which must be in the range
XmNminimum to XmNmaximum minus XmNsliderSize. The size of the slider is
set to slider_size, which must be between 1 and the size of the scroll region. The
increment and page increment values are set to increment and page_increment,
respectively.

If notify is True, XmScrollBarSetValues() invokes the XmNval-
ueChangedCallback for the ScrollBar when the state is set.

Usage
XmScrollBarSetValues() is a convenience routine that sets the values of
the XmNvalue, XmNsliderSize, XmNincrement, and XmNpageIncrement
resources for the ScrollBar widget. Calling the routine is equivalent to calling
XtSetValues() for those resources, although XmScrollBarSetValues()
accesses the values through the widget instance structure rather than through
XtSetValues().

The notify parameter indicates whether or not the value changed callbacks for the
ScrollBar are invoked. You can avoid redundant code by setting this parameter to
True. If you are calling XmScrollBarSetValues() from a value changed

Motif Functions and Macros XmScrollBarSetValues

Motif Reference Manual 357

callback routine, you probably want to set the parameter to False to avoid the
possibility of an infinite loop. Calling XmScrollBarSetValues() with notify
set to True causes the callback routines to be invoked in a way that is indistin-
guishable from a user-initiated adjustment to the ScrollBar.

See Also
XmScrollBarGetValues(1), XmScrollBar(2).

XmScrolledWindowSetAreas Motif Functions and Macros

358 Motif Reference Manual

Name
XmScrolledWindowSetAreas – specify the children for a scrolled window.

Synopsis
#include <Xm/ScrolledW.h>

void XmScrolledWindowSetAreas (Widget widget,
Widget horizontal_scrollbar,
Widget vertical_scrollbar,
Widget work_region)

Inputs
widget Specifies the ScrolledWindow widget.
horizontal_scrollbar Specifies the widget ID of the horizontal ScrollBar.
vertical_scrollbar Specifies the widget ID of the vertical ScrollBar.
work_region Specifies the widget ID of the work window.

Availability
In Motif 2.0 and later, XmScrolledWindowSetAreas() is obsolete.

Description
XmScrolledWindowSetAreas() sets up the standard regions of a Scrolled-
Window widget for an application. The ScrolledWindow must be created before
the routine is called. XmScrolledWindowSetAreas() specifies the horizon-
tal and vertical ScrollBars and the work window region. If a particular Scrolled-
Window does not have one of these regions, the corresponding argument can be
specified as NULL.

Usage
Each of the ScrolledWindow regions is associated with a ScrolledWindow
resource; XmScrolledWindowSetAreas() sets the associated resources.
The resources that correspond to the last three arguments to the routine are XmN-
horizontalScrollBar, XmNverticalScrollBar, and XmNworkWindow, respec-
tively.

If an application does not call XmScrolledWindowSetAreas(), the widget
may still set some of the standard regions. If ScrollBars are added as children,
the XmNhorizontalScrollBar and XmNverticalScrollBar resources may be set if
they have not already been specified. Any child that is not a ScrollBar is used for
the XmNworkWindow. If you want to be certain about which widgets are used
for the different regions, it is wise to call XmScrolledWindowSetAreas()
explicitly.

In Motif 2.0 and later, the function is obsolete, and the programmer should spec-
ify the XmNhorizontalScrollBar, XmNverticalScrollBar, and XmNworkWindow

Motif Functions and Macros XmScrolledWindowSetAreas

Motif Reference Manual 359

resources directly through a call to XtSetValues(). Although ostensibly main-
tained for backwards compatibility, the implementation of XmScrolledWin-
dowSetAreas() in Motif 2.0 and later is not Motif 1.2 compatible. In Motif
1.2, supplying a NULL value for any of the scrollbar or work window parameters
directly sets the internal component to NULL. In Motif 2.0 and later, supplying a
NULL value causes that parameter to be ignored, leaving the internal component
intact.

Example
The following code fragment shows how to set the regions of a ScrolledWindow:

Widget toplevel, scrolled_w, drawing_a, vsb, hsb;
int view_width, view_height;

scrolled_w = XtVaCreateManagedWidget ("scrolled_w", xmScrolledWindow-
WidgetClass, toplevel,

XmNscrollingPolicy,
XmAPPLICATION_DEFINED,
XmNvisualPolicy, XmVARIA-
BLE,
NULL);

drawing_a = XtVaCreateManagedWidget ("drawing_a", xmDrawingAreaWidg-
etClass, scrolled_w,

XmNwidth, view_width,
XmNheight, view_height,
NULL);

vsb = XtVaCreateManagedWidget ("vsb", xmScrollBarWidgetClass, scrolled_w,
XmNorientation, XmVERTICAL,
NULL);

hsb = XtVaCreateManagedWidget ("hsb", xmScrollBarWidgetClass, scrolled_w,
XmNorientation, XmHORIZONTAL,
NULL);

XmScrolledWindowSetAreas (scrolled_w, hsb, vsb, drawing_a);

See Also
XmScrolledWindow(2).

XmScrollVisible Motif Functions and Macros

360 Motif Reference Manual

Name
XmScrollVisible – make an obscured child of a ScrolledWindow visible.

Synopsis
#include <Xm/ScrolledW.h>

void XmScrollVisible (Widget scrollw_widget,
Widget widget,
Dimension left_right_margin,
Dimension top_bottom_margin)

Inputs
scrollw_widget Specifies the ScrolledWindow widget.
widget Specifies the widget ID of the widget that is to be made

visible.
left_right_margin Specifies the distance between the widget and the left or

right edge of the viewport if the ScrolledWindow is
scrolled horizontally.

top_bottom_margin Specifies the distance between the widget and the top or
bottom edge of the viewport if the ScrolledWindow is
scrolled vertically.

Availability
Motif 1.2 and later.

Description
XmScrollVisible() scrolls the specified ScrolledWindow scrollw_widget so
that the obscured or partially obscured widget becomes visible in the work area
viewport. widget must be a descendent of scrollw_widget. The routine reposi-
tions the work area of the ScrolledWindow and sets the margins between the
widget and the viewport boundaries based on left_right_margin and
top_bottom_margin if necessary.

Usage
XmScrollVisible() provides a way for an application to ensure that a partic-
ular child of a ScrolledWindow is visible. In order for the routine to work, the
XmNscrollingPolicy of the ScrolledWindow widget must be set to XmAUTO-
MATIC. This routine is designed to be used in the XmNtraverseObscureCallback
for a ScrolledWindow.

See Also
XmScrolledWindow(2).

Motif Functions and Macros XmSelectionBoxGetChild

Motif Reference Manual 361

Name
XmSelectionBoxGetChild – get the specified child of a SelectionBox widget.

Synopsis
#include <Xm/SelectioB.h>

Widget XmSelectionBoxGetChild (Widget widget, unsigned char child)
Inputs

widget Specifies the SelectionBox widget.
child Specifies the child of the SelectionBox widget. Pass one of the val-
ues from the list below.

Returns
The widget ID of the specified child of the SelectionBox.

Availability
As of Motif 2.0, the toolkit abstract child fetch routines are marked for depreca-
tion. You should give preference to XtNameToWidget(), except when fetching
the SelectionBox default button or work area.

Description
XmSelectionBoxGetChild() returns the widget ID of the specified child of
the SelectionBox widget.

Usage
XmDIALOG_APPLY_BUTTON, XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. XmDIALOG_DEFAULT_BUTTON specifies the
current default button. XmDIALOG_LIST and XmDIALOG_LIST_LABEL
specify the list and its label. XmDIALOG_TEXT and
XmDIALOG_SELECTION_LABEL specify the selection text entry area and its
label. XmDIALOG_SEPARATOR specifies the separator and
XmDIALOG_WORK_AREA specifies any work area child that has been added
to the SelectionBox. For more information on the different children of the Selec-
tionBox, see the manual page in Section 2, Motif and Xt Widget Classes.

Widget Hierarchy
As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON or XmDIALOG_WORK_AREA children
using a public interface except through XmSelectionBoxGetChild(), the routine
should not be considered truly deprecated. For consistency with the preferred
new style, when fetching all other child values, consider giving preference to the

XmSelectionBoxGetChild Motif Functions and Macros

362 Motif Reference Manual

Intrinsics routine XtNameToWidget(), passing one of the following names as the
second parameter:

“Apply” (XmDIALOG_APPLY_BUTTON)
“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)
“*ItemsList”1 (XmDIALOG_LIST)
“Items” (XmDIALOG_LIST_LABEL)
“Selection” (XmDIALOG_SELECTION_LABEL)
“Text” (XmDIALOG_TEXT)

Structures
The possible values for child are:

XmDIALOG_APPLY_BUTTON
XmDIALOG_OK_BUTTON
XmDIALOG_CANCEL_BUTTON
XmDIALOG_SELECTION_LABEL
XmDIALOG_DEFAULT_BUTTON XmDIALOG_SEPARATOR
XmDIALOG_HELP_BUTTON XmDIALOG_TEXT
XmDIALOG_LIST
XmDIALOG_WORK_AREA
XmDIALOG_LIST_LABEL

See Also
XmPromptDialog(2), XmSelectionBox(2).

1.The “*” is important: the List is not a direct child of the SelectionBox, but of a ScrolledList.

Motif Functions and Macros XmSetColorCalculation

Motif Reference Manual 363

Name
XmSetColorCalculation – set the procedure that calculates default colors.

Synopsis
XmColorProc XmSetColorCalculation (XmColorProc color_proc)

Inputs
color_proc Specifies the procedure that is used for color calculation.

Returns
The previous color calculation procedure.

Description
XmSetColorCalculation() sets the procedure called by XmGetColors()1
that calculates the default foreground, top and bottom shadow, and selection
colors. The procedure calculates these colors based on the background color that
has been passed to the procedure. If color_proc is NULL, this routine restores the
default color calculation procedure. XmSetColorCalculation() returns the
color calculation procedure that was in use when the routine was called. Both
XmGetColors() and XmChangeColor() use the color calculation procedure.

Usage
Motif widgets rely on the use of shadowed borders to create their three-dimen-
sional appearance. The top and bottom shadow colors are lighter and darker
shades of the background color; these colors are reversed to make a component
appear raised out of the screen or recessed into the screen. The select color is a
slightly darker shade of the background color that indicates that a component is
selected. The foreground color is either black or white, depending on which color
provides the most contrast with the background color. XmSetColorCalcula-
tion() sets the procedure that calculates these colors. Use XmGetColorCal-
culation() to get the default color calculation procedure.

In Motif 2.0 and later, per-screen color calculation procedures are supported: if
the XmNcolorCalculationProc resource of the XmScreen object associated with a
given widget is not NULL, the procedure specified by the resource is used to cal-
culate color in preference to any procedure which may have been specified by
XmSetColorCalculation().

Procedures
The XmColorProc has the following syntax:

typedef void (*XmColorProc) (XColor *bg_color, /* specifies the back-
ground color */

1.Erroneously missing from 1st and 2nd editions.

XmSetColorCalculation Motif Functions and Macros

364 Motif Reference Manual

XColor *fg_color, /* returns the fore-
ground color */

XColor *sel_color, /* returns the select
color */

XColor *ts_color, /* returns the top
shadow color */

XColor *bs_color) /* returns the bottom
shadow color */

An XmColorProc takes five arguments. The first argument, bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, blue,
and pixel fields in the structure contain valid values. The rest of the arguments
are pointers to XColor structures for the colors that are to be calculated. The pro-
cedure fills in the red, green, and blue fields in these structures.

See Also
XmChangeColor(1), XmGetColorCalculation(1), XmGetColors(1).
XmScreen(2).

Motif Functions and Macros XmSetFontUnit

Motif Reference Manual 365

Name
XmSetFontUnit – set the font unit values.

Synopsis
void XmSetFontUnit (Display *display, int font_unit_value)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
font_unit_value Specifies the value for both horizontal and vertical font units.

Availability
In Motif 1.2 and later, XmSetFontUnit() is obsolete. It has been superseded
by setting the Screen resources XmNhorizontalFontUnit and XmNverticalFontU-
nit.

Description
XmSetFontUnit() sets the value of the horizontal and vertical font units for all
of the screens on the display. This routine is retained for compatibility with Motif
1.1 and should not be used in newer applications.

Usage
Font units are a resolution-independent unit of measurement that are based on the
width and height characteristics of a particular font. The default horizontal and
vertical font unit values are based on the XmNfont resource, which in Motif 1.2,
is a resource of the Screen object. An application can override these default val-
ues by calling XmSetFontUnit(). The values should be set before any widgets
that use resolution-independent data are created.

See Also
XmConvertUnits(1), XmSetFontUnits(1), XmGadget(2),
XmManager(2), XmPrimitive(2), XmScreen(2).

XmSetFontUnits Motif Functions and Macros

366 Motif Reference Manual

Name
XmSetFontUnits – set the font unit values.

Synopsis
void XmSetFontUnits (Display *display, int h_value, int v_value)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
h_value Specifies the value for horizontal font units.
v_value Specifies the value for vertical font units.

Availability
In Motif 1.2 and later, XmSetFontUnits() is obsolete. It has been superseded
by setting the Screen resources XmNhorizontalFontUnit and XmNverticalFontU-
nit.

Description
XmSetFontUnits() sets the value of the horizontal and vertical font units to
h_value and v_value respectively. The routine sets the font units for all of the
screens on the display. This routine is retained for compatibility with Motif 1.1
and should not be used in newer applications.

Usage
Font units are a resolution-independent unit of measurement that are based on the
width and height characteristics of a particular font. The default horizontal and
vertical font unit values are based on the XmNfont resource, which in Motif 1.2
and later, is a resource of the Screen object. An application can override these
default values by calling XmSetFontUnits(). The values should be set before
any widgets that use resolution-independent data are created.

See Also
XmConvertUnits(1), XmSetFontUnit(1), XmGadget(2),
XmManager(2), XmPrimitive(2), XmScreen(2).

Motif Functions and Macros XmSetMenuCursor

Motif Reference Manual 367

Name
XmSetMenuCursor – set the current menu cursor.

Synopsis
void XmSetMenuCursor (Display *display, Cursor cursorId)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
cursorId Specifies the cursor ID for the menu cursor.

Availability
In Motif 1.2 and later, XmSetMenuCursor() is obsolete. It has been super-
seded by setting the Screen resource XmNmenuCursor.

Description
XmSetMenuCursor() sets the menu cursor for an application. The routine sets
the cursor for all screens on the specified display. The specified cursor is shown
whenever the application is using a Motif menu on the specified display. This
routine is retained for compatibility with Motif 1.1 and should not be used in
newer applications.

Usage
The menu cursor is the pointer shape that is used whenever a menu is posted.
This cursor can be different from the normal pointer shape. In Motif 1.2 and later,
the new Screen object has a resource, XmNmenuCursor, that specifies the menu
cursor. XmSetMenuCursor() is retained for compatibility with Motif 1.1 and
should not be used in newer applications.

See Also
XmGetMenuCursor(1), XmScreen(2).

XmSetProtocolHooks Motif Functions and Macros

368 Motif Reference Manual

Name
XmSetProtocolHooks – set prehooks and posthooks for a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmSetProtocolHooks (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc prehook,
XtPointer pre_closure,
XtCallbackProc posthook,
XtPointer post_closure)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.
prehook Specifies the procedure to invoke before the client callbacks.
pre_closure Specifies any client data that is passed to the prehook.
posthook Specifies the procedure to invoke after the client callbacks.
post_closure Specifies any client data that is passed to the posthook.

Description
XmSetProtocolHooks() allows pre- and post-procedures to be invoked in
addition to the regular callback procedures that are performed when the Motif
window manager sends a protocol message. The prehook procedure is invoked
before calling the procedures on the client’s callback list, whereas the posthook
procedure is invoked after calling the procedures on the client’s callback list.
This routine gives shells more control flow, since callback procedures aren’t nec-
essarily executed in any particular order.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmSetProtocolHooks() gives an
application more control over the flow of callback procedures, since callbacks
are not necessarily invoked in any particular order.

See Also
XmAddProtocolCallback(1), XmRemoveProtocolCallback(1),
XmSetWMProtocolHooks(1), VendorShell(2).

Motif Functions and Macros XmSetWMProtocolHooks

Motif Reference Manual 369

Name
XmSetWMProtocolHooks – set prehooks and posthooks for the
XA_WM_PROTOCOLS protocol.

Synopsis
#include <Xm/Protocols.h>

void XmSetWMProtocolHooks (Widget shell,
Atom protocol,
XtCallbackProc prehook,
XtPointer pre_closure,
XtCallbackProc posthook,
XtPointer post_closure)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
prehook Specifies the procedure to invoke before the client callbacks.
pre_closure Specifies any client data that is passed to the prehook.
posthook Specifies the procedure to invoke after the client callbacks.
post_closure Specifies any client data that is passed to the posthook.

Description
XmSetWMProtocolHooks()1 is a convenience routine that calls XmSetPro-
tocolHooks() with property set to XA_WM_PROTOCOL, the window man-
ager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a
protocol, a client sends a ClientMessage event containing a property and proto-
col, and the receiving client responds by calling the associated protocol callback
routine. XmSetWMProtocolHooks() gives an application more control over
the flow of callback procedures, since callbacks are not necessarily invoked in
any particular order.

See Also
XmAddWMProtocolCallback(1), XmInternAtom(1),
XmRemoveWMProtocolCallback(1), XmSetProtocolHooks(1),
VendorShell(2).

1.Erroneously given as XmSetXmProtocolHooks() in 1st and 2nd editions.

XmSimpleSpinBoxAddItem Motif Functions and Macros

370 Motif Reference Manual

Name
XmSimpleSpinBoxAddItem – add an item to a SimpleSpinBox.

Synopsis
#include <Xm/SSpinB.h>

void XmSimpleSpinBoxAddItem (Widget widget, XmString item, int position)
Inputs

widget Specifies a SimpleSpinBox widget.
item Specifies an item to add.
position Specifies the position at which to add the new item.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxAddItem() adds an item to a SimpleSpinBox widget at a
given position within the list of values which the widget may display. If position
is zero, or if position is greater than the number of items in the list, the item is
appended to the list of values.

Usage
XmSimpleSpinBoxAddItem() is a convenience routine that adds an item to
the list of items which a SimpleSpinBox may display. In order to add an item to
the SimpleSpinBox, a compound string must be created. XmSimpleSpinBox-
AddItem() adds the item to the SimpleSpinBox by manipulating the XmNval-
ues, XmNnumValues, and XmNposition resources of the widget. If the
XmNspinBoxChildType resource of the widget is not XmSTRING, or if the item
is NULL, the procedure simply returns without modifying the array of values.

The SimpleSpinBox widget takes a copy of the supplied item; the programmer is
responsible for freeing the compound string at an appropriate point by calling
XmStringFree().

Example
The following procedure simply appends an item onto the end of a SimpleSpin-
Box list:

void SimpleSpinBoxAppend (Widget spinb, char *item)
{

XmString xms = XmStringGenerate ((XtPointer)
value,

XmFONTLIST_DEFA
ULT_TAG,

Motif Functions and Macros XmSimpleSpinBoxAddItem

Motif Reference Manual 371

XmCHARSET_TEXT,
NULL);

XmSimpleSpinBoxAddItem (spinb, xms, 0);
XmStringFree (xms);

}

See Also
XmSimpleSpinBoxDeletePos(1), XmSimpleSpinBoxSetItem(1),
XmStringFree(1), XmSimpleSpinBox(2).

XmSimpleSpinBoxDeletePos Motif Functions and Macros

372 Motif Reference Manual

Name
XmSimpleSpinBoxDeletePos – delete an item at the specified position from a
SimpleSpinBox.

Synopsis
#include <Xm/SSpinB.h>

void XmSimpleSpinBoxDeletePos (Widget widget, int position)
Inputs

widget Specifies a SimpleSpinBox widget.
position Specifies the position at which to delete an item.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxDeletePos() deletes an item at a given position from a
SimpleSpinBox widget. A value of 1 indicates the first item, 2 is the second item,
and so on. The last item in the list can be specified by passing a position of zero.

Usage
XmSimpleSpinBoxDeletePos() is a convenience function which deletes an
item from the set of values associated with a SimpleSpinBox. The function
directly manipulates the XmNvalues, XmNnumValues, and XmNposition
resources of the widget. If the XmNspinBoxChildType resource of the widget is
not XmSTRING, the function simply returns without modifying the array of val-
ues.

See Also
XmSimpleSpinBoxAddItem(1), XmSimpleSpinBoxSetItem(1),
XmSimpleSpinBox(2).

Motif Functions and Macros XmSimpleSpinBoxSetItem

Motif Reference Manual 373

Name
XmSimpleSpinBoxSetItem – set an item in a SimpleSpinBox.

Synopsis
#include <Xm/SSpinB.h>

void XmSimpleSpinBoxSetItem (Widget widget, XmString item)
Inputs

widget Specifies a SimpleSpinBox widget.
item Specifies the item to set.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxSetItem() makes an item in a SimpleSpinBox widget
the current value.

Usage
XmSimpleSpinBoxSetItem() is a convenience routine that selects one of
the SimpleSpinBox values. The item must exist within the XmNvalues array of
the widget, otherwise a warning message is displayed. The function modifies the
XmNposition resource of the widget if the item is found. No check is performed
to ensure that the XmNspinBoxChildType resource of the SimpleSpinBox is
XmSTRING.

See Also
XmSimpleSpinBoxAddItem(1), XmSimpleSpinBoxDeletePos(1),
XmSimpleSpinBox(2).

XmSpinBoxValidatePosition Motif Functions and Macros

374 Motif Reference Manual

Name
XmSpinBoxValidatePosition – validate the current value of a SpinBox.

Synopsis
#include <Xm/SpinB.h>

int XmSpinBoxValidatePosition (Widget text_field, int *position_value)
Inputs

text_field Specifies a text field child of a SpinBox widget.
Outputs

position_value Returns the position of the current value.
Returns

The status of the validation.

Availability
Motif 2.1 and later.

Description
XmSpinBoxValidatePosition() checks that the text_field child of a Spin-
Box has a valid position value, and places the validated value of the text_field at
the address position_value. If the position is valid, the function returns
XmVALID_VALUE. Otherwise the function returns XmCURRENT_VALUE,
XmMAXIMUM_VALUE, XmMINIMUM_VALUE, or
XmINCREMENT_VALUE, depending upon a comparison of the current posi-
tion and other constraint resources of the text_field.

Usage
XmSpinBoxValidatePosition() can be used to ensure that the user has
entered a valid value into an editable textual child of a SpinBox. If text_field is
NULL, or if text_field does not hold the XmQTaccessTextual trait, or if the
XmNspinBoxChildType of this widget is not XmNUMERIC the function returns
XmCURRENT_VALUE. The current value of the text field is fetched as a float-
ing point number, then converted into an integer using the XmNdecimalPoints
resource: digits after the decimal place are simply truncated. The current value is
subsequently compared against the XmNminimumValue and XmNmaximum-
Value resources: if less than XmNminimumValue, position_value is set to the
value of XmNminimumValue, and the function returns
XmMINIMUM_VALUE, or if the current value is more than XmNmaximum-
Value, position_value is set to the value of XmNmaximumValue, and the func-
tion returns XmMAXIMUM_VALUE. Lastly, the function checks that the
current value falls between XmNminimumValue and XmNmaximumValue on an

Motif Functions and Macros XmSpinBoxValidatePosition

Motif Reference Manual 375

interval specified by the XmNincrementValue resource. That is, the current value
is a member of the set:

{
XmNminimumValue,
XmNminimumValue + XmNincrementValue,
XmNminimumValue + (2 * XmNincrementValue),
XmNminimumValue + (3 * XmNincrementValue),
...
XmNminimumValue + (n * XmNincrementValue),
...
XmNmaximumValue

}

If the current value does not fall within the set, the position_value is set to the
nearest item in the set which is not more than the current value, and the function
returns XmINCREMENT_VALUE. If all checks pass, the position_value is set
to the current value, and the function returns XmVALID_VALUE.

The SpinBox does not modify the contents of text_field when performing the val-
idation.

Structures
The returned status has the following values:

XmCURRENT_VALUE XmINCREMENT_VALUE
XmMAXIMUM_VALUE XmMINIMUM_VALUE
XmVALID_VALUE

See Also
XmSpinBox(2).

XmStringBaseline Motif Functions and Macros

376 Motif Reference Manual

Name
XmStringBaseline – get the baseline spacing for a compound string.

Synopsis
Dimension XmStringBaseline (XmFontList fontlist, XmString string)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns
The distance, in pixels, from the top of the character box to the baseline of the
first line of text.

Availability
In Motif 2.0 and later, the XmFontList is obsolete. It is superseded by the
XmRenderTable, to which it has become an alias.

Description
XmStringBaseline() returns the distance, in pixels, from the top of the char-
acter box to the baseline of the first line of text in string. If string is created with
XmStringCreateSimple(), then fontlist must begin with the font associated
with the character set from the current language environment, otherwise the
result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringBaseline() provides information that is useful if you need to
render a compound string. Motif widgets render compound string automatically,
so you only need to worry about rendering them yourself if you are writing your
own widget. The routine is also useful if you want to get the dimensions of a
compound string rendered with a particular font.

See Also
XmStringComponentCreate(1), XmStringExtent(1),
XmStringHeight(1), XmStringWidth(1), XmRendition(2).

Motif Functions and Macros XmStringByteCompare

Motif Reference Manual 377

Name
XmStringByteCompare – compare two compound strings byte-by-byte.

Synopsis
Boolean XmStringByteCompare (XmString string1, XmString string2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
True if the two compound strings are byte-by-byte identical or False otherwise.

Description
XmStringByteCompare() compares the compound strings string1 and
string2 byte by byte. If the strings are equivalent, it returns True; otherwise it
returns False. If two compound strings are created with XmStringCreateLo-
calized() in the same language environment, using the same character string,
the strings are byte-for-byte equal. Similarly, if two compound strings are created
with XmStringCreate() using the same font list element tag and character
string, the strings are equal.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringByteCompare() is one of a number of routines that allow an appli-
cation to manipulate compound strings as it would regular character strings.

When a compound string is placed into a widget, the string is sometimes con-
verted to an internal format, which provides faster processing but strips out
redundant information. As a result, when an application retrieves the compound
string from the widget by calling XtGetValues(), the returned string does not
necessarily match the original string byte-for-byte. This situation occurs most
often with Label widgets and its subclasses.

See Also
XmStringComponentCreate(1), XmStringCompare(1).

XmStringByteStreamLength Motif Functions and Macros

378 Motif Reference Manual

Name
XmStringByteStreamLength – calculates the length of a byte stream.

Synopsis
unsigned int XmStringByteStreamLength (unsigned char *string)

Inputs
string Specifies a string in byte stream format.

Returns
The length, in bytes, of the string.

Availability
Motif 2.0 and later.

Description
XmStringByteStreamLength() calculates and returns the length of a byte
stream string in bytes, including any header information. The string is presumed
to be a compound string which has been converted into byte stream format.

Usage
Since the returned value includes the size of the stream header, the function
returns a non-zero value even if string is NULL. The function is primarily used
as part of data transfer operations, for example in transferring compound string
tables to and from the clipboard or other widgets.

See Also
XmCvtXmStringToByteStream(1),
XmCvtByteStreamToXmString(1).

Motif Functions and Macros XmStringCompare

Motif Reference Manual 379

Name
XmStringCompare – compare two compound strings.

Synopsis
Boolean XmStringCompare (XmString string1, XmString string2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
True if the two compound strings are semantically equivalent or False otherwise.

Description
XmStringCompare() compares the compound strings string1 and string2
semantically. If the strings are equivalent, it returns True; otherwise it returns
False. XmStringCompare() is similar to XmStringByteCompare() but
less restrictive. Two compound string are semantically equivalent if they have
the same text components, font list element tags, directions, and separators.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCompare() is one of a number of routines that allow an application
to manipulate compound strings as it would regular character strings.

See Also
XmStringcomponentCreate(1), XmStringByteCompare(1).

XmStringComponentCreate Motif Functions and Macros

380 Motif Reference Manual

Name
XmStringComponentCreate – create a compound string consisting of a single
component.

Synopsis
XmString XmStringComponentCreate (XmStringComponentType type,

unsigned int length,
XtPointer value)

Inputs
type Specifies the type of component to create.
length Specifies the length, in bytes, of value.
value Specifies the value of the component.

Returns
A new compound string, or NULL.

Availability
Motif 2.0 and later.

Description
XmStringComponentCreate() creates a new compound string consisting of
a component of the type specified by type, which contains the given value.

Usage
If type is not a valid component type, or if length is greater than zero and value is
NULL, then the function returns NULL. Otherwise, the function returns an allo-
cated compound string. It is the responsibility of the programmer to reclaim the
utilized space at an appropriate point by calling XmStringFree().

Structures
The string component type can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_TAB
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN
XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP

Motif Functions and Macros XmStringComponentCreate

Motif Reference Manual 381

XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

Example
The following code illustrates basic compound string creation by concatenating
elements from an array of strings:

XmString create_xmstring_from_array (char **array, int count, Boolean tab)
{

XmString txt, sep;
XmString xms = (XmString) 0;
XmStringComponentType sep_type;
int i;

if (tab) {
sep_type = XmSTRING_COMPONENT_TAB;

}
else {

sep_type = XmSTRING_COMPONENT_SEPARATOR;
}

for (i = 0; i < count; i++) {
txt = XmStringComponentCreate

(XmSTRING_COMPONENT_TE
XT, strlen (array[i]), (XtPointer)
array[i]);

xms = XmStringConcatAndFree (xms, txt);

if (i < count) {
/* another item after this... */
sep = XmStringComponentCreate (sep_type, 0, NULL);
xms = XmStringConcatAndFree (xms, sep);

}
}

/* caller must free this */
return xms;

}

See Also
XmStringConcatAndFree(1), XmStringFree(1).

XmStringConcat Motif Functions and Macros

382 Motif Reference Manual

Name
XmStringConcat – concatenate two compound strings.

Synopsis
XmString XmStringConcat (XmString string1, XmString string2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
A new compound string.

Description
XmStringConcat() returns the compound string formed by appending string2
to string1, leaving the original compound strings unchanged. Storage for the
result is allocated within the routine and should be freed by calling XmString-
Free(). Management of the allocated memory is the responsibility of the appli-
cation.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringConcat() is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringComponentCreate(1), XmStringCopy(1),
XmStringNConcat(1), XmStringNCopy(1).

Motif Functions and Macros XmStringConcatAndFree

Motif Reference Manual 383

Name
XmStringConcatAndFree – concatenate two compound strings.

Synopsis
XmString XmStringConcatAndFree (XmString string1, XmString string2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
A new compound string.

Availability
Motif 2.0 and later.

Description
XmStringConcatAndFree() is similar to XmStringConcat() in that each
returns a compound string formed by appending string2 to string1. XmString-
ConcatAndFree() differs from XmStringConcat() by freeing the original
compound strings. Storage for the result is allocated within the routine and
should be freed by calling XmStringFree(). Management of the allocated
memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, and locale components.

Example
The following code constructs a simple compound string out of piecemeal sub-
components:

XmString xms;
XmString xms_temp;

xms = XmStringGenerate((XtPointer) “Multiple”,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
NULL);

xms_temp = XmStringComponentCreate
(XmSTRING_COMPO
NENT_TAB, 0,
NULL);

xms = XmStringConcatAndFree(xms, xms_temp);

XmStringConcatAndFree Motif Functions and Macros

384 Motif Reference Manual

xms_temp = XmStringGenerate((XtPointer) “Column”,
XmFONTLIST_DEFAULT_TAG
,
XmCHARSET_TEXT,
NULL);

xms = XmStringConcatAndFree (xms, xms_temp);
xms_temp = XmStringComponentCreate

(XmSTRING_COMPO
NENT_TAB, 0,
NULL);

xms = XmStringConcatAndFree (xms, xms_temp);
xms_temp = XmStringGenerate((XtPointer) “Format”,

XmFONTLIST_DEFAULT_TAG
,
XmCHARSET_TEXT,
NULL);

xms = XmStringConcatAndFree (xms, xms_temp);

See Also
XmStringComponentCreate(1), XmStringCopy(1),
XmStringConcat(1), XmStringNConcat(1), XmStringNCopy(1).

Motif Functions and Macros XmStringCopy

Motif Reference Manual 385

Name
XmStringCopy – copy a compound string.

Synopsis
XmString XmStringCopy (XmString string)

Inputs
string Specifies a compound string.

Returns
A new compound string.

Description
XmStringCopy() copies the compound string string and returns the copy, leav-
ing the original compound string unchanged. Storage for the result is allocated by
the routine and should be freed by calling XmStringFree(). Management of
the allocated memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCopy() is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringComponentCreate(1), XmStringConcat(1),
XmStringNConcat(1), XmStringNCopy(1).

XmStringCreate Motif Functions and Macros

386 Motif Reference Manual

Name
XmStringCreate – create a compound string.

Synopsis
XmString XmStringCreate (char *text, XmStringCharSet tag)

Inputs
text Specifies the text component of the compound string.
tag Specifies the font list element tag.

Returns
A new compound string.

Description
XmStringCreate() creates a compound string containing two components: a
text component composed of text and the font list element tag specified by tag.
text must be a NULL-terminated string. tag can have the value
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. Storage for the returned compound string is allocated by the routine and
should be freed by calling XmStringFree(). Management of the allocated
memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreate() allows you to create a compound string composed of a
font list element tag and a text component.

In Motif 1.1, compound strings use character set identifiers rather than font list
element tags. The character set identifier for a compound string can have the
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from future
versions of Motif.

XmStringCreate() creates a compound string with no specified direction.
The default direction may be taken from the XmNstringDirection resource of the
parent of the widget that contains the compound string. If you need a string with
a direction other than the default direction, use XmStringDirectionCre-
ate() to create a direction string and concatenate it with the compound string
containing the text.

Motif Functions and Macros XmStringCreate

Motif Reference Manual 387

Example
The following code fragment shows how to create compound strings using
XmStringCreate():

Widget toplevel;
XmString s1, s2, s3, text, tmp;
String string1 = "This is a string", string2 = "that contains three", string3 =
"separate fonts.";

s1 = XmStringCreate (string1, "tag1");
s2 = XmStringCreate (string2, "tag2");
s3 = XmStringCreate (string3, XmFONTLIST_DEFAULT_TAG);

tmp = XmStringConcatAndFree (s1, s2);
text = XmStringConcatAndFree (tmp, s3);

XtVaCreateManagedWidget ("widget_name", xmLabelWidgetClass, toplevel,
XmNlabelString, text, NULL);

XmStringFree (text);

See Also
XmStringBaseline(1), XmStringByteCompare(1),
XmStringCompare(1), XmStringConcat(1),
XmStringComponentCreate(1), XmStringCopy(1),
XmStringCreateLocalized(1), XmStringCreateLtoR(1),
XmStringCreateSimple(1), XmStringDirectionCreate(1),
XmStringDraw(1), XmStringDrawImage(1),
XmStringDrawUnderline(1), XmStringEmpty(1),
XmStringExtent(1), XmStringFree(1), XmStringFreeContext(1),
XmStringGetLtoR(1), XmStringGetNextComponent(1),
XmStringGetNextSegment(1), XmStringHasSubstring(1),
XmStringHeight(1), XmStringInitContext(1),
XmStringLength(1), XmStringLineCount(1),
XmStringNConcat(1), XmStringNCopy(1),
XmStringPeekNextComponent(1), XmStringSegmentCreate(1),
XmStringSeparatorCreate(1), XmStringWidth(1).

XmStringCreateLocalized Motif Functions and Macros

388 Motif Reference Manual

Name
XmStringCreateLocalized – create a compound string in the current locale.

Synopsis
XmString XmStringCreateLocalized (String text)

Inputs
text Specifies the text component of the compound string.

Returns
A new compound string.

Availability
Motif 1.2 and later.

Description
XmStringCreateLocalized() creates a compound string containing two
components: a text component composed of text and the font list element tag
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. text must be a NULL-terminated string. Storage for the returned compound
string is allocated by the routine and should be freed by calling XmString-
Free(). Management of the allocated memory is the responsibility of the appli-
cation.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreateLocalized() creates the identical compound string that
would result from calling XmStringCreate with
XmFONTLIST_DEFAULT_TAG as the font list entry tag.

Example
The following program shows how to create a compound string in the current
locale and use it as the label for a PushButton:

#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

String fallbacks[] = { "*fontList:9x15=tag", NULL };

main (int argc, char *argv[])
{

Widget toplevel, rowcol;
XtAppContext app;

Motif Functions and Macros XmStringCreateLocalized

Motif Reference Manual 389

XmString text;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL, NULL);

toplevel = XtVaAppInitialize (&app, argv[0], NULL, 0, &argc, argv, fall-
backs, NULL);
rowcol = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass,
toplevel, NULL);

text = XmStringCreateLocalized ("Testing, testing...");
XtVaCreateManagedWidget ("pb", xmPushButtonWidgetClass, rowcol,

XmNlabelString, text, NULL);

XmStringFree (text);
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

See Also
XmStringComponentCreate(1), XmStringCreate(1),
XmStringFree(1).

XmStringCreateLtoR Motif Functions and Macros

390 Motif Reference Manual

Name
XmStringCreateLtoR – create a compound string.

Synopsis
XmString XmStringCreateLtoR (char *text, XmStringCharSet tag)

Inputs
text Specifies the text component of the compound string.
tag Specifies the font list element tag.

Returns
A new compound string.

Availability
In Motif 2.0 and later, this function is obsolete, and is replaced by the function
XmStringGenerate().

Description
XmStringCreateLtoR() creates a compound string containing two compo-
nents: a text component composed of text and the font list element tag specified
by tag. text must be a NULL-terminated string. In addition, XmStringCre-
ateLtoR() searches for newline characters (\n) in text. Each time a newline is
found, the characters up to the newline are placed into a compound string seg-
ment followed by a separator component. The routine does not add a separator
component to the end of the compound string. The default direction of the string
is left to right and the assumed encoding is 8-bit characters rather than 16-bit
characters.

tag can have the value XmFONTLIST_DEFAULT_TAG, which identifies a
locale-encoded text segment. Storage for the returned compound string is allo-
cated by the routine and should be freed by calling XmStringFree(). Manage-
ment of the allocated memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreateLtoR() allows you to create a compound string composed
of a font list element tag and a multi-line text component.

Motif Functions and Macros XmStringCreateLtoR

Motif Reference Manual 391

In Motif 1.1, compound strings use character set identifiers rather than font list
element tags. The character set identifier for a compound string can have the
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from future
versions of Motif.

See Also
XmStringComponentCreate(1), XmStringCreate(1),
XmStringFree(1). XmStringGenerate(1).

XmStringCreateSimple Motif Functions and Macros

392 Motif Reference Manual

Name
XmStringCreateSimple – create a compound string in the current language envi-
ronment.

Synopsis
XmString XmStringCreateSimple (char *text)

Inputs
text Specifies the text component of the compound string.

Returns
A new compound string.

Availability
In Motif 1.2, XmStringCreateSimple() is obsolete. It has been superseded
by XmStringCreateLocalized().

Description
XmStringCreateSimple() creates a compound string containing two com-
ponents: a text component composed of text and a character set identifier derived
from the LANG environment variable or from a vendor-specific default, which is
usually ISO8859-1. text must be a NULL-terminated string. Storage for the
returned compound string is allocated by the routine and should be freed by call-
ing XmStringFree(). Management of the allocated memory is the responsibil-
ity of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components. In
Motif 1.1, compound strings use character set identifiers rather than font list ele-
ment tags. XmStringCreateSimple() is retained for compatibility with
Motif 1.1 and should not be used in newer applications.

See Also
XmStringComponentCreate(1), XmStringCreate(1),
XmStringCreateLocalized(1), XmStringFree(1).

Motif Functions and Macros XmStringDirectionCreate

Motif Reference Manual 393

Name
XmStringDirectionCreate – create a compound string containing a direction
component.

Synopsis
XmString XmStringDirectionCreate (XmStringDirection direction)

Inputs
direction Specifies the value of the direction component. Pass either

XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L or
XmSTRING_DIRECTION_DEFAULT.

Returns
A new compound string.

Description
XmStringDirectionCreate() creates a compound string containing a sin-
gle component, which is a direction component with the specified direction
value. If the direction is XmSTRING_DIRECTION_DEFAULT, the widget
where the compound string is rendered controls the direction. Storage for the
returned compound string is allocated by the routine and should be freed by call-
ing XmStringFree(). Management of the allocated memory is the responsibil-
ity of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDirectionCreate() allows you to create a string direction com-
ponent that can be concatenated with a compound string containing other compo-
nents.

See Also
XmStringComponentCreate(1), XmStringCreate(1),
XmStringFree(1).

XmStringDirectionToDirection Motif Functions and Macros

394 Motif Reference Manual

Name
XmStringDirectionToDirection – converts a string direction to a direction.

Synopsis
XmDirection XmStringDirectionToDirection (XmStringDirection
string_direction)

Inputs
string_direction Specifies the string direction to be converted.

Returns
The converted direction.

Availability
Motif 2.0 and later.

Description
XmStringDirectionToDirection() converts an XmStringDirection
value specified by string_direction into an XmDirection value.

Usage
XmStringDirectionToDirection() converts between the XmStringDi-
rection and XmDirection data types. If string_direction is
XmSTRING_DIRECTION_LEFT_TO_RIGHT, the function returns
XmLEFT_TO_RIGHT. If string_direction is
XmSTRING_DIRECTION_RIGHT_TO_LEFT, the function returns
XmRIGHT_TO_LEFT. Otherwise, the function returns
XmDIRECTION_DEFAULT.

See Also
XmStringDirectionCreate(1).

Motif Functions and Macros XmStringDraw

Motif Reference Manual 395

Name
XmStringDraw – draw a compound string.

Synopsis
void XmStringDraw (Display *display,

Window window,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle *clip)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the string.
x Specifies the x-coordinate of the rectangle that will contain

the string.
y Specifies the y-coordinate of the rectangle that will contain

the string.
width Specifies the width of the rectangle that will contain the

string.
alignment Specifies the alignment of the string in the rectangle. Pass

one of the following values:
XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or
XmALIGNMENT_END.

layout_direction Specifies the layout direction of the string segments. Pass
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

clip Specifies an clip rectangle that restricts the area where the
string will be drawn.

XmStringDraw Motif Functions and Macros

396 Motif Reference Manual

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDraw() draws the compound string specified by string by rendering
the foreground pixels for each character. If string is created with
XmStringCreateSimple(), then fontlist must begin with the font associated
with the character set from the current language environment, otherwise the
result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDraw() provides a means of rendering a compound string that is
analogous to the Xlib string rendering routines. Motif widgets render compound
string automatically, so you only need to worry about rendering them yourself if
you are writing your own widget.

In Motif 1.2 or later, if a segment of a compound string is associated with a font
list entry that is a font set, the font member of the gc is left in an undefined state
by the underlying call to XmbDrawString(). If a segment of the compound
string is not associated with a font set, the gc must contain a valid font member.
The gc must be created using XtAllocateGC(); graphics contexts created with
XtGetGC() are not valid.

See Also
XmStringDrawImage(1), XmStringDrawUnderline(1),
XmRendition(2).

Motif Functions and Macros XmStringDrawImage

Motif Reference Manual 397

Name
XmStringDrawImage – draw a compound string.

Synopsis
void XmStringDrawImage (Display *display,

Window window,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle *clip)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the

string.
x Specifies the x-coordinate of the rectangle that will con-

tain the string.
y Specifies the y-coordinate of the rectangle that will con-

tain the string.
width Specifies the width of the rectangle that will contain the

string.
alignment Specifies the alignment of the string in the rectangle. Pass

one of the following values:
XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or
XmALIGNMENT_END.

layout_direction Specifies the layout direction of the string segments. Pass
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

clip Specifies an clip rectangle that restricts the area where the
string will be drawn.

XmStringDrawImage Motif Functions and Macros

398 Motif Reference Manual

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDrawImage() draws the compound string specified by string by
painting the foreground and background pixels for each character. If string is cre-
ated with XmStringCreateSimple(), then fontlist must begin with the font
associated with the character set from the current language environment, other-
wise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDrawImage() provides a means of rendering a compound string
that is analogous to the Xlib string rendering routines. Motif widgets render com-
pound string automatically, so you only need to worry about rendering them
yourself if you are writing your own widget.

In Motif 1.2 or later, if a segment of a compound string is associated with a font
list entry that is a font set, the font member of the gc is left in an undefined state
by the underlying call to XmbDrawImageString(). If a segment of the com-
pound string is not associated with a font set, the gc must contain a valid font
member. The gc must be created using XtAllocateGC(); graphics contexts
created with XtGetGC() are not valid.

See Also
XmStringDraw(1), XmStringDrawUnderline(1), XmRendition(2).

Motif Functions and Macros XmStringDrawUnderline

Motif Reference Manual 399

Name
XmStringDrawUnderline – draw a compound string with an underlined sub-
string.

Synopsis
void XmStringDrawUnderline (Display *display,

Window window,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle *clip,
XmString underline)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the string.
x Specifies the x-coordinate of the rectangle that will contain

the string.
y Specifies the y-coordinate of the rectangle that will contain

the string.
width Specifies the width of the rectangle that will contain the

string.
alignment Specifies the alignment of the string in the rectangle. Pass

one of the following values:
XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or
XmALIGNMENT_END.

layout_direction Specifies the layout direction of the string segments. Pass
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

clip Specifies an clip rectangle that restricts the area where the
string will be drawn.

XmStringDrawUnderline Motif Functions and Macros

400 Motif Reference Manual

underline Specifies the substring that is to be underlined.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDrawUnderline() is similar to XmStringDraw(), but it also
draws an underline beneath the first matching substring underline that is con-
tained within string. If string is created with XmStringCreateSimple(),
then fontlist must begin with the font associated with the character set from the
current language environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDrawUnderline() provides a means of rendering a compound
string and underlining a substring within it. Motif widgets render compound
string automatically, so you only need to worry about rendering them yourself if
you are writing your own widget.

In Motif 1.2 and later, if a segment of a compound string is associated with a font
list entry that is a font set, the font member of the gc is left in an undefined state
by the underlying call to XmbDrawString(). If a segment of the compound
string is not associated with a font set, the gc must contain a valid font member.
The gc must be created using XtAllocateGC(); graphics contexts created with
XtGetGC() are not valid.

See Also
XmStringDraw(1), XmStringDrawImage(1), XmRendition(2).

Motif Functions and Macros XmStringEmpty

Motif Reference Manual 401

Name
XmStringEmpty – determine whether there are text segments in a compound
string.

Synopsis
Boolean XmStringEmpty (XmString string)

Inputs
string Specifies a compound string.

Returns
True if there are no text segments in the string or False otherwise.

Description
XmStringEmpty() returns True if no text segments exist in the specified string
and False otherwise. If the routine is passed NULL, it returns True.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringEmpty() is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringLength(1), XmStringLineCount(1).

XmStringExtent Motif Functions and Macros

402 Motif Reference Manual

Name
XmStringExtent – get the smallest rectangle that contains a compound string.

Synopsis
void XmStringExtent (XmFontList fontlist, XmString string, Dimension *width,
Dimension *height)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Outputs
width Returns the width of the containing rectangle.
height Returns the height of the containing rectangle.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringExtent() calculates the size of the smallest rectangle that can
enclose the specified compound string and returns the width and height of the
rectangle in pixels. If string is created with XmStringCreateSimple(), then
fontlist must begin with the font from the character set of the current language
environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringExtent() provides information that is useful if you need to render a
compound string. Motif widgets render compound string automatically, so you
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com-
pound string rendered with a particular font.

See Also
XmStringBaseline(1), XmStringHeight(1), XmStringWidth(1),
XmRendition(2).

Motif Functions and Macros XmStringFree

Motif Reference Manual 403

Name
XmStringFree – free the memory used by a compound string.

Synopsis
void XmStringFree (XmString string)

Inputs
string Specifies the compound string.

Description
XmStringFree() frees the memory used by the specified compound string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components. All of
the routines that return a compound string allocate memory for the string. An
application is responsible for this storage; XmStringFree() provides a way to
free the memory.

When XtGetValues() is called for a resource that contains an XmString, a
copy of the compound string is returned. The allocated storage is again the
responsibility of the application and can be freed using XmStringFree().

Example
The following code fragment shows the use of XmStringFree():

Widget toplevel, rowcol, pb;
XmString str;
char *text;

rowcol = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel,
NULL);

str = XmStringCreateLocalized ("Testing, testing...");
pb = XtVaCreateManagedWidget ("pb", xmPushButtonWidgetClass, rowcol,

XmNlabelString, str, NULL);
XmStringFree (str);
...
XtVaGetValues (pb, XmNlabelString, &str, NULL);
text = (char *) XmStringUnparse (str, NULL,

XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)1;

XmStringFree Motif Functions and Macros

404 Motif Reference Manual

printf ("PushButton’s label is %s\n", text);
XmStringFree (str);
XtFree (text);

See Also
XmStringCreate(1), XmStringCreateLocalized(1),
XmStringCreateLtoR(1), XmStringCreateSimple(1),
XmStringDirectionCreate(1), XmStringSegmentCreate(1),
XmStringSeparatorCreate(1).

1.Erroneously given as XmStringGetLtoR() in 2nd edition. XmStringGetLtoR() is deprecated from Motif 2.0 onwards.

Motif Functions and Macros XmStringFreeContext

Motif Reference Manual 405

Name
XmStringFreeContext – free a string context.

Synopsis
void XmStringFreeContext (XmStringContext context)

Inputs
context Specifies the string context that is to be freed.

Description
XmStringFreeContext() deallocates the string context structure specified
by context.

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringFreeContext() is the last of the string context rou-
tines that an application should call when processing a compound string, as it
frees the string context data structure. An application begins by calling
XmStringInitContext() to create a string context and then makes repeated calls to
either XmStringGetNextComponent() or XmStringGetNextSegment() to cycle
through the compound string.

The most common use of these routines is in converting a compound string to a
regular character string when the compound string uses multiple fontlist element
tags or it has a right-to-left orientation.

Example
The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringCharSet tag;
XmStringDirection direction;
Boolean separator;

XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;

XmStringFreeContext Motif Functions and Macros

406 Motif Reference Manual

}

/* p keeps a running pointer thru buf as text is read */ p = buf;
while (XmStringGetNextSegment (context, &text, &tag, &direction, &separa-
tor)) {

/* copy text into p and advance to the end of the string */
p += (strlen (strcpy (p, text)));

if (separator == True) {
/* if there’s a separator... */
*p++ = ’\n’;
p = 0; / add newline and null-terminate */

}
XtFree (text); /* we’re done with the text; free it */

}

XmStringFreeContext (context);
XmStringFree (str);

printf ("Compound string:\n%s\n", buf);

See Also
XmStringInitContext(1), XmStringGetNextSegment(1),
XmStringGetNextComponent(1),
XmStringPeekNextComponent(1).

Motif Functions and Macros XmStringGenerate

Motif Reference Manual 407

Name
XmStringGenerate – generate a compound string.

Synopsis
XmString XmStringGenerate (XtPointer text,

XmStringTag tag,
XmTextType type,
XmStringTag rendition)

Inputs
text Specifies the data forming the value of the compound string.
tag Specifies the tag used in creating the compound string.
type Specifies the type of text.
rendition Specifies a rendition tag.

Returns
A new compound string.

Availability
Motif 2.0 and later.

Description
XmStringGenerate() is a convenience function which invokes XmString-
ParseText() using a default parse table in order to convert text into a com-
pound string. The default parse table maps tab characters to
XmSTRING_COMPONENT_TAB, and newline characters to
XmSTRING_COMPONENT_SEPARATOR components of the compound
string. If a rendition tag is specified, the resulting compound string is placed
within matching components of type XmSTRING_RENDITION_BEGIN and
XmSTRING_RENDITION_END which contain the rendition. The type of the
input text is specified by type, and is one of XmCHARSET_TEXT,
XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT. type also specifies the
type of the tag which is used in creating the compound string. If tag is NULL
and the input text is of type XmCHARSET_TEXT, then the compound string is
created with the tag set to XmFONTLIST_DEFAULT_TAG. If tag is NULL and
the input text is of type XmWIDECHAR_TEXT or XmMULTIBYTE_TEXT,
then the tag used is constructed from the value of
_MOTIF_DEFAULT_LOCALE.

Usage
The function returns allocated storage, and it is the responsibility of the program-
mer to reclaim the space by calling XmStringFree() at an appropriate point.

XmStringGenerate Motif Functions and Macros

408 Motif Reference Manual

In Motif 2.0 and later, in common with other objects, the compound string is
manipulated as a reference counted data structure. XmString functions prior to
Motif 2.0 handle ASN.1 strings, and the data structures are only used internally.

Example
The following code converts data taken from a Text widget into a compound
string:

XmString convert_text (Widget text)
{

/* ignoring widechar text values */
char *value = XmTextGetString (text);
XmString xms = (XmString) 0;

if (value) {
xms = XmStringGenerate ((XtPointer) value,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, NULL);

XtFree (value);
}
/* caller must free this */
return xms;

}

See Also
XmStringFree(1), XmStringPutRendition(1), XmRendition(2).

Motif Functions and Macros XmStringGetLtoR

Motif Reference Manual 409

Name
XmStringGetLtoR – get a text segment from a compound string.

Synopsis
Boolean XmStringGetLtoR (XmString string, XmStringCharSet tag, char **text)

Inputs
string Specifies the compound string.
tag Specifies the font list element tag.

Outputs
text Returns the NULL-terminated character string.

Returns
True if there is a matching text segment or False otherwise.

Availability
In Motif 2.0 and later, the function is obsolete, and is replaced by XmStrin-
gUnparse().

Description
XmStringGetLtoR() looks for a text segment in string that matches the font
list element tag specified by tag. tag can have the value
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. The routine returns True if a text segment is found. text returns a pointer to
the NULL-terminated character string that contains the text from the segment.
Storage for the returned character string is allocated by the routine and should be
freed by calling XtFree(). Management of the allocated memory is the respon-
sibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringGetLtoR() allows you to retrieve a character string from a com-
pound string, so that you can use the string with the standard C string manipula-
tion functions.

In Motif 1.1, compound strings use character set identifiers rather than font list
element tags. The character set identifier for a compound string can have the
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from future
versions of Motif.

XmStringGetLtoR Motif Functions and Macros

410 Motif Reference Manual

XmStringGetLtoR() gets the first text segment from the compound string that
is associated with the specified tag. If the string contains multiple font list ele-
ment tags, you must cycle through the compound string and retrieve each seg-
ment individually in order to retrieve the entire string. The routine only gets
strings with a left-to-right orientation.

See Also
XmStringCreate(1), XmStringCreateLtoR(1),
XmStringGetNextSegment(1), XmStringUnparse(1).

Motif Functions and Macros XmStringGetNextComponent

Motif Reference Manual 411

Name
XmStringGetNextComponent – retrieves information about the next compound
string
component.

Synopsis
XmStringComponentType
XmStringGetNextComponent (XmStringContext context,

char **text,
XmStringCharSet *tag,
XmStringDirection *direction,
XmStringComponentType *unknown_tag,
unsigned short

*unknown_length,
unsigned char

**unknown_value)
Inputs

context Specifies the string context for the compound string.
Outputs

text Returns the NULL-terminated string for a text component.
tag Returns the font list element tag for a tag component.
direction Returns the string direction for a direction component.
unknown_tag Returns the tag of an unknown component.
unknown_length Returns the length of an unknown component.
unknown_value Returns the value of an unknown component.

Returns
The type of the compound string component. The type is one of the values
described below.

Availability
In Motif 2.0 and later, XmStringGetNextComponent() is obsolete, and is
replaced by XmStringGetNextTriple().

Description
XmStringGetNextComponent() reads the next component in the compound
string specified by context and returns the type of component found. The return
value indicates which, if any, of the output parameters are valid. Storage for the
returned values is allocated by the routine and must be freed by the application
using XtFree().

For the type XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG, the
font list element tag is returned in tag. In Motif 2.0 and later, the type

XmStringGetNextComponent Motif Functions and Macros

412 Motif Reference Manual

XmSTRING_COMPONENT_CHARSET is obsolete and is retained for compat-
ibility with Motif 1.2. The type indicates that the character set identifier is
returned in tag. XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
replaces XmSTRING_COMPONENT_CHARSET.

For the string component types XmSTRING_COMPONENT_TEXT and
XmSTRING_COMPONENT_LOCALE_TEXT, the text string is returned in
text. For XmSTRING_COMPONENT_DIRECTION, the direction is returned in
direction. Only one of tag, text, and direction can be valid at any one time.

The type XmSTRING_COMPONENT_SEPARATOR indicates that the next
component is a separator, while XmSTRING_COMPONENT_END specifies the
end of the compound string. For type
XmSTRING_COMPONENT_UNKNOWN, the tag, length, and value of the
unknown component are returned in the corresponding arguments.

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringInitContext() is called first to create the
string context. XmStringGetNextComponent() cycles through the compo-
nents in the compound string. When an application is done processing the string,
it should call XmStringFreeContext() with the same context to free the
allocated data.

Structures
A XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

Motif Functions and Macros XmStringGetNextComponent

Motif Reference Manual 413

See Also
XmStringFreeContext(1), XmStringGetNextTriple(1),
XmStringGetNextSegment(1), XmStringInitContext(1),
XmStringPeekNextComponent(1).

XmStringGetNextSegment Motif Functions and Macros

414 Motif Reference Manual

Name
XmStringGetNextSegment – retrieves information about the next compound
string segment.

Synopsis
Boolean XmStringGetNextSegment (XmStringContext context,

char **text,
XmStringCharSet *charset,
XmStringDirection *direction,
Boolean *separator)

Inputs
context Specifies the string context for the compound string.

Outputs
text Returns the NULL-terminated string for the segment.
tag Returns the font list element tag for the segment.
direction Returns the string direction for the segment.
separator Returns whether or not the next component is a separator.

Returns
True if a valid segment is located or False otherwise.

Availability
In Motif 2.0 and later, the function is obsolete, and is replaced by
XmStringGetNextTriple().

Description
XmStringGetNextSegment() retrieves the text string, font list element tag,
and direction for the next segment of the compound string specified by context.
The routine returns True if a valid segment is retrieved; otherwise, it returns
False. Storage for the returned text is allocated by the routine and must be freed
by the application using XtFree().

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringInitContext() is called first to create the
string context. XmStringGetNextSegment() cycles through the segments
in the compound string. The Boolean separator can be used to determine whether
or not the next component in the compound string is a separator. When an appli-
cation is done processing the string, it should call XmStringFreeContext()
with the same context to free the allocated data.

Motif Functions and Macros XmStringGetNextSegment

Motif Reference Manual 415

The most common use of these routines is in converting a compound string to a
regular character string when the compound string uses multiple fontlist element
tags or it has a right-to-left orientation.

See Also
XmStringFreeContext(1), XmStringGetLtoR(1),
XmStringGetNextComponent(1), XmStringGetNextTriple(1),
XmStringInitContext(1), XmStringPeekNextComponent(1),
XmStringPeekNextTriple(1).

XmStringGetNextTriple Motif Functions and Macros

416 Motif Reference Manual

Name
XmStringGetNextTriple – retrieve information about the next component.

Synopsis
XmStringComponentType
XmStringGetNextTriple (XmStringContext context, unsigned int *length,
XtPointer *value)

Inputs
context Specifies the string context for the compound string.

Outputs
length Returns the length of the value of the component.
value Returns the value of the component.

Returns
The type of the component.

Availability
Motif 2.0 and later.

Description
XmStringGetNextTriple() is a convenience function which returns the type,
length, and value of the next component within the compound string associated with
context. The context is an opaque structure used for walking along compound strings
one component at a time, and is initialized through a call to
XmStringInitContext().

Usage
If either of value or length are NULL pointers, the function immediately returns
XmSTRING_COMPONENT_END without fetching the next string segment.
Otherwise, value is initially set to point to NULL, and length is reset to zero, and
the next segment is processed. The function allocates memory for the returned
value, which should be reclaimed at an appropriate point by calling XtFree().

Structures
An XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN

Motif Functions and Macros XmStringGetNextTriple

Motif Reference Manual 417

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

Example
The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringComponentType type;
unsigned int len;

/* Fetch the Compound String from somewhere */
XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;

}

/* p keeps a running pointer through buf as text is read */
p = buf;

/* Ignoring locale or widechar text for simplicity */
while ((type = XmStringGetNextTriple (context, &len, &text)) !=
XmSTRING_COMPONENT_END)
{

switch (type) {
case XmSTRING_COMPONENT_TAB :

*p++ = ’\t’;
break;

case XmSTRING_COMPONENT_SEPARATOR :
*p++ = ’\n’;
*p = ’\0’;
break;

case XmSTRING_COMPONENT_TEXT :
(void) strcpy (p, text);

XmStringGetNextTriple Motif Functions and Macros

418 Motif Reference Manual

p += len;
break;

}
XtFree (text);

}

XmStringFreeContext (context);
XmStringFree (str);
printf ("Compound string:\n%s\n", buf);

See Also
XmStringFreeContext(1), XmStringGetNextComponent(1),
XmStringGetNextSegment(1), XmStringInitContext(1),
XmStringPeekNextComponent(1), XmStringPeekNextTriple(1).

Motif Functions and Macros XmStringHasSubstring

Motif Reference Manual 419

Name
XmStringHasSubstring – determine whether a compound string contains a sub-
string.

Synopsis
Boolean XmStringHasSubstring (XmString string, XmString substring)

Inputs
string Specifies the compound string.
substring Specifies the substring.

Returns
True if string contains substring or False otherwise.

Description
XmStringHasSubstring() determines whether the compound string sub-
string is contained within any single segment of the compound string string. sub-
string must have only a single segment. The routine returns True if the string
contains the substring and False otherwise.

If two compound strings are created with XmStringCreateLocalized() in
the same language environment and they satisfy the above condition,
XmStringHasSubstring() returns True. If two strings are created with
XmStringCreate() using the same character set and they satisfy the condi-
tion, the routine also returns True. When comparing a compound string created
by XmStringCreate() with a compound string created by XmStringCrea-
teSimple() the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringHasSubstring() is one of a number of routines that allow an
application to manipulate compound strings as it would regular character strings.

See Also
XmStringEmpty(1), XmStringLength(1), XmStringLineCount(1).

XmStringHeight Motif Functions and Macros

420 Motif Reference Manual

Name
XmStringHeight – get the line height of a compound string.

Synopsis
Dimension XmStringHeight (XmFontList fontlist, XmString string)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns
The height of the compound string.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringHeight() returns the height, in pixels, of the specified compound
string. If string contains multiple lines, where a separator component delimits
each line, then the total height of all of the lines is returned. If string is created
with XmStringCreateSimple(), then fontlist must begin with the font from
the character set of the current language environment, otherwise the result is
undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringHeight() provides information that is useful if you need to render a
compound string. Motif widgets render compound string automatically, so you
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com-
pound string rendered with a particular font.

See Also
XmStringBaseline(1), XmStringExtent(1), XmStringWidth(1),
XmRendition(2).

Motif Functions and Macros XmStringInitContext

Motif Reference Manual 421

Name
XmStringInitContext – create a string context.

Synopsis
Boolean XmStringInitContext (XmStringContext *context, XmString string)

Inputs
string Specifies the compound string.

Outputs
context Returns the allocated string context structure.

Returns
True if the string context is allocated or False otherwise.

Description
XmStringInitContext() creates a string context for the specified com-
pound string. This string context allows an application to access the contents of a
compound string.

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringInitContext() is the first of the three string
context routines that an application should call when processing a compound
string, as it creates the string context data structure. The context is passed to
XmStringGetNextTriple() to cycle through the compound string. When an
application is done processing the string, it should call XmStringFreeCon-
text() with the same context to free the allocated data.

The most common use of these routines is in converting a compound string to a
regular character string when the compound string uses multiple fontlist element
tags or it has a right-to-left orientation.

Example
The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringComponentType type;
unsigned int len;

/* Fetch the Compound String from somewhere */

XmStringInitContext Motif Functions and Macros

422 Motif Reference Manual

XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;

}

/* p keeps a running pointer through buf as text is read */
p = buf;

/* Ignoring locale or widechar text for simplicity */
while ((type = XmStringGetNextTriple (context, &len, &text)) !=
XmSTRING_COMPONENT_END)
{

switch (type) {
case XmSTRING_COMPONENT_TAB :

*p++ = ’\t’;
break;

case XmSTRING_COMPONENT_SEPARATOR :
*p++ = ’\n’;
*p = ’\0’;
break;

case XmSTRING_COMPONENT_TEXT :
(void) strcpy (p, text);
p += len;
break;

}

XtFree (text);
}

XmStringFreeContext (context);
XmStringFree (str);
printf ("Compound string:\n%s\n", buf);

See Also
XmStringFreeContext(1), XmStringGetNextComponent(1),
XmStringGetNextTriple(1), XmStringGetNextSegment(1),
XmStringPeekNextComponent(1), XmStringPeekNextTriple(1).

Motif Functions and Macros XmStringIsVoid

Motif Reference Manual 423

Name
XmStringIsVoid – determine whether there are valid segments in a compound
string.

Synopsis
Boolean XmStringIsVoid (XmString string)

Inputs
string Specifies a compound string.

Returns
True if there are no segments in the string or False otherwise.

Availability
XmStringIsVoid() is available from Motif 2.0 or later.

Description
XmStringIsVoid() checks to see whether there any text, tab, or separator seg-
ments within the specified string. If the routine is passed NULL, it returns True.
If the string contains text, tab or separator components, it returns False. Other-
wise, it returns True.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, and locale components.

See Also
XmStringEmpty(1), XmStringLength(1), XmStringLineCount(1).

XmStringLength Motif Functions and Macros

424 Motif Reference Manual

Name
XmStringLength – get the length of a compound string.

Synopsis
int XmStringLength (XmString string)

Inputs
string Specifies the compound string.

Returns
The length of the compound string.

Availability
In Motif 2.0 and later, the function is obsolete, and is replaced by XmString-
ByteStreamLength().

Description
XmStringLength() returns the length, in bytes, of the specified compound
string. The calculation includes the length of all tags, direction indicators, and
separators. The routine returns 0 (zero) if the structure of string is invalid.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringLength() is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings. However, this
routine cannot be used to get the length of the text represented by the compound
string; it is not the same as strlen().

See Also
XmStringByteStreamLength(1), XmStringEmpty(1),
XmStringLineCount(1).

Motif Functions and Macros XmStringLineCount

Motif Reference Manual 425

Name
XmStringLineCount – get the number of lines in a compound string.

Synopsis
int XmStringLineCount (XmString string)

Inputs
string Specifies the compound string.

Returns
The number of lines in the compound string.

Description
XmStringLineCount() returns the number of lines in the specified compound
string. The line count is determined by adding 1 to the number of separators in
the string.

Usage
In Motif 1.2 and later, a compound string is composed of one or more segments,
where each segment can contain a font list element tag, a string direction, and a
text component. In Motif 2.0 and later, the set of available segments is extended
to include, amongst other items, tab, rendition, direction, locale components.
XmStringLineCount() provides information that is useful in laying out com-
ponents that display compound strings.

Example
The following routine shows how to read the contents of a file into a buffer and
then convert the buffer into a compound string. The routine also returns the
number of lines in the compound string:

XmString ConvertFileToXmString (char *filename, int *lines)
{

struct stat statb;
int fd, len, lines;
char *text;
XmString str;

*lines = 0;

if ((fd = open (filename, O_RDONLY)) < 0) {
XtWarning ("internal error -- can’t open file");
return (XmString) 0;

}

if ((fstat (fd, &statb) == -1) || !(text = XtMalloc ((len = statb.st_size) + 1))) {
XtWarning("internal error -- can’t show text");

XmStringLineCount Motif Functions and Macros

426 Motif Reference Manual

(void) close (fd);
return (XmString) 0;

}

(void) read (fd, text, len);
text[len] = ‘\0’;
str = XmStringGenerate ((XtPointer) text,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, NULL);1

XtFree (text);
(void) close (fd);
*lines = XmStringLineCount (str);
return str;

}

See Also
XmStringEmpty(1), XmStringLength(1).

1.Erroneously given as XmStringCreateLtoR() in 2nd edition. XmStringCreateLtoR() is deprecated from Motif 2.0 on-
wards.

Motif Functions and Macros XmStringNConcat

Motif Reference Manual 427

Name
XmStringNConcat – concatenate a specified portion of a compound string to
another compound string.

Synopsis
XmString XmStringNConcat (XmString string1, XmString string2, int
num_bytes)

Inputs
string1 Specifies a compound string.
string2 Specifies the compound string that is appended.
num_bytes Specifies the number of bytes of string2 that are appended.

Returns
A new compound string.

Availability
In Motif 2.0 and later, the function is obsolete, and is only maintained for back-
wards compatibility.

Description
XmStringNConcat() returns the compound string formed by appending bytes
from string2 to the end of string1, leaving the original compound strings
unchanged. num_bytes of string are appended, which includes tags, directional
indicators, and separators. Storage for the result is allocated within this routine
and should be freed by calling XmStringFree(). Management of the allocated
memory is the responsibility of the application.

If num_bytes is less than the length of string2, the resulting string could be
invalid. In this case, XmStringNConcat() appends as many bytes as possible,
up to a maximum of num_bytes, to ensure the creation of a valid string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringNConcat() is one of a number of routines that allow an application
to manipulate compound strings as it would regular character strings.

See Also
XmStringConcat(1), XmStringCopy(1), XmStringNCopy(1).

XmStringNCopy Motif Functions and Macros

428 Motif Reference Manual

Name
XmStringNCopy – copy a specified portion of a compound string.

Synopsis
XmString XmStringNCopy (XmString string, int num_bytes)

Inputs
string Specifies a compound string.
num_bytes Specifies the number of bytes of string that are copied.

Returns
A new compound string.

Availability
In Motif 2.0 and later, the function is obsolete, and is only maintained for back-
wards compatibility.

Description
XmStringNCopy() copies num_bytes bytes from the compound string string
and returns the resulting copy, leaving the original string unchanged. The number
of bytes copied includes tags, directional indicators, and separators. Storage for
the result is allocated within this routine and should be freed by calling
XmStringFree(). Management of the allocated memory is the responsibility
of the application.

If num_bytes is less than the length of string, the resulting string could be invalid.
In this case, XmStringNCopy() copies as many bytes as possible, up to a max-
imum of num_bytes to ensure the creation of a valid string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringNCopy() is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringConcat(1), XmStringCopy(1), XmStringNConcat(1).

Motif Functions and Macros XmStringParseText

Motif Reference Manual 429

Name
XmStringParseText – convert a string to a compound string.

Synopsis
XmString XmStringParseText (XtPointer text,

XtPointer *text_end,
XmStringTag tag,
XmTextType type,
XmParseTable parse_table,
Cardinal parse_count,
XtPointer client_data)

Inputs
text Specifies a string to be converted.
text_end Specifies a pointer into text where parsing is to finish.
tag Specifies the tag to be used in creating the compound string.
type Specifies the type of the text and the tag.
parse_table Specifies a table used for matching characters in the input text.
parse_count Specifies the number of items in the parse_table.
client_data Specifies application data to pass to any parse procedures
within the parse_table.

Outputs
text_end Returns a location within the text where parsing finished.

Returns
The converted compound string.

Availability
Motif 2.0 and later.

Description
XmStringParseText() converts the string specified by text into a compound
string. A parse_table can be specified which consists of a set of mappings to con-
trol the conversion process. The contents of the string to be converted can be in
one of a number of formats: simple characters, multibyte, or wide characters. The
type parameter specifies the type of the input text, and is also used to interpret the
tag which is used in creating text components within the returned compound
string. text_end is both an input and an output parameter: as an input parameter, it
specifies a location within text where parsing is to terminate; as an output param-
eter, it points to a location within text where parsing actually finished. Supplying
NULL for text_end is interpreted to mean that parsing should stop at the occur-
rence of a null byte.

XmStringParseText Motif Functions and Macros

430 Motif Reference Manual

Usage
If type is XmCHARSET_TEXT, the input text is assumed to consist of a simple
array of characters, and the tag is interpreted as the name of a charset to use in
constructing the returned compound string. If tag is NULL, a default charset
using XmFONTLIST_DEFAULT_TAG is used.

If the type is XmMULTIBYTE_TEXT or XmWIDECHAR_TEXT, the input text
is assumed to be in multibyte or widechar text format respectively, and the tag is
interpreted as a locale specifier. The tag should either be specified as NULL or
_MOTIF_DEFAULT_LOCALE: if NULL, a locale component with a value of
_MOTIF_DEFAULT_LOCALE is created in any case.

A parse table can be specified for controlling the conversion process. A parse
table consists of a set of XmParseMapping objects, which have match pattern,
substitution pattern and parse procedure components. The head of the input
stream is compared against elements within the parse table, and if there is a cor-
respondence between the input and a parse mapping match pattern, the parse
mapping object is used to construct the output compound string at that point in
the conversion, either by directly inserting the substitution pattern, or by invok-
ing the parse procedure of the mapping object. The parse mapping specifies how
the input pointer is advanced, and the process is repeated, comparing the head of
the input against the parse table. At the end of the conversion, the text_end
parameter is set to point to the location within the input text where parsing actu-
ally terminated. Depending upon the way in which the parse table interacts with
the input text, the returned text_end may not be the same location which the pro-
grammer specified if more or less of the input text is consumed.

An implicit automatic conversion takes place where there is no matching parse
mapping object for the head of the input. In other words, it is not necessary to
provide a parse table to convert everything: parse tables are only required where
specific inputs need to be handled specially. XmStringParseText() uses an
internal parse mapping which handles changes in string direction in the absence
of a supplied mapping for the task. A parse mapping handles string direction
changes if the XmNpattern resource of the object is equal to
XmDIRECTION_CHANGE.

XmStringParseText() allocates memory for the returned compound string.
It is the responsibility of the programmer to reclaim the space through a call to
XmStringFree() at an appropriate point.

Motif Functions and Macros XmStringParseText

Motif Reference Manual 431

Example
The following specimen code converts an input string containing tab and newline
characters into a compound string:

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
XmString tmp;
XmString output;
Arg av[4];
Cardinal ac;

/* map \t to a tab component */
tmp = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0,
NULL);
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\t"); ac++;
parse_table[0] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* map \n to a separator component */
tmp = XmStringSeparatorCreate();
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\n"); ac++;
parse_table[1] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* convert the (unspecified) input string into a compound string *
 output = XmStringParseText (input, NULL, NULL, XmCHARSET_TEXT,
parse_table, 2, NULL);
XmParseTableFree (parse_table);

See Also
XmStringFree(1), XmStringGenerate(1), XmStringUnparse(1).
XmParseMapping(2).

XmStringPeekNextComponent Motif Functions and Macros

432 Motif Reference Manual

Name
XmStringPeekNextComponent – returns the type of the next compound string
component.

Synopsis
XmStringComponentType XmStringPeekNextComponent (XmStringContext
context)

Inputs
context Specifies the string context for the compound string.

Returns
The type of the compound string component. The type is one of the values
described below.

Availability
In Motif 2.0 and later, the function is obsolete, and XmStringPeekNextTri-
ple() is preferred.

Description
XmStringPeekNextComponent() checks the next component in the com-
pound string specified by context and returns the type of the component found.
The routine shows what would be returned by a call to XmStringGetNext-
Component(), without actually updating context.

The returned type XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
indicates that the next component is a font list element tag. In Motif 1.2, the type
XmSTRING_COMPONENT_-CHARSET is obsolete and is retained for compat-
ibility with Motif 1.1. The type indicates that the next component is a character
set identifier. XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
replaces XmSTRING_COMPONENT_CHARSET.

The types XmSTRING_COMPONENT_TEXT and
XmSTRING_COMPONENT_LOCALE_TEXT specify that the next component
is text. XmSTRING_COMPONENT_DIRECTION indicates that the next com-
ponent is a string direction component.

The type XmSTRING_COMPONENT_SEPARATOR indicates that the next
component is a separator, while XmSTRING_COMPONENT_END specifies the
end of the compound string. The type
XmSTRING_COMPONENT_UNKNOWN, indicates that the type of the next
component is unknown.

Motif Functions and Macros XmStringPeekNextComponent

Motif Reference Manual 433

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringInitContext() is called first to create the
string context. XmStringPeekNextComponent() peeks at the next compo-
nent in the compound string without cycling through the component. When an
application is done processing the string, it should call XmStringFreeCon-
text() with the same context to free the allocated data.

Structures
A XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

See Also
XmStringFreeContext(1), XmStringGetNextComponent(1),
XmStringGetNextSegment(1), XmStringPeekNextTriple(1),
XmStringInitContext(1).

XmStringPeekNextTriple Motif Functions and Macros

434 Motif Reference Manual

Name
XmStringPeekNextTriple – retrieve the type of the next component.

Synopsis
XmStringComponentType XmStringPeekNextTriple (XmStringContext context)

Inputs
context Specifies the string context for the compound string.

Returns
The type of the next component.

Availability
Motif 2.0 and later.

Description
XmStringPeekNextTriple() returns the type of the next component with-
out updating the compound string context.

Usage
An XmStringContext is an opaque data type which is used for walking along a
compound string one component at a time. It is initialized by a call to XmString-
InitContext. Each successive call to XmStringGetNextComponent()
adjusts the string context to point to the next component. XmStringPeekN-
extTriple() returns the type of the next component without adjusting the con-
text, and thus it can be used to look ahead into the compound string.

Structures
The string component type can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN
XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

Motif Functions and Macros XmStringPeekNextTriple

Motif Reference Manual 435

See Also
XmStringFreeContext(1), XmStringGetNextComponent(1),
XmStringGetNextSegment(1), XmStringInitContext(1),
XmStringPeekNextComponent(1).

XmStringPutRendition Motif Functions and Macros

436 Motif Reference Manual

Name
XmStringPutRendition – add rendition components to a compound string.

Synopsis
XmString XmStringPutRendition (XmString string, XmStringTag rendition)

Inputs
string Specifies a compound string which requires rendition components.
rendition Specifies a tag used to create the rendition components.

Returns
A newly allocated compound string with rendition components.

Availability
Motif 2.0 and later.

Description
XmStringPutRendition() is a convenience function which places
XmSTRING_COMPONENT_RENDITION_BEGIN and
XmSTRING_COMPONENT_RENDITION_END components containing ren-
dition around a compound string. The string is not modified by the procedure,
which takes a copy.

Usage
XmStringPutRendition() allocates space for the returned compound
string, and it is the responsibility of the programmer to reclaim the space at an
appropriate point by calling XmStringFree().

See Also
XmStringFree(1).

Motif Functions and Macros XmStringSegmentCreate

Motif Reference Manual 437

Name
XmStringSegmentCreate – create a compound string segment.

Synopsis
XmString XmStringSegmentCreate (char *text,

XmStringCharSet tag,
XmStringDirection direction,
Boolean separator)

Inputs
text Specifies the text component of the compound string segment.
tag Specifies the font list element tag.
direction Specifies the value of the direction component. Pass either

XmSTRING_DIRECTION_L_TO_R or
XmSTRING_DIRECTION_R_TO_L.

separator Specifies whether or not a separator is added to the compound
string.

Returns
A new compound string.

Availability
In Motif 2.0 and later, the function is deprecated. A combination of XmString-
ComponentCreate() and XmStringConcat() is preferred.

Description
XmStringSegmentCreate() creates a compound string segment that con-
tains the specified text, tag, and direction. If separator is True, a separator is
added to the segment, following the text. If separator is False, the compound
string segment does not contain a separator. Storage for the returned compound
string is allocated by the routine and should be freed by calling XmString-
Free(). Management of the allocated memory is the responsibility of the appli-
cation.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringSegmentCreate() allows you to create a single segment that can
be concatenated with a compound string containing other segments.

See Also
XmStringCreate(1), XmStringFree(1).

XmStringSeparatorCreate Motif Functions and Macros

438 Motif Reference Manual

Name
XmStringSeparatorCreate – create a compound string containing a separator
component.

Synopsis
XmString XmStringSeparatorCreate (void)

Returns
A new compound string.

Description
XmStringSeparatorCreate() creates and returns a compound string con-
taining a separator as its only component.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringSeparatorCreate() allows you to create a separator component
that can be concatenated with a compound string containing other components.

See Also
XmStringCreate(1), XmStringFree(1),
XmStringSegmentCreate(1).

Motif Functions and Macros XmStringTableParseStringArray

Motif Reference Manual 439

Name
XmStringTableParseStringArray – convert an array of strings into a compound
string table.

Synopsis
XmStringTable XmStringTableParseStringArray (XtPointer *strings,

Cardinal count,
XmStringTag tag,
XmTextType type,
XmParseTable

parse_table,
Cardinal

parse_count,
XtPointer

client_data)
Inputs

strings Specifies an array of strings.
count Specifies the number of items in strings.
tag Specifies the tag used to create the resulting compound string
table.
type Specifies the type of each input string, and the tag.
parse_table Specifies a parse table to control the conversion process.
parse_count Specifies the number of parse mappings in parse_table.
client_data Specifies application data to pass to parse procedures within the
parse_table.

Returns
An array of compound strings.

Availability
Motif 2.0 and later.

Description
XmStringTableParseStringArray() converts an array of strings into an
array of compound strings. XmStringTableParseStringArray() is no
more than a convenience function which allocates space for an table of com-
pound strings, and subsequently calls XmStringParseText() iteratively on
each item within the strings array to convert the item into a compound string.
Each converted item is placed within the allocated table at a corresponding loca-
tion to its position in the strings array. A parse_table can be specified which
consists of a set of mappings to control the conversion process. The contents of
each of the strings to be converted can be in one of a number of formats: simple
characters, multibyte, or wide characters. The type parameter specifies the type

XmStringTableParseStringArray Motif Functions and Macros

440 Motif Reference Manual

of the input strings, and is also used to interpret the tag which is used in creating
text components within the returned compound string array.

Usage
The function calls XmStringParseText() passing NULL as the text_end
(second) parameter: each item within the array of strings is converted until the
occurrence of a terminating null byte. XmStringTableParseStringAr-
ray() returns allocated storage: the elements within the returned table are com-
pound strings allocated by the internal call to XmStringParseText(), and
these should each be freed at an appropriate point through XmStringFree().
XmStringTableParseStringArray() also allocates space for the table
itself, and this should subsequently be freed using XtFree().

Structures
The XmTextType type parameter can take one of the following values:

XmCHARSET_TEXT
XmMULTIBYTE_TEXT
XmWIDECHAR_TEXT

See Also
XmStringFree(1), XmStringGenerate(1), XmStringParseText(1),
XmStringTableUnparse(1), XmParseMapping(2).

Motif Functions and Macros XmStringTableProposeTablist

Motif Reference Manual 441

Name
XmStringTableProposeTablist – create a tab list for a compound string table.

Synopsis
XmTabList XmStringTableProposeTablist (XmStringTable strings,

Cardinal string_count,
Widget widget,
float padding,
XmOffsetModel

offset_model)
Inputs

strings Specifies an array of compound strings.
string_count Specifies the number of items in strings.
widget Specifies a widget from which rendition information is calcu-
lated.
padding Specifies a separation between columns.
offset_model Specifies whether tabs are created at absolute or relative off-
sets.

Returns
A new XmTabList.

Availability
Motif 2.0 and later.

Description
XmStringTableProposeTablist() creates an XmTabList value which
can be used to specify how an array of tabbed compound strings is aligned into
columns.

A compound string is tabbed if it contains an XmSTRING_COMPONENT_TAB
component between textual components: each text component forms an individ-
ual column entry. The strings are rendered with respect to a tab list: each tab con-
tains a floating point offset which specifies the starting location of a column.
XmStringTableProposeTablist() creates a tab list appropriate for laying
out the given strings in a multi-column format.

The XmNunitType resource of widget is used to calculate the units in which the
tab calculation is performed. Extra spacing between each column is specified by
the padding parameter, and this is also interpreted in terms of the unit type of
widget. The offset_model determines whether the floating point positions calcu-
lated for each tab in the returned XmTabList are at absolute locations (XmAB-
SOLUTE), or relative to the previous tab (XmRELATIVE).

XmStringTableProposeTablist Motif Functions and Macros

442 Motif Reference Manual

Usage
The tab list created by XmStringTableProposeTablist() can be applied
to the render table of the widget where the strings are to be displayed by modify-
ing the XmNtabList resource of an existing rendition through the procedure
XmRenditionUpdate(). Alternatively, a new rendition can be created using
XmRenditionCreate(), and thereafter merged into the widget render table
using XmRenderTableAddRenditions().

XmStringTableProposeTablist() returns allocated storage, and it is the
responsibility of the programmer to reclaim the allocated space at a suitable point
by calling XmTabListFree().

If no render table is associated with widget, XmStringTableProposeTab-
list() invokes internal routines to deduce a default render table: these routines
are not multi-thread safe.

See Also
XmTabCreate(1), XmTabFree(1), XmTabListCopy(1),
XmTabListFree(1), XmRenderTableAddRenditions(1),
XmRenditionCreate(1), XmRenditionUpdate(1), XmRendition(2).

Motif Functions and Macros XmStringTableToXmString

Motif Reference Manual 443

Name
XmStringTableToXmString – convert compound string table to compound
string.

Synopsis
XmString
XmStringTableToXmString (XmStringTable table, Cardinal count, XmString
break_component)

Inputs
table Specifies an array of compound strings.
count Specified the number of items in the table.
break_component Specifies a compound string used to separate converted
table items.

Returns
A compound string.

Availability
Motif 2.0 and later.

Description
XmStringTableToXmString() is a convenience function which converts a
table of compound strings into a single compound string. A
break_component can be inserted between each component converted from
the table in order to separate each.

Usage
XmStringTableToXmString() simply walks along the array of items within
the table, concatenating a copy of each item to the result, along with a copy of the
break_component. The break_component can be NULL, although a component
of type XmSTRING_COMPONENT_TAB or
XmSTRING_COMPONENT_SEPARATOR is a suitable choice. The function
returns allocated storage, and it is the responsibility of the programmer to reclaim
the space by calling XmStringFree() at a suitable point.

Example
The following code illustrates a basic call to XmStringTableToXm-
String():

extern XmString table table ;
extern int table_count ;
XmString xms;
XmString break_component;

/* create a break component */

XmStringTableToXmString Motif Functions and Macros

444 Motif Reference Manual

break_component = XmStringComponentCreate
(XmSTRING_COMPONEN
T_SEPARATOR, 0,
NULL)1;

/* convert an (unspecified) compound string table */
xms = XmStringTableToXmString (table, table_count, break_component);

/* use the compound string */
...

/* free the allocated space */
XmStringFree (xms);

See Also
XmStringConcat(1), XmStringCopy(1), XmStringFree(1),
XmStringToXmStringTable(1).

1.Erroneously given as XmComponentCreate() in 2nd edition. XmStringSeparatorCreate() would do here equally well.

Motif Functions and Macros XmStringTableUnparse

Motif Reference Manual 445

Name
XmStringTableUnparse – convert a compound string table to an array of strings.

Synopsis
XtPointer *XmStringTableUnparse (XmStringTable table,

Cardinal count,
XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTable parse_table,
Cardinal parse_count,
XmParseModel parse_model)

Inputs
table Specifies the compound string table to unparse.
count Specifies the number of compound strings in table.
tag Specifies which text segments to unparse.
tag_type Specifies the type of tag.
output_type Specifies the type of conversion required.
parse_table Specifies a parse table to control the conversion.
parse_count Specifies the number of parse mappings in parse_table.
parse_model Specifies how non-text components are converted.

Returns
An allocated string array containing the unparsed contents of the compound
strings.

Availability
Motif 2.0 and later.

Description
XmStringTableUnparse() is a convenience function which unparses an
array of compound strings. The XmStringTable table is converted into a string
array, whose contents is determined by output_type, which can be
XmCHARSET_TEXT, XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT.
Only those text components within the table which match tag are converted:
NULL converts all text components. An XmParseTable can be supplied which
acts as a filter: each parse mapping in the table contains a pattern which must
match a text component of the compound string if that component is to be con-
verted.

parse_model determines how non-text components of string are handled when
matching against parse_table. If the value is XmOUTPUT_ALL, all components
are taken into account in the conversion process. If the value is

XmStringTableUnparse Motif Functions and Macros

446 Motif Reference Manual

XmOUTPUT_BETWEEN, any non-text components which are not between two
text components are ignored. If the value is XmOUTPUT_BEGINNING, any
non-text components which do not precede a text component are ignored. Simi-
larly, the value XmOUTPUT_END specifies that any non-text components
which do not follow a text component are ignored. XmOUTPUT_BOTH is a
combination of XmOUTPUT_BEGINNING and XmOUTPUT_END. The
number of items within the returned string array is identical to the supplied
number of compound strings. Each converted string occupies the same index in
the returned array as the index of the source compound string in table.

Usage
XmStringTableUnparse() is the logical inverse of the routine XmString-
TableParseStringArray(). It simply invokes XmStringUnparse() on
each of the elements in the supplied table. The function returns allocated storage,
both for the returned array, and for each element within the array. It is the respon-
sibility of the programmer to reclaim the storage at an appropriate point by call-
ing XtFree() on each element in the array and upon the array itself.

Structures
An XmParseModel has the following possible values:

XmOUTPUT_ALL
XmOUTPUT_BEGINNING
XmOUTPUT_BETWEEN
XmOUTPUT_BOTH
XmOUTPUT_END

See Also
XmStringFree(1), XmStringParseText(1), XmStringUnparse(1),
XmParseMapping(2).

Motif Functions and Macros XmStringToXmStringTable

Motif Reference Manual 447

Name
XmStringToXmStringTable – convert a compound string to a compound string
table.

Synopsis
Cardinal XmStringToXmStringTable (XmString string, XmString break_comp,
XmStringTable *table)

Inputs
string Specifies a compound string.
break_comp Specifies a component which indicates where to split string into

an individual table element.
Outputs

table Returns the converted compound string table.
Returns

The number of elements in the converted compound string table.

Availability
Motif 2.0 and later.

Description
XmStringToXmStringTable() is a convenience function which converts an
XmString string into an array of compound strings. break_comp is a component
which is used to determine how to split the string into individual items: compo-
nents in string are considered to form contiguous sequences delimited by
break_comp, each sequence forming a separate entry in the converted string
table. Any component from string which matches the delimiting break_comp is
not copied into the converted table. If break_comp is NULL, the returned com-
pound string table contains a single entry: a copy of the original string.

Usage
XmStringToXmStringTable() is the inverse function to XmStringTab-
leToXmString(). A break_comp component of type
XmSTRING_COMPONENT_TAB or
XmSTRING_COMPONENT_SEPARATOR is the most useful choice. The
function returns allocated storage, and it is the responsibility of the programmer
to reclaim the space by calling XmStringFree() on each element in the table,
and then XtFree() on the table itself.

Example
The following code illustrates a basic call to XmStringToXmStringTa-
ble():

extern XmString xms;

XmStringToXmStringTable Motif Functions and Macros

448 Motif Reference Manual

Cardinal count;
XmStringTable table;
XmString break_component;
int i;

/* create a break component */
break_component = XmStringComponentCreate

(XmSTRING_COMPONEN
T_SEPARATOR, 0,
NULL)1;

/* convert an (unspecified) compound string */
count = XmStringToXmStringTable (xms, break_component, &table);

/* use the table */
...

/* free the allocated space */
for (i = 0; i < count; i++) {

XmStringFree (table[i]);
}

XtFree ((char *) table);

See Also
XmStringFree(1), XmStringTableToXmString(1).

1.Erroneously given as XmComponentCreate() in 2nd edition. XmStringSeparatorCreate() could be used equally well.

Motif Functions and Macros XmStringUnparse

Motif Reference Manual 449

Name
XmStringUnparse – convert a compound string into a string.

Synopsis
XtPointer XmStringUnparse (XmString string,

XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTable parse_table,
Cardinal parse_count,
XmParseModel parse_model)

Inputs
string Specifies the compound string to unparse.
tag Specifies which text segments of string to unparse.
tag_type Specifies the type of tag.
output_type Specifies the type of conversion required.
parse_table Specifies a parse table to control the conversion.
parse_count Specifies the number of parse mappings in parse_table.
parse_model Specifies how non-text components are converted.

Returns
An allocated string containing the unparsed contents of a compound string.

Availability
Motif 2.0 and later.

Description
XmStringUnparse() is a convenience function which unparses a compound
string. The XmString string is converted into a string, whose contents is deter-
mined by output_type, which can be XmCHARSET_TEXT,
XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT. Only those text compo-
nents within the string which match tag are converted: NULL converts all text
components. An XmParseTable can be supplied which acts as a filter: each parse
mapping in the table contains a pattern which must match a text component of
the compound string if that component is to be converted. parse_model deter-
mines how non-text components of string are handled when matching against
parse_table. If the value is XmOUTPUT_ALL, all non-text components are used
in the conversion process. If the value is XmOUTPUT_BETWEEN, any non-text
components which fall between text components are used. If the value is
XmOUTPUT_BEGINNING, non-text components which precede a text compo-
nent are utilized. Similarly, XmOUTPUT_END uses non-text components which
follow a text component. XmOUTPUT_BOTH is a combination of
XmOUTPUT_BEGINNING and XmOUTPUT_END.

Motif Functions and Macros

Motif Reference Manual 450

Usage
XmStringUnparse() is the logical inverse of the routine XmStringParse-
Text(). The function returns allocated storage, and it is the responsibility of the
programmer to reclaim the storage by calling XtFree() at an appropriate point.

Structures
An XmParseModel has the following possible values:

XmOUTPUT_ALL
XmOUTPUT_BEGINNING
XmOUTPUT_BETWEEN
XmOUTPUT_BOTH
XmOUTPUT_END

Example
The following specimen code outlines a basic call to XmStringUnparse(),
which converts separator and tab components into the output:

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
XmString tmp;
XmString output;
char *string;
Arg av[4];
Cardinal ac;

/* map tab component to \t */
tmp = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0,
NULL);
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\t"); ac++;
parse_table[0] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* map separator component to \n */
tmp = XmStringSeparatorCreate();
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\n"); ac++;
parse_table[1] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

Motif Functions and Macros

Motif Reference Manual 451

/* convert the (unspecified) compound string */
string = (char *) XmStringUnparse (xms, NULL, XmCHARSET_TEXT,

XmCHARSET_TEXT, parse_table, 2,
XmOUTPUT_ALL);

/* use the converted string */
....

/* free the allocated space */
XtFree (string);

/* Free the parse table: this also frees the parse mappings */
XmParseTableFree (parse_table, 2);

See Also
XmStringFree(1), XmStringParseText(1),
XmStringTableUnparse(1), XmParseMapping(2).

Motif Functions and Macros

Motif Reference Manual 452

Name
XmStringWidth – get the width of the longest line of text in a compound string.

Synopsis
Dimension XmStringWidth (XmFontList fontlist, XmString string)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns
The width of the compound string.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringWidth() returns the width, in pixels, of the longest line of text in the
specified compound string. Lines in the compound string are delimited by sepa-
rator components. If string is created with XmStringCreateSimple(), then
fontlist must begin with the font from the character set of the current language
environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringWidth() provides information that is useful if you need to render a
compound string. Motif widgets render compound strings automatically, so you
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com-
pound string rendered with a particular font.

See Also
XmStringBaseline(1), XmStringExtent(1), XmStringHeight(1).

Motif Functions and Macros

Motif Reference Manual 453

Name
XmTabCreate – create a tab stop.

Synopsis
XmTab XmTabCreate (float value,

unsigned char units,
XmOffsetModel offset_model,
unsigned char alignment,
char *decimal)

Inputs
value Specifies the value to be used in calculating the location of a tab
stop.
units Specifies the units in which value is expressed.
offset_model Specifies whether the tab is at an absolute position, or relative to
the previous tab.
alignment Specifies how text should be aligned to this tab stop.
decimal Specifies the multibyte character in the current locale to be used
as a decimal point.

Returns
An XmTab object.

Availability
Motif 2.0 and later.

Description
XmTabCreate() creates a tab stop at the position specified by value, which is
expressed in terms of units. If value is less than 0 (zero), a warning is displayed,
and value is reset to 0.0. The offset_model determines whether the tab position is
an absolute location (XmABSOLUTE) calculated from the start of any render-
ing, or relative to the previous tab stop (XmRELATIVE). alignment specifies
how text is aligned with respect to the tab location: at present only
XmALIGNMENT_BEGINNING is supported. decimal is a multibyte character
which describes the decimal point character in the current locale.

Usage
A tab stop can be created, and inserted into an XmTabList through the function
XmTabListInsertTabs(). The tab list is used to render a multi-column lay-
out of compound strings by specifying the list as the XmNtabList resource of a
rendition object within a render table associated with a widget. The decimal
parameter is currently unused.

Motif Functions and Macros

Motif Reference Manual 454

XmTabCreate() allocates storage for the object which it returns. It is the
responsibility of the programmer to free the memory at an appropriate point by a
call to XmTabFree().

Structures
The XmOffsetModel type has the following possible values:

XmABSOLUTE XmRELATIVE

Valid values for the units parameter are:

XmPIXELS
Xm100TH_MILLIMETERS XmMILLIMETERS
Xm1000TH_INCHES XmINCHES
Xm100TH_FONT_UNITS XmFONT_UNITS
Xm100TH_POINTS XmPOINTS
XmCENTIMETERS

Example
The following code creates a multi-column arrangement of compound strings; it
creates a set of XmTab objects, which are then inserted into an XmRendition
object. The XmRendition object is added to a render table:

extern Widget widget;
int i;
Arg argv[3];
XmTab tabs[MAX_COLUMNS];
XmTabList tab_list = (XmTabList) 0;
XmRendition rendition;
XmRenderTable render_table;

/* Create the XmTab objects */
for (i = 0 ; i < MAX_COLUMNS ; i++) {

tabs[i] = XmTabCreate ((float) 1.5,
XmINCHES,
((i == 0) ? XmABSOLUTE :
XmRELATIVE),
XmALIGNMENT_BEGINNING,
“.”);

}

/* Add them to an XmTabList */
tab_list = XmTabListInsertTabs (NULL, tabs,
MAX_COLUMNS, 0);

/* Put the XmTabList into an XmRendition object */

Motif Functions and Macros

Motif Reference Manual 455

i = 0;
XtSetArg (argv[i], XmNtabList, tab_list); i++;
XtSetArg (argv[i], XmNfontName, “fixed”); i++;
XtSetArg (argv[i], XmNfontType, XmFONT_IS_FONT);
i++;
rendition = XmRenditionCreate (widget,NULL,argv,
i);

/* Add the XmRendition object into an XmRenderTable
*/
render_table = XmRenderTableAddRenditions (NULL,

&rendi-
tion,
1,
XmMERGE
_NEW);

/* Apply to the widget */
XtVaSetValues (widget, XmNrenderTable,
render_table, NULL);
...

/* Free Up - render table applied to widget takes a
reference
** counted copy of everything
*/
for (i = 0 ; i < MAX_COLUMNS ; i++) {

XmTabFree (tabs[i]);
}
XmTabListFree (tab_list);
XmRenditionFree (rendition);
XmRenderTableFree (render_table);

See Also
XmTabFree(1), XmTabGetValues(1), XmTabListInsertTabs(1),
XmTabSetValue(1), XmRenditionCreate(1),
XmRenderTableAddRenditions(1), XmRendition(2).

Motif Functions and Macros

Motif Reference Manual 456

Name
XmTabFree – free the memory used by an XmTab object.

Synopsis
void XmTabFree (XmTab tab)

Inputs
tab Specifies an XmTab object.

Availability
Motif 2.0 and later.

Description
XmTabFree() reclaims the memory associated with tab, previously allocated by
a call to XmTabCreate().

Usage
A tab stop can be created using XmTabCreate(), and inserted into an XmTab-
List through the function XmTabListInsertTabs(). The tab list is used to
render a multi-column layout of compound strings by specifying the list as the
XmNtabList resource of a rendition object within a render table associated with a
widget.

See Also
XmTabCreate(1), XmRendition(2).

Motif Functions and Macros

Motif Reference Manual 457

Name
XmTabGetValues – fetch the value of an XmTab object.

Synopsis
float XmTabGetValues (XmTab tab,

unsigned char *units,
XmOffsetModel *offset_model,
unsigned char *alignment,
char **decimal)

Inputs
tab Specifies an XmTab object.

Outputs
units Returns the units in which the tab stop is calculated.
offset_model Returns the offset model.
alignment Returns the text alignment with respect to the tab stop.
decimal Returns the multibyte character used to represent the decimal
point.

Returns
The distance, expressed in units, which the tab is offset.

Availability
Motif 2.0 and later.

Description
XmTabGetValues() retrieves the data associated with a tab stop object. The
function returns the position value of a tab stop, which is expressed in terms of
units. The offset_model determines whether the tab position is an absolute loca-
tion (XmABSOLUTE) calculated from the start of any rendering, or relative to
the previous tab stop (XmRELATIVE). alignment specifies how text is aligned
with respect to the tab location: at present only XmALIGNMENT_BEGINNING
is supported. decimal is a multibyte character which describes the decimal point
character in the current locale.

Usage
A tab stop can be created using the function XmTabCreate(), and inserted into
an XmTabList through the function XmTabListInsertTabs(). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget. The decimal value is currently unused.

Structures
The XmOffsetModel type has the following possible values:

Motif Functions and Macros

Motif Reference Manual 458

XmABSOLUTE XmRELATIVE

Valid values for units are:

XmPIXELS
Xm100TH_MILLIMETERS XmMILLIMETERS
Xm1000TH_INCHES XmINCHES
Xm100TH_FONT_UNITS XmFONT_UNITS
Xm100TH_POINTS XmPOINTS
XmCENTIMETERS

See Also
XmTabCreate(1), XmTabSetValue(1), XmRendition(2).

Motif Functions and Macros

Motif Reference Manual 459

Name
XmTabListCopy – copy an XmTabList object.

Synopsis

XmTabList XmTabListCopy (XmTabList tab_list, int offset, Cardinal count)1

Inputs
tab_list Specifies the tab list to copy.
offset Specifies an index into the tab list from which to start copying.
count Specifies the number of tab stops to copy.

Returns
A new tab list containing tabs copied from tab_list.

Availability
Motif 2.0 and later.

Description
XmTabListCopy() is a convenience function which creates a new XmTabList
by copying portions of an existing tab_list. If tab_list is NULL, the function sim-
ply returns NULL. Otherwise, a new tab list is allocated, and selected tabs are
copied, depending on the offset and count parameters. count specifies the number
of tabs to copy, and offset determines where in the original list to start. If offset is
zero, tabs are copied from the beginning of tab_list. If offset is negative, tabs are
copied in reverse order from the end of tab_list. If count is zero, all tabs from off-
set to the end of tab_list are copied.

Usage
A tab stop can be created using the function XmTabCreate(), and inserted into
an XmTabList through the function XmTabListInsertTabs(). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

XmTabListCopy() allocates storage for the object which it returns. It is the
responsibility of the programmer to free the memory at an appropriate point by a
call to XmTabListFree().

See Also
XmTabCreate(1), XmTabListFree(1), XmTabListInsertTabs(1),
XmRendition(2).

1.Erroneously given as XmTabListTabCopy() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 460

Name
XmTabListFree – free the memory used by a tab list.

Synopsis
void XmTabListFree (XmTabList tab_list)

Inputs
tab_list Specified the tab list to free.

Availability
Motif 2.0 and later.

Description
XmTabListFree() reclaims the space used by an XmTabList object, tab_list.

Usage
In common with other objects in Motif 2.0 and later, the tab (XmTab) and tab list
(XmTabList) are dynamically allocated data structures which must be freed when
no longer required. For example, XmStringTableProposeTablist()
dynamically creates a tab list for rendering a multi-column compound string table
which must be subsequently deallocated.

It is important to call XmTabListFree() instead of XtFree() because
XmTabListFree() also reclaims storage for each of the elements in the tab list.

See Also
XmStringTableProposeTablist(1), XmTabCreate(1),
XmTabListInsertTabs(1), XmRendition(2).

Motif Functions and Macros

Motif Reference Manual 461

Name
XmTabListGetTab – retrieve a tab from a tab list

Synopsis
XmTab XmTabListGetTab (XmTabList tab_list, Cardinal position)

Inputs
tab_list Specifies a tab list.
position Specifies the position of the required tab within the tab_list.

Returns
A copy of the required tab.

Availability
Motif 2.0 and later.

Description
XmTabListGetTab() returns a copy of a tab from the XmTabList specified by
tab_list. position determines where in the list of tabs the required tab is copied
from. The first tab within tab_list is at position zero, the second tab at position 1,
and so on. If position is not less than the number of tabs within the list, XmTab-
ListGetTab() returns NULL.

Usage
A tab stop can be created using the function XmTabCreate(), and inserted into
an XmTabList through the function XmTabListInsertTabs(). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

XmTabListGetTab() returns a copy of the tab within the original tab list, and
it is the responsibility of the programmer to reclaim the space at a suitable point
by calling XmTabFree().

See Also
XmTabCreate(1), XmTabFree(1), XmTabListInsertTabs(1),
XmRendition(2).

Motif Functions and Macros

Motif Reference Manual 462

Name
XmTabListInsertTabs – insert tabs into a tab list.

Synopsis
XmTabList XmTabListInsertTabs (XmTabList tab_list, XmTab *tabs, Cardinal
tab_count, int position)

Inputs
tab_list Specifies the tab list into which tabs are added.
tabs Specifies an array of tabs to add.
tab_count Specifies the number of tabs within the tabs array.
position Specifies an index into tab_list at which to insert the tabs.

Returns
A newly allocated tab list.

Availability
Motif 2.0 and later.

Description
XmTabListInsertTabs() creates a new tab list by merging a set of tabs into
a tab_list at a given position. If tabs is NULL, or tab_count is zero, the function
returns the original tab_list. If position is zero, the new tabs are inserted at the
head of the new tab list, if position is 1, they are inserted after the first tab, and so
forth. If position is greater than the number of tabs in tab_list, the new tabs are
appended. If position is negative, the new tabs are inserted in reverse order at the
end of the original list, so that the first new tab becomes the last tab in the new
list.

Usage
A tab stop can be created using the function XmTabCreate(), and inserted into
an XmTabList through the function XmTabListInsertTabs(). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

XmTabListInsertTabs() returns allocated storage, and it is the responsibil-
ity of the programmer to reclaim the space at a suitable point by calling XmTab-
ListFree().

See Also
XmTabCreate(1), XmTabFree(1), XmTabListFree(1),
XmTabListInsertTabs(1), XmRendition(2).

Motif Functions and Macros

Motif Reference Manual 463

Name
XmTabListRemoveTabs – copy a tab list, excluding specified tabs.

Synopsis
XmTabList XmTabListRemoveTabs (XmTabList old_list,

Cardinal *position_list,
Cardinal position_count)

Inputs
old_list Specifies the tab list to copy.
position_list Specifies an array of tab positions to exclude.
position_count Specifies the length of position_list.

Returns
A copy of old_list, with the specified positions excluded.

Availability
Motif 2.0 and later.

Description
XmTabListRemoveTabs() removes tabs from a old_list by allocating a new
tab list which contains all the tabs of the original list except for those at specific
positions within a position_list. The first tab within a tab list is at position zero,
the second tab at position 1, and so on. If old_list is NULL, or if position_list is
NULL, or if position_count is zero, the function returns old_list unmodified.
Otherwise old_list is freed, as are any excluded tab elements, before the newly
allocated tab list is returned.

Usage
A tab stop can be created using the function XmTabCreate(), and inserted into
an XmTabList through the function XmTabListInsertTabs(). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

When the returned tab list differs from the original old_list parameter, XmTab-
ListRemoveTabs() returns allocated storage, and it is the responsibility of the
programmer to reclaim the space at a suitable point by calling XmTabList-
Free().

See Also
XmTabCreate(1), XmTabFree(1), XmTabListFree(1),
XmTabListInsertTabs(1), XmRendition(2).

Motif Functions and Macros

Motif Reference Manual 464

Name
XmTabListReplacePositions – copy a tab list, replacing tabs at specified posi-
tions.

Synopsis
XmTabList XmTabListReplacePositions (XmTabList old_list,

Cardinal *position_list,
XmTab *tabs,
Cardinal tab_count)

Inputs
old_list Specifies the tab list to modify.
position_list Specifies an array of positions at which to replace the tabs.
tabs Specifies the tabs which replace those in old_list.
tab_count Specifies the number of tabs and positions.

Returns
A new tab list with tabs replaced at specified positions.

Availability
Motif 2.0 and later.

Description
XmTabListReplacePositions() creates a newly allocated tab list which
contains all the original tabs in old_list, except that at any position contained
within position_list, the corresponding tab from tabs is used instead of the origi-
nal. That is, at the first position specified within position_list, the original tab is
replaced by the first tab within tabs. The first tab within a tab list is at position
zero, the second tab at position 1, and so on. If old_list is NULL, or if tabs is
NULL, or if position_list is NULL, or if tab_count is zero, the function returns
old_list unmodified. Otherwise old_list is freed, as are any replaced tab elements,
before the newly allocated tab list is returned.

Usage
A tab stop can be created using the function XmTabCreate(), and inserted into
an XmTabList through the function XmTabListInsertTabs(). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

When the returned tab list differs from the original old_list parameter, XmTab-
ListReplacePositions() returns allocated storage, and it is the responsi-
bility of the programmer to reclaim the space at a suitable point by calling
XmTabListFree()

Motif Functions and Macros

Motif Reference Manual 465

See Also
XmTabCreate(1), XmTabFree(1), XmTabListFree(1),
XmTabListInsertTabs(1), XmTabListRemoveTabs(1),
XmRendition(2).

Motif Functions and Macros

Motif Reference Manual 466

Name
XmTabListTabCount – count the number of tabs in a tab list.

Synopsis
Cardinal XmTabListTabCount (XmTabList tab_list)

Inputs
tab_list The tab list to count.

Returns
The number of tab stops in tab_list.

Availability
Motif 2.0 and later.

Description
XmTabListTabCount()1 is a convenience function which counts the number
of XmTab objects contained within tab_list. If tab_list is NULL, the function
returns zero.

Usage
A tab stop can be created using the function XmTabCreate(), and inserted into
an XmTabList through the function XmTabListInsertTabs(). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

See Also
XmTabCreate(1), XmTabFree(1), XmTabListFree(1),
XmTabListInsertTabs(1), XmTabListRemoveTabs(1),
XmRendition*(s2.

1.Erroneously given as XmTabListCount() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 467

Name
XmTabSetValue – set the value of a tab stop.

Synopsis
void XmTabSetValue (XmTab tab, float value)

Inputs
tab Specifies the tab to modify.
value Specifies the new value for the tab stop.

Availability
Motif 2.0 and later.

Description
XmTabSetValue() sets the value associated with an XmTab object. The value
is a floating point quantity which either represents an absolute distance from the
start of the current rendition, or a value relative to the previous tab stop. The off-
set model specified when the tab is created determines whether value is relative
or absolute. If value is less than 0 (zero), a warning message is displayed and the
function returns without modifying the tab.

Usage
A tab stop can be created using the function XmTabCreate(), and inserted into
an XmTabList through the function XmTabListInsertTabs(). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

See Also
XmTabCreate(1), XmTabListInsertTabs(1), XmRendition(2).

Motif Functions and Macros

Motif Reference Manual 468

Name
XmTabStackGetSelectedTab –return the widgetID of the currently selected tab.

Synopsis
#include <Xm/TabStack.h>

Widget XmTabStackGetSelectedTab (Widget widget)
Inputs

widget Specifies widget ID of the TabStack.
Outputs

value_return Returns the widget ID of the currently selected tab.

Description
XmTabStackGetSelectedTab() retrieves the widget ID of the currently
selected tab.

Usage
XmTabStackGetSelectedTab() is a convenience routine that retrieves the
widget ID of the currently selected tab.

See Also
XmTabStack(2).

Motif Functions and Macros

Motif Reference Manual 469

Name
XmTabStackIndexToWidget – returns the widget ID of the tab in the TabStack.

Synopsis
#include <Xm/TabStack.h>

Widget XmTabStackIndexToWidget (Widget widget, int tab)
Inputs

widget Specifies the widget ID of the TabStack.
tab Specifies the tab index retrieve.

Outputs
value_return Returns the widget ID of the tab in the TabStack.

Description
XmTabStackIndexToWidget() returns the widget ID of the tab in the Tab-
Stack.

Usage
XmTabStackIndexToWidget() is a convenience routine that returns the
widget ID of the tab in the TabStack

See Also
XmTabStack(2).

Motif Functions and Macros

Motif Reference Manual 470

Name
XmTabStackSelectTab – set the currently displayed child of the TabStack.

Synopsis
#include <Xm/TabStack.h>

void XmTabStackSelectTab (Widget tab, Boolean notify)
Inputs

tab Specifies the child of the TabStack to be selected.
notify Specifies whether XmNtabSelectedCallback will be called

as usual or not.

Description
XmTabStackSelectTab() sets the currently displayed child of the TabStack.

Usage
XmTabStackSelectTab() is a convenience routine that sets the currently dis-
played child of the TabStack. When notify is set to True, XmNtabSelectedCall-
back will be called as usual in response to the change of state. Set False to
suppress this callback.

See Also
XmTabStack(2).

Motif Functions and Macros

Motif Reference Manual 471

Name
XmTabStackXYToWidget – convert a pixel coordinate in the TabStack’s win-
dow to the widget of the tab.

Synopsis
#include <Xm/TabStack.h>

Widget XmTabStackXYToWidget (Widget widget, int x, int y)
Inputs

widget Specifies widget ID of the TabStack.
x, y Specifies the pixel coordinates to convert.

Description
XmTabStackXYToWidget() converts a pixel coordinate (in the TabStack’s
window) to the widget ID of the tab occupying that space.

Usage
XmTabStackXYToWidget() is a convenience routine that converts an x/y
pixel coordinate (in the TabStack’s window) to the widget ID of the tab occupy-
ing that space.

See Also
XmTabStack(2).

Motif Functions and Macros

Motif Reference Manual 472

Name
XmTargetsAreCompatible – determine whether or not the target types of a drag
source and a drop site match.

Synopsis
#include <Xm/DragDrop.h>

Boolean XmTargetsAreCompatible (Display *display,
Atom *export_targets,
Cardinal num_export_targets,
Atom *import_targets,
Cardinal num_import_targets)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
export_targets Specifies the list of target atoms to which the drag

source can convert the data.
num_export_targets Specifies the number of items in export_targets.
import_targets Specifies the list of target atoms that are accepted by

the drop site.
num_import_targets Specifies the number of items in import_targets.

Returns
True if there is a compatible target or False otherwise.

Availability
Motif 1.2 and later.

Description
XmTargetsAreCompatible() determines whether or not the import targets
of a drop site match any of the export targets of a drag source. The routine returns
True if the two objects have at least one target in common; otherwise it returns
False.

Usage
Motif 1.2 and later supports the drag and drop model of selection actions. In a
widget that acts as a drag source, a user can make a selection and then drag the
selection, using BTransfer, to other widgets that are registered as drop sites.
These drop sites can be in the same application or another application. In order
for a drag and drop operation to succeed, the drag source and the drop site must
both be able to handle data in the same format. XmTargetsAreCompati-
ble() provides a way for an application to check if a drag source and a drop site
support compatible formats.

Motif Functions and Macros

Motif Reference Manual 473

See Also
XmDragContext(1), XmDropSite(1).

Motif Functions and Macros

Motif Reference Manual 474

Name
XmTextClearSelection, XmTextFieldClearSelection – clear the primary selec-
tion.

Synopsis
#include <Xm/Text.h>

void XmTextClearSelection (Widget widget, Time time)

#include <Xm/TextF.h>

void XmTextFieldClearSelection (Widget widget, Time time)
Inputs

widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Description
XmTextClearSelection() and XmTextFieldClearSelection() clear
the primary selection in the specified widget. XmTextClearSelection()
works when widget is a Text widget or a TextField widget, while XmText-
FieldClearSelection() only works for a TextField widget. For each rou-
tine, time specifies the server time of the event that caused the request to clear the
selection.

Usage
XmTextClearSelection() and XmTextFieldClearSelection() pro-
vide a convenient way to deselect the text selection in a Text or TextField widget.
If no text is selected, the routines do nothing. Any text that is stored in the clip-
board or selection properties remains; the routines affect the selected text in the
widget only. If you are calling one of these routines from a callback routine, you
probably want to use the time field from the event pointer in the callback struc-
ture as the value of the time parameter. You can also use the value CurrentTime,
but there is no guarantee that using this time prevents race conditions between
multiple clients that are trying to use the clipboard.

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link,
Paste, and Clear) shows the use of XmTextClearSelection():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

Motif Functions and Macros

Motif Reference Manual 475

Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);
break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbut-
ton.time);break;
case 3: result = XmTextPaste (text_w);break
case 4: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextCopy(1), XmTextCopyLink(1), XmTextCut(1),
XmTextGetSelection(1), XmTextGetSelectionPosition(1),
XmTextGetSelectionWcs(1), XmTextSetSelection(1), XmText(2),
XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 476

Name
XmTextCopy, XmTextFieldCopy, XmDataFieldCopy – copy the primary selec-
tion to the clipboard.

Synopsis
#include <Xm/Text.h>

Boolean XmTextCopy (Widget widget, Time time)

#include <Xm/TextF.h>

Boolean XmTextFieldCopy (Widget widget, Time time)

#include <Xm/DataF.h>

Boolean XmDataFieldCopy (Widget widget, Time time)
Inputs

widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Returns
True on success or False otherwise.

Description
XmTextCopy(), XmTextFieldCopy(), and XmDataFieldCopy() copy the
primary selection in the specified widget to the clipboard. XmTextCopy()
works when widget is a Text widget or a TextField widget, while XmText-
FieldCopy() only works for a TextField widget and XmDataFieldCopy()
only works for a DataField widget. For each routine, time specifies the server
time of the event that caused the request to copy the selection. Both routines
return True if successful. If the primary selection is NULL, if it is not owned by
the specified widget, or if the function cannot obtain ownership of the clipboard
selection, the routines return False.

In Motif 2.0 and later, XmTextCopy() interfaces with the Uniform Transfer
Model by indirectly invoking the XmNconvertCallback procedures of the
widget.

Usage
XmTextCopy(), XmTextFieldCopy(), and XmDataFieldCopy() copy the
text that is selected in a Text, TextField, or DataField widget and place it on the
clipboard. If you are calling one of these routines from a callback routine, you
probably want to use the time field from the event pointer in the callback struc-
ture as the value of the time parameter. You can also use the value CurrentTime,
but there is no guarantee that using this time prevents race conditions between
multiple clients that are trying to use the clipboard.

Motif Functions and Macros

Motif Reference Manual 477

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link,
Paste, PasteLink, and Clear) shows the use of XmTextCopy():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);
break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbut-
ton.time);break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextClearSelection(1), XmTextCopyLink(1), XmTextCut(1),
XmTextGetSelection(1), XmTextGetSelectionWcs(1),
XmTextPaste(1), XmTextPasteLink(1), XmTextRemove(1),
XmTextSetSelection(1), XmText(2), XmTextField(2), XmDa-
taField(2).

Motif Functions and Macros

Motif Reference Manual 478

Name
XmTextCopyLink, XmTextFieldCopyLink – copy the primary selection to the
clipboard.

Synopsis
#include <Xm/Text.h>

Boolean XmTextCopyLink (Widget widget, Time time)

#include <Xm/TextF.h>

Boolean XmTextFieldCopyLink (Widget widget, Time time)
Inputs

widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Returns
True on success or False otherwise.

Availability
Motif 2.0 and later.

Description
XmTextCopyLink() and XmTextFieldCopyLink() copy a link to the pri-
mary selection in the specified widget to the clipboard. XmTextCopyLink()
works when widget is a Text widget or a TextField widget, while XmText-
FieldCopyLink() only works for a TextField widget. For each routine, time
specifies the server time of the event that caused the request to copy the selection.
Both routines return True if successful. If the primary selection is NULL, if it is
not owned by the specified widget, or if the function cannot obtain ownership of
the clipboard selection, the routines return False.

XmTextCopyLink() and XmTextFieldCopyLink() interface with the Uni-
form Transfer Model by indirectly invoking XmNconvertCallback procedures
for the widget. The Text widget itself does not copy links: convert procedures
which the programmer provides are responsible for copying the link to the clip-
board.

Usage
XmTextCopyLink() and XmTextFieldCopyLink() copy links to the text
that is selected in a Text or TextField widget and place it on the clipboard. If you
are calling one of these routines from a callback routine, you probably want to
use the time field from the event pointer in the callback structure as the value of
the time parameter. You can also use the value CurrentTime, but there is no guar-

Motif Functions and Macros

Motif Reference Manual 479

antee that using this time prevents race conditions between multiple clients that
are trying to use the clipboard.

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link,
Paste, PasteLink, and Clear) shows the use of XmTextCopyLink():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{
int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);
break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbut-
ton.time);break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextClearSelection(1), XmTextCopy(1), XmTextCut(1),
XmTextGetSelection(1), XmTextGetSelectionWcs(1),
XmTextPaste(1), XmTextPasteLink(1), XmTextRemove(1),
XmTextSetSelection(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 480

Name
XmTextCut, XmTextFieldCut, XmDataFieldCut – copy the primary selection to
the clipboard and remove the selected text.

Synopsis
#include <Xm/Text.h>

Boolean XmTextCut (Widget widget, Time time)

#include <Xm/TextF.h>

Boolean XmTextFieldCut (Widget widget, Time time)

#include <Xm/DataF.h>

Boolean XmDataFieldCut (Widget widget, Time time)
Inputs

widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Returns
True on success or False otherwise.

Description
XmTextCut(), XmTextFieldCut(), and XmDataFieldCut() copy the pri-
mary selection in the specified widget to the clipboard and then delete the pri-
mary selection. XmTextCut() works when widget is a Text widget or a
TextField widget, while XmTextFieldCut() only works for a TextField
widget and XmDataFieldCut() only works for a DataField widget. For each
routine, time specifies the server time of the event that caused the request to cut
the selection. Both routines return True if successful. If the widget is not edita-
ble, if the primary selection is NULL or if it is not owned by the specified widget,
or if the function cannot obtain ownership of the clipboard selection, the routines
return False.

XmTextCut(), XmTextFieldCut(), and XmDataFieldCut() also invoke
the callback routines for the XmNvalueChangedCallback, the XmNmodifyVeri-
fyCallback, and the XmNmodifyVerifyCallbackWcs callbacks for the specified
widget. If both verification callbacks are present, the XmNmodifyVerifyCallback
procedures are invoked first and the results are passed to the XmNmodifyVerify-
CallbackWcs procedures.

In Motif 2.0 and later, XmTextCut() interfaces with the Uniform Transfer
Model by indirectly invoking the XmNconvertCallback procedures of the
widget, firstly to transfer the selection to the clipboard, and secondly to delete the
selection.

Motif Functions and Macros

Motif Reference Manual 481

Usage
XmTextCut(), XmTextFieldCut() , and XmDataField Cut() copy the
text that is selected in a Text, TextField, or DataField widget, place it on the clip-
board, and then delete the selected text. If you are calling one of these routines
from a callback routine, you probably want to use the time field from the event
pointer in the callback structure as the value of the time parameter. You can also
use the value CurrentTime, but there is no guarantee that using this time prevents
race conditions between multiple clients that are trying to use the clipboard.

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link,
Paste, and PasteLink, Clear) shows the use of XmTextCut():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);
break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbut-
ton.time);break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextClearSelection(1), XmTextCopy(1), XmTextCopyLink(1),
XmTextGetSelection(1), XmTextGetSelectionWcs(1),
XmTextPaste(1), XmTextPasteLink(1), XmTextRemove(1),

Motif Functions and Macros

Motif Reference Manual 482

XmTextSetSelection(1), XmText(2), XmTextField(2), XmDa-
taField(2).

Motif Functions and Macros

Motif Reference Manual 483

Name
XmTextDisableRedisplay – prevent visual update of a Text widget.

Synopsis
#include <Xm/Text.h>

void XmTextDisableRedisplay (Widget widget)
Inputs

widget Specifies the Text widget.

Availability
Motif 1.2 and later.

Description
XmTextDisableRedisplay() temporarily inhibits visual update of the spec-
ified Text widget. Even if the visual attributes of the widget have been modified,
the appearance remains unchanged until XmTextEnableRedisplay() is
called.

Usage
XmTextDisableRedisplay() and XmTextEnableRedisplay() allow
an application to make multiple changes to a Text widget without immediate vis-
ual updates. When multiple changes are made with redisplay enabled, visual
flashing often occurs. These routines eliminate this problem.

See Also
XmTextEnableRedisplay(1), XmUpdateDisplay(1), XmText(2).

Motif Functions and Macros

Motif Reference Manual 484

Name
XmTextEnableRedisplay – allow visual update of a Text widget.

Synopsis
#include <Xm/Text.h>

void XmTextEnableRedisplay (Widget widget)
Inputs

widget Specifies the Text widget.

Availability
Motif 1.2 and later.

Description
XmTextEnableRedisplay() allows the specified Text widget to update its
visual appearance. This routine is used in conjunction with XmTextDisable-
Redisplay(), which prevents visual update of the Text widget. When XmTex-
tEnableRedisplay() is called, the widget modifies its visuals to reflect all of
the changes since the last call to XmTextDisableRedisplay(). All future
changes that affect the visual appearance are displayed immediately.

Usage
XmTextDisableRedisplay() and XmTextEnableRedisplay() allow
an application to make multiple changes to a Text widget without immediate vis-
ual updates. When multiple changes are made with redisplay enabled, visual
flashing often occurs. These routines eliminate this problem.

See Also
XmTextDisableRedisplay(1), XmUpdateDisplay(1), XmText*(s2.

Motif Functions and Macros

Motif Reference Manual 485

Name
XmTextFindString – find the beginning position of a text string.

Synopsis
#include <Xm/Xm.h>

Boolean XmTextFindString (Widget widget,
XmTextPosition start,
char *string,
XmTextDirection direction,
XmTextPosition *position)

Inputs
widget Specifies the Text widget.
start Specifies the position from which the search begins.
string Specifies the string for which to search.
direction Specifies the direction of the search. Pass either

XmTEXT_FORWARD or XmTEXT_BACKWARD.
Outputs

position Returns the position where the search string starts.
Returns

True if the string is found or False otherwise.

Availability
Motif 1.2 and later.

Description
XmTextFindString() finds the beginning position of the specified string in
the Text widget. Depending on the value of direction, the routine searches for-
ward or backward from the specified start position for the first occurrence of
string. If XmTextFindString() finds a match, it returns True and position
specifies the position of the first character of the string as the number of charac-
ters from the beginning of the text, where the first character position is 0 (zero).
If a match is not found, the routine returns False and the value of position is
undefined.

Usage
XmTextFindString() is a convenience routine that searches the text in a Text
widget for a particular string. Without the routine, the search must be performed
using the standard string manipulation routines.

Motif Functions and Macros

Motif Reference Manual 486

Example
The following routine shows the use of XmTextFindString() to locate a
string in a text editing window. The search string is specified by the user in a sin-
gle-line Text widget:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat = (char *) 0;
XmTextPosition pos, search_pos;
Boolean found = False;

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

/* find next occurrence from current position -- wrap if necessary */
pos = XmTextGetCursorPosition (text_w);
found = XmTextFindString (text_w, pos, search_pat,
XmTEXT_FORWARD, &search_pos);

if (!found)
found = XmTextFindString (text_w, 0, search_pat,
XmTEXT_FORWARD, &search_pos);

if (found)
XmTextSetInsertionPosition (text_w, search_pos);

XtFree (search_pat);
}

See Also
XmTextFindStringWcs(1), XmTextGetSubstring(1),
XmTextGetSubstringWcs(1), XmText(2).

Motif Functions and Macros

Motif Reference Manual 487

Name
XmTextFindStringWcs – find the beginning position of a wide-character string
in a Text widget.

Synopsis
#include <Xm/Text.h>

Boolean XmTextFindStringWcs (Widget widget,
XmTextPosition start,
wchar_t *wcstring,
XmTextDirection direction,
XmTextPosition *position)

Inputs
widget Specifies the Text widget.
start Specifies the position from which the search begins.
wcstring Specifies the wide-character string for which to search.
direction Specifies the direction of the search. Pass either

XmTEXT_FORWARD or XmTEXT_BACKWARD.
Outputs

position Returns the position where the search string starts.
Returns

True if the string is found or False otherwise.

Availability
Motif 1.2 and later.

Description
XmTextFindStringWcs() finds the beginning position of the specified wide-
character wcstring in the Text widget. Depending on the value of direction, the
routine searches forward or backward from the specified start position for the
first occurrence of wcstring. If XmTextFindStringWcs() finds a match, it
returns True and position specifies the position of the first character of the string
as the number of characters from the beginning of the text, where the first charac-
ter position is 0 (zero). If a match is not found, the routine returns False and the
value of position is undefined.

Usage
In Motif 1.2, the Text widget supports wide-character strings. XmTextFind-
StringWcs() is a convenience routine that searches the text in a Text widget
for a particular wide-character string. The routine converts the wide-character
string into a multi-byte string and then performs the search. Without the routine,
the search must be performed using the standard string manipulation routines.

Motif Functions and Macros

Motif Reference Manual 488

See Also
XmTextFindString(1), XmTextGetSubstring(1),
XmTextGetSubstringWcs(1), XmText(2).

Motif Functions and Macros

Motif Reference Manual 489

Name
XmTextGetBaseline, XmTextFieldGetBaseline – get the position of the baseline.

Synopsis
#include <Xm/Text.h>

int XmTextGetBaseline (Widget widget)

#include <Xm/TextF.h>

int XmTextFieldGetBaseline (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

The baseline position.

Description
XmTextGetBaseline() returns the y coordinate of the baseline of the first
line of text in the specified Text widget, while XmTextFieldGetBaseline()
returns the y coordinate of the baseline for the text in the specified TextField
widget. XmTextGetBaseline() works when widget is a Text widget or a
TextField widget, while XmTextFieldGetBaseline() only works for a
TextField widget. For each routine, the returned value is relative to the top of
the widget and it accounts for the margin height, shadow thickness, highlight
thickness, and font ascent of the first font in the font list.

Usage
XmTextGetBaseline() and XmTextFieldGetBaseline() provide infor-
mation that is useful when you are laying out an application and trying to align
different components.

See Also
XmTextGetCenterline(1), XmWidgetGetBaselines(1),
XmWidgetGetDisplayRect(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 490

Name
XmTextGetCenterline – get the height of vertical text.

Synopsis
#include <Xm/Text.h>

int XmTextGetCenterline (Widget widget)
Inputs

widget Specifies the Text widget.
Returns

The center line x position.

Availability
Motif 2.1 and later.

Description
XmTextGetCenterline() calculates the x coordinate of the centerline in a
Text widget containing vertical text. If the layout direction of the Text widget
does not match XmTOP_TO_BOTTOM_RIGHT_TO_LEFT the function
returns zero. Otherwise the procedure calculates the x position of the centerline
relative to the left of the Text. The margin width, shadow thickness, and the
width of the font are taken into consideration when performing the calculation.

Usage
XmTextGetCenterline() provides information that is useful when you are
laying out an application and trying to align different components.

See Also
XmTextGetBaseline(1), XmWidgetGetCenterlines(1),
XmWidgetGetDisplayRect(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 491

Name
XmTextGetCursorPosition, XmTextFieldGetCursorPosition – get the position of
the insertion cursor.

Synopsis
#include <Xm/Text.h>

XmTextPosition XmTextGetCursorPosition (Widget widget)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetCursorPosition (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

The value of the XmNcursorPosition resource.

Description
XmTextGetCursorPosition() and XmTextFieldGetCursorPosi-
tion() return the value of the XmNcursorPosition resource for the specified
widget. XmTextGetCursorPosition() works when widget is a Text
widget or a TextField widget, while XmTextFieldGetCursorPosition()
only works for a TextField widget. For each routine, the value specifies the
location of the insertion cursor as the number of characters from the beginning of
the text, where the first character position is 0 (zero).

Usage
XmTextGetCursorPosition() and XmTextFieldGetCursorPosi-
tion() are convenience routines that return the value of the XmNcursorPosition
resource for a Text or TextField widget. Calling one of the routines is equivalent
to calling XtGetValues() for the resource, although the routines access the
value through the widget instance structures rather than through XtGetVal-
ues().

See Also
XmTextGetInsertionPosition(1),
XmTextSetCursorPosition(1),
XmTextSetInsertionPosition(1), XmTextShowPosition(1),
XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 492

Name
XmTextGetEditable, XmTextFieldGetEditable – get the edit permission state.

Synopsis
#include <Xm/Text.h>

Boolean XmTextGetEditable (Widget widget)

#include <Xm/TextF.h>

Boolean XmTextFieldGetEditable (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

The state of the XmNeditable resource.

Description
XmTextGetEditable() and XmTextFieldGetEditable() return the
value of the XmNeditable resource for the specified Text or TextField widget.
XmTextGetEditable() works when widget is a Text widget or a TextField
widget, while XmTextFieldGetEditable() only works for a TextField
widget.

Usage
By default, the XmNeditable resource is True, which means that a user can edit
the text string. Setting the resource to False makes a text area read-only.
XmTextGetEditable() and XmTextFieldGetEditable() are conven-
ience routines that return the value of the XmNeditable resource for a Text or
TextField widget. Calling one of the routines is equivalent to calling XtGet-
Values() for the resource, although the routines access the value through the
widget instance structures rather than through XtGetValues().

See Also
XmTextSetEditable(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 493

Name
XmTextGetInsertionPosition, XmTextFieldGetInsertionPosition – get the posi-
tion of the insertion cursor.

Synopsis
#include <Xm/Text.h>

XmTextPosition XmTextGetInsertionPosition (Widget widget)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetInsertionPosition (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

The value of the XmNcursorPosition resource.

Description
The functions, XmTextGetInsertionPosition() and XmTextFieldG-
etInsertionPosition(), return the value of the XmNcursorPosition
resource for the specified widget. XmTextGetInsertionPosition() works
when widget is a Text widget or a TextField widget, while XmTextFieldGet-
InsertionPosition() only works for a TextField widget. For each routine,
the value specifies the location of the insertion cursor as the number of characters
from the beginning of the text, where the first character position is 0 (zero).

Usage
The functions, XmTextGetInsertionPosition() and XmTextFieldG-
etInsertionPosition(), are convenience routines that return the value of
the XmNcursorPosition resource for a Text or TextField widget. Calling one of
the routines is equivalent to calling XtGetValues() for the resource, although
the routines access the value through the widget instance structures rather than
through XtGetValues().

See Also
XmTextGetCursorPosition(1),
XmTextSetInsertionPosition(1),
XmTextSetCursorPosition(1), XmTextShowPosition(1),
XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 494

Name
XmTextGetLastPosition, XmTextFieldGetLastPosition – get the position of the
last character of text.

Synopsis
#include <Xm/Text.h>

XmTextPosition XmTextGetLastPosition (Widget widget)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetLastPosition (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

The position of the last text character.

Description
XmTextGetLastPosition() and XmTextFieldGetLastPosition()
return the position of the last character of text in the specified widget. XmText-
GetLastPosition() works when widget is a Text widget or a TextField
widget, while XmTextFieldGetLastPosition() only works for a Text-
Field widget. For each routine, the returned value specifies the position as the
number of characters from the beginning of the text, where the first character
position is 0 (zero).

Usage
XmTextGetLastPosition() and XmTextFieldGetLastPosition()
are convenience routines that return the number of characters of text in a Text or
TextField widget.

See Also
XmTextGetCursorPosition(1),
XmTextGetInsertionPosition(1), XmTextGetTopCharacter(1),
XmTextScroll(1), XmTextSetCursorPosition(1),
XmTextSetInsertionPosition(1), XmTextSetTopCharacter(1),
XmTextShowPosition(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 495

Name
XmTextGetMaxLength, XmTextFieldGetMaxLength – get the maximum possi-
ble length of a text string.

Synopsis
#include <Xm/Text.h>

int XmTextGetMaxLength (Widget widget)

#include <Xm/TextF.h>

int XmTextFieldGetMaxLength (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

The value of the XmNmaxLength resource.

Description
XmTextGetMaxLength() and XmTextFieldGetMaxLength() return the
value of the XmNmaxLength resource for the specified Text or TextField widget.
XmTextGetMaxLength() works when widget is a Text widget or a TextField
widget, while XmTextFieldGetMaxLength() only works for a TextField
widget. For each routine, the returned value specifies the maximum allowable
length of a text string that a user can enter from the keyboard.

Usage
XmTextGetMaxLength() and XmTextFieldGetMaxLength() are con-
venience routines that return the value of the XmNmaxLength resource for a Text
or TextField widget. Calling one of the routines is equivalent to calling XtGet-
Values() for the resource, although the routines access the value through the
widget instance structures rather than through XtGetValues().

See Also
XmTextSetMaxLength(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 496

Name
XmTextGetSelection, XmTextFieldGetSelection, XmDataFieldGetSelection –
get the value of the primary selection.

Synopsis
#include <Xm/Text.h>

char * XmTextGetSelection (Widget widget)

#include <Xm/TextF.h>

char * XmTextFieldGetSelection (Widget widget)

#include <Xm/DataF.h>

char *XmDataFieldGetSelection (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

A string containing the primary selection.

Description
XmTextGetSelection(), XmTextFieldGetSelection(), and XmDa-
taFieldGetSelection() return a pointer to a character string containing
the primary selection in the specified widget. XmTextGetSelection() works
when widget is a Text widget or a TextField widget, while XmTextFieldGet-
Selection() only works for a TextField widget and XmDataFieldGetSe-
lection() only works for a TextField widget. For each routine, if no text is
selected in the widget, the returned value is NULL. Storage for the returned
string is allocated by the routine and should be freed by calling XtFree(). Man-
agement of the allocated memory is the responsibility of the application.

Usage
XmTextGetSelection(), XmTextFieldGetSelection(), and XmDa-
taFieldGetSelection() provide a convenient way to get the current
selection from a Text, TextField, or DataField widget.

See Also
XmTextGetSelectionPosition(1), XmTextGetSelectionWcs(1),
XmTextSetSelection(1), XmText(2), XmTextField(2), XmDa-
taField(2).

Motif Functions and Macros

Motif Reference Manual 497

Name
XmTextGetSelectionPosition, XmTextFieldGetSelectionPosition,XmDa-
taFieldGetSelectionPosition – get the position of the primary selection.

Synopsis
#include <Xm/Text.h>

Boolean XmTextGetSelectionPosition (Widget widget,
XmTextPosition *left,
XmTextPosition *right)

#include <Xm/TextF.h>

Boolean XmTextFieldGetSelectionPosition (Widget widget,
XmTextPosition *left,
XmTextPosition *right)

#include <Xm/DataF.h>
char * XmDataFieldGetSelectionPosition Widget widget

XmText Position *left,
XmTextPostion *right)

Inputs
widget Specifies the Text or TextField widget.

Outputs
left Returns the position of the left boundary of the primary selection.
right Returns the position of the right boundary of the primary selection.

Returns
True if widget owns the primary selection or False otherwise.

Description
The functions, XmTextGetSelectionPosition(), XmTextFieldGet-
SelectionPosition() , and XmDataFieldGetSelectionPosi-
tion() return the left and right boundaries of the primary selection for the
specified widget. XmTextGetSelectionPosition() works when widget is
a Text widget or a TextField widget, while XmTextFieldGetSelection-
Position() only works for a TextField widget and XmDataFieldGetSelection-
Position() only works for a DataField widget. Each boundary value specifies the
position as the number of characters from the beginning of the text, where the
first character position is 0 (zero). Each routine returns True if the specified Text,
TextField, or DataField widget owns the primary selection; otherwise, the routine
returns False and the values of left and right are undefined.

Usage

Motif Functions and Macros

Motif Reference Manual 498

The functions, XmTextGetSelectionPosition(), XmTextFieldGet-
SelectionPosition() and XmDataFieldGetSelectionPostion,
provide a convenient way to get the position of the current selection from a Text,
TextField, or DataField widget.

See Also
XmTextGetSelection(1), XmTextGetSelectionWcs(1),
XmTextSetSelection(1), XmText(2), XmTextField(2), XmDa-
taField(2).

Motif Functions and Macros

Motif Reference Manual 499

Name
XmTextGetSelectionWcs, XmTextFieldGetSelectionWcs – get the wide-charac-
ter value of the primary selection.

Synopsis
#include <Xm/Text.h>

wchar_t * XmTextGetSelectionWcs (Widget widget)

#include <Xm/TextF.h>

wchar_t * XmTextFieldGetSelectionWcs (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

A wide-character string containing the primary selection.

Availability
Motif 1.2 and later.

Description
XmTextGetSelectionWcs() and XmTextFieldGetSelectionWcs()
return a pointer to a wide-character string containing the primary selection in the
specified widget. XmTextGetSelectionWcs() works when widget is a Text
widget or a TextField widget, while XmTextFieldGetSelectionWcs()
only works for a TextField widget. For each routine, if no text is selected in the
widget, the returned value is NULL. Storage for the returned wide-character
string is allocated by the routine and should be freed by calling XtFree(). Man-
agement of the allocated memory is the responsibility of the application.

Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings.
XmTextGetSelectionWcs() and XmTextFieldGetSelectionWcs()
provide a convenient way to get the current selection in wide-character format
from a Text or TextField widget.

See Also
XmTextGetSelection(1), XmTextGetSelectionPosition(1),
XmTextSetSelection(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 500

Name
XmTextGetSource – get the text source.

Synopsis
#include <Xm/Text.h>

XmTextSource XmTextGetSource (Widget widget)
Inputs

widget Specifies the Text widget.
Returns

The source of the Text widget.

Description
XmTextGetSource() returns the source of the specified Text widget. Every
Text widget has an XmTextSource data structure associated with it that functions
as the text source and sink.

Usage
Multiple text widgets can share the same text source, which means that editing in
one of the widgets is reflected in all of the others. XmTextGetSource()
retrieves the source for a widget; this source can then be used to set the source of
another Text widget using XmTextSetSource(). XmTextGetSource() is a
convenience routine that returns the value of the XmNsource resource for the
Text widget. Calling the routine is equivalent to calling XtGetValues() for the
resource, although the routine accesses the value through the widget instance
structures rather than through XtGetValues().

See Also
XmTextSetSource(1), XmText(2).

Motif Functions and Macros

Motif Reference Manual 501

Name
XmTextGetString, XmTextFieldGetString – get the text string.

Synopsis
#include <Xm/Text.h>

char * XmTextGetString (Widget widget)

#include <Xm/TextF.h>

char * XmTextFieldGetString (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

A string containing the value of the Text or TextField widget.

Description
XmTextGetString() and XmTextFieldGetString() return a pointer to a
character string containing the value of the specified widget. XmTextGet-
String() works when widget is a Text widget or a TextField widget, while
XmTextFieldGetString() only works for a TextField widget. For each
routine, if the string has a length of 0 (zero), the returned value is the empty
string. Storage for the returned string is allocated by the routine and should be
freed by calling XtFree(). Management of the allocated memory is the respon-
sibility of the application.

Usage
XmTextGetString() and XmTextFieldGetString() are convenience
routines that return the value of the XmNvalue resource for a Text or TextField
widget. Calling one of the routines is equivalent to calling XtGetValues() for
the resource, although the routines access the value through the widget instance
structures rather than through XtGetValues().

In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you set the XmNvalueWcs resource,
you can still use XmTextGetString() or XmTextFieldGetString() to
retrieve the value of the widget, since the value is stored internally as a multi-
byte string.

Motif Functions and Macros

Motif Reference Manual 502

Example
The following routine shows the use of XmTextGetString() to retrieve the
text from one Text widget and use the text to search for the string in another Text
widget:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat;
XmTextPosition pos, search_pos;
Boolean found = False;

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

/* find next occurrence from current position -- wrap if necessary */
pos = XmTextGetCursorPosition (text_w);
found = XmTextFindString (text_w, pos, search_pat,
XmTEXT_FORWARD, &search_pos);

if (!found)
found = XmTextFindString (text_w, 0, search_pat,
XmTEXT_FORWARD, &search_pos);

if (found)
XmTextSetInsertionPosition (text_w, search_pos);
XtFree (search_pat);

}

See Also
XmTextGetStringWcs(1), XmTextGetSubstring(1),
XmTextGetSubstringWcs(1), XmTextSetString(1),
XmTextSetStringWcs(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 503

Name
XmTextGetStringWcs, XmTextFieldGetStringWcs – get the wide-character text
string.

Synopsis
#include <Xm/Text.h>

wchar_t * XmTextGetStringWcs (Widget widget)

#include <Xm/TextF.h>

wchar_t * XmTextFieldGetStringWcs (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

A wide-character string containing the value of the Text or TextField widget.

Availability
Motif 1.2 and later.

Description
XmTextGetStringWcs() and XmTextFieldGetStringWcs() return a
pointer to a wide-character string containing the value of the specified widget.
XmTextGetStringWcs() works when widget is a Text widget or a TextField
widget, while XmTextFieldGetStringWcs() only works for a TextField
widget. For each routine, if the string has a length of 0 (zero), the returned value
is the empty string. Storage for the returned wide-character string is allocated by
the routine and should be freed by calling XtFree(). Management of the allo-
cated memory is the responsibility of the application.

Usage
XmTextGetStringWcs() and XmTextFieldGetStringWcs() are con-
venience routines that return the value of the XmNvalueWcs resource for a Text
or TextField widget. Calling one of the routines is equivalent to calling XtGet-
Values() for the resource, although the routines access the value through the
widget instance structures rather than through XtGetValues().

In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you use the XmNvalue resource to set
the value of a widget, you can still use XmTextGetStringWcs() or XmText-
FieldGetStringWcs() to retrieve the value of the widget, since the value
can be converted to a wide-character string.

Motif Functions and Macros

Motif Reference Manual 504

See Also
XmTextGetString(1), XmTextGetSubstring(1),
XmTextGetSubstringWcs(1), XmTextSetString(1),
XmTextSetStringWcs(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 505

Name
XmTextGetSubstring, XmTextFieldGetSubstring – get a copy of part of the text
string.

Synopsis
#include <Xm/Text.h>

int XmTextGetSubstring (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
char *buffer)

#include <Xm/TextF.h>

int XmTextFieldGetSubstring (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
char *buffer)

Inputs
widget Specifies the Text or TextField widget.
start Specifies the starting character position from which data is copied.
num_chars Specifies the number of characters that are copied.
buffer_size Specifies the size of buffer.
buffer Specifies the character buffer where the copy is stored.

Returns
XmCOPY_SUCCEEDED on success, XmCOPY_TRUNCATED if fewer than
num_chars are copied, or XmCOPY_FAILED on failure.

Availability
Motif 1.2 and later.

Description
XmTextGetSubstring() and XmTextFieldGetSubstring() get a copy
of part of the internal text buffer for the specified widget. XmTextGetSub-
string()1 works when widget is a Text widget or a TextField widget, while
XmTextFieldGetSubstring()2 only works for a TextField widget. The
routines copy num_chars characters starting at start position, which specifies the

1.Erroneously given as XmTextGetString() in 1st and 2nd editions.
2.Erroneously given as XmTextFieldGetString() in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 506

position as the number of characters from the beginning of the text, where the
first character position is 0 (zero). The characters are copied into the provided
buffer and are NULL-terminated.

XmTextGetSubstring() and XmTextFieldGetSubstring() return
XmCOPY_SUCCEEDED on success. If the specified num_chars does not fit in
the provided buffer, the routines return XmCOPY_TRUNCATED. In this case,
buffer contains as many characters as would fit plus a NULL terminator. If either
of the routines fails to make the copy, it returns XmCOPY_FAILED and the con-
tents of buffer are undefined.

Usage
XmTextGetSubstring() and XmTextFieldGetSubstring() provide a
convenient way to retrieve a portion of the text string in a Text or TextField
widget. The routines return the specified part of the XmNvalue resource for the
widget.

In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you set the XmNvalueWcs resource,
you can still use XmTextGetSubstring() or XmTextFieldGetSub-
string() to retrieve part of the value of the widget, since the value is stored
internally as a multi-byte string.

The necessary buffer_size for XmTextGetSubstring() and XmText-
FieldGetSubstring() depends on the maximum number of bytes per char-
acter for the current locale. This information is stored in MB_CUR_MAX, a
macro defined in <stdlib.h>. The buffer needs to be large enough to store the sub-
string and a NULL terminator. You can use the following equation to calculate
the necessary buffer_size:

buffer_size = (num_chars * MB_CUR_MAX) + 1

See Also
XmTextGetString(1), XmTextGetStringWcs(1),
XmTextGetSubstringWcs(1), XmTextSetString(1),
XmTextSetStringWcs(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 507

Name
XmTextGetSubstringWcs, XmTextFieldGetSubstringWcs – get a copy of part of
the wide-character text string.

Synopsis
#include <Xm/Text.h>

int XmTextGetSubstringWcs (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
wchar_t *buffer)

#include <Xm/TextF.h>

int XmTextFieldGetSubstringWcs (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
wchar_t *buffer)

Inputs
widget Specifies the Text or TextField widget.
start Specifies the starting character position from which data is copied.
num_chars Specifies the number of wide-characters that are copied.
buffer_size Specifies the size of buffer.
buffer Specifies the wide-character buffer where the copy is stored.

Returns
XmCOPY_SUCCEEDED on success, XmCOPY_TRUNCATED if fewer than
num_chars are copied, or XmCOPY_FAILED on failure.

Availability
Motif 1.2 and later.

Description
XmTextGetSubstringWcs() and XmTextFieldGetSubstringWcs()
get a copy of part of the internal wide-character text buffer for the specified
widget. XmTextGetSubstringWcs() works when widget is a Text widget or
a TextField widget, while XmTextFieldGetSubstringWcs() only works
for a TextField widget. The routines copy num_chars wide-characters starting at
start position, which specifies the position as the number of characters from the
beginning of the text, where the first character position is 0 (zero). The wide-
characters are copied into the provided buffer and are NULL-terminated.

Motif Functions and Macros

Motif Reference Manual 508

XmTextGetSubstringWcs() and XmTextFieldGetSubstringWcs()
return XmCOPY_SUCCEEDED on success. If the specified num_chars does not
fit in the provided buffer, the routines return XmCOPY_TRUNCATED. In this
case, buffer contains as many wide-characters as would fit plus a NULL termina-
tor. If either of the routines fails to make the copy, it returns XmCOPY_FAILED
and the contents of buffer are undefined.

Usage
XmTextGetSubstringWcs() and XmTextFieldGetSubstringWcs()
provide a convenient way to retrieve a portion of the wide-character text string in
a Text or TextField widget. The routines return the specified part of the XmNval-
ueWcs resource for the widget.

In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you use the XmNvalue resource to set
the value of a widget, you can still use XmTextGetSubstringWcs() or XmText-
FieldGetSubstringWcs() to retrieve part of the value of the widget, since
the value can be converted to a wide-character string.

The necessary buffer_size for XmTextGetSubstringWcs() and XmText-
FieldGetSubstringWcs() is num_chars + 1.

See Also
XmTextGetString(1), XmTextGetStringWcs(1),
XmTextGetSubstring(1), XmTextSetString(1),
XmTextSetStringWcs(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 509

Name
XmTextGetTopCharacter – get the position of the first character of text that is
displayed.

Synopsis
#include <Xm/Text.h>

XmTextPosition XmTextGetTopCharacter (Widget widget)
Inputs

widget Specifies the Text widget.
Returns

The position of the first visible character.

Description
XmTextGetTopCharacter() returns the value of the XmNtopCharacter
resource for the specified Text widget. The returned value specifies the position
of the first visible character of text as the number of characters from the begin-
ning of the text, where the first character position in 0 (zero).

Usage
XmTextGetTopCharacter() is a convenience routine that returns the value
of the XmNtopCharacter resource for a Text widget. Calling the routines is
equivalent to calling XtGetValues() for the resource, although the routines
accesses the value through the widget instance structures rather than through
XtGetValues().

See Also
XmTextGetCursorPosition(1),
XmTextGetInsertionPosition(1), XmTextGetLastPosition(1),
XmTextScroll(1), XmTextSetCursorPosition(1),
XmTextSetInsertionPosition(1), XmTextSetTopCharacter(1),
XmTextShowPosition(1), XmText(2).

Motif Functions and Macros

Motif Reference Manual 510

Name
XmTextInsert, XmTextFieldInsert – insert a string into the text string.

Synopsis
#include <Xm/Text.h>

void XmTextInsert (Widget widget, XmTextPosition position, char *value)

#include <Xm/TextF.h>

void XmTextFieldInsert (Widget widget, XmTextPosition position, char *string)
Inputs

widget Specifies the Text or TextField widget.
position Specifies the position at which the string is inserted.
string Specifies the string to be inserted.

Description
XmTextInsert() and XmTextFieldInsert() insert a text string in the
specified Text or TextField widget. XmTextInsert() works when widget is a
Text widget or a TextField widget, while XmTextFieldInsert() only works
for a TextField widget. The specified string is inserted at position, where charac-
ter positions are numbered sequentially, starting with 0 (zero) at the beginning of
the text. To insert a string after the nth character, use a position value of n.

XmTextInsert() and XmTextFieldInsert() also invoke the callback rou-
tines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, and
the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If both
verification callbacks are present, the XmNmodifyVerifyCallback procedures are
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures.

Usage
XmTextInsert() and XmTextFieldInsert() provide a convenient means
of inserting text in a Text or TextField widget. The routines insert text by modi-
fying the value of the XmNvalue resource of the widget.

Example
The following routine shows the use of XmTextInsert() to insert a message
into a status Text widget:

Widget status;

void insert_text (char *message)
{

XmTextPosition curpos = XmTextGetInsertionPosition (status);

Motif Functions and Macros

Motif Reference Manual 511

XmTextInsert (status, curpos, message);

curpos = curpos + strlen (message);
XmTextShowPosition (status, curpos);
XmTextSetInsertionPosition (status, curpos);

}

See Also
XmTextInsertWcs(1), XmTextReplace(1), XmTextReplaceWcs(1),
XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 512

Name
XmTextInsertWcs, XmTextFieldInsertWcs – insert a wide-character string into
the text string.

Synopsis
#include <Xm/Text.h>

void XmTextInsertWcs (Widget widget, XmTextPosition position, wchar_t
*wcstring)1

#include <Xm/TextF.h>

void XmTextFieldInsertWcs (Widget widget, XmTextPosition position, wchar_t
* wcstring)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position at which the string is inserted.
wcstring Specifies the wide-character string to be inserted.

Availability
Motif 1.2 and later.

Description
XmTextInsertWcs() and XmTextFieldInsertWcs() insert a wide-char-
acter text wcstring in the specified widget. XmTextInsertWcs() works when
widget is a Text widget or a TextField widget, while XmTextFieldInsert-
Wcs() only works for a TextField widget. The specified wcstring2 is inserted at
position, where character positions are numbered sequentially, starting with 0
(zero) at the beginning of the text. To insert a string after the nth character, use a
position value of n.

XmTextInsertWcs() and XmTextFieldInsertWcs() also invoke the
callback routines for the XmNvalueChangedCallback, the XmNmodifyVerify-
Callback, and the XmNmodifyVerifyCallbackWcs callbacks for the specified
widget. If both verification callbacks are present, the XmNmodifyVerifyCallback
procedures are invoked first and the results are passed to the XmNmodifyVerify-
CallbackWcs procedures.

1.Erroneously given as XmTextInsert() in 1st and 2nd editions.
2.Erroneously given as string in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 513

Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings.
XmTextInsertWcs() and XmTextFieldInsertWcs() provide a conven-
ient means of inserting a wide-character string in a Text or TextField widget. The
routines insert text by converting the wide-character string to a multi-byte string
and then modifying the value of the XmNvalue resource of the widget.

See Also
XmTextInsert(1), XmTextReplace(1), XmTextReplaceWcs(1),
XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 514

Name
XmTextPaste, XmTextFieldPaste – insert the clipboard selection.

Synopsis
#include <Xm/Text.h>

Boolean XmTextPaste (Widget widget)

#include <Xm/TextF.h>

Boolean XmTextFieldPaste (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

True on success or False otherwise.

Description
XmTextPaste() and XmTextFieldPaste() insert the clipboard selection at
the current position of the insertion cursor in the specified widget. XmText-
Paste() works when widget is a Text widget or a TextField widget, while
XmTextFieldPaste() only works for a TextField widget. If the insertion
cursor is within the current selection and the value of XmNpendingDelete is
True, the current selection is replaced by the clipboard selection. Both routines
return True if successful. If the widget is not editable or if the function cannot
obtain ownership of the clipboard selection, the routines return False.

In Motif 2.0 and later, XmTextPaste() interfaces with the Uniform Transfer
Model by indirectly invoking the XmNdestinationCallback procedures of the
widget.

XmTextPaste() and XmTextFieldPaste() also invoke the callback rou-
tines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, and
the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If both
verification callbacks are present, the XmNmodifyVerifyCallback procedures are
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures.

Usage
XmTextPaste() and XmTextFieldPaste() get the current selection from
the clipboard and insert it at the location of the insertion cursor in the Text or
TextField widget.

Motif Functions and Macros

Motif Reference Manual 515

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link,
Paste, PasteLink, and Clear) shows the use of XmTextPaste():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);
break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbut-
ton.time);break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextCopy(1), XmTextCopyLink(1), XmTextCut(1),
XmTextPasteLink(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 516

Name
XmTextPasteLink, XmTextFieldPasteLink – insert the clipboard selection.

Synopsis
#include <Xm/Text.h>

Boolean XmTextPasteLink (Widget widget)

#include <Xm/TextF.h>

Boolean XmTextFieldPasteLink (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

True on success or False otherwise.

Availability
Motif 2.0 and later.

Description
XmTextPasteLink() and XmTextFieldPasteLink() insert the clipboard
selection at the current position of the insertion cursor in the specified widget.
XmTextPasteLink() works when widget is a Text widget or a TextField
widget, while XmTextFieldPasteLink() only works for a TextField widget.
If the insertion cursor is within the current selection and the value of XmN-
pendingDelete is True, the current selection is replaced by the clipboard selec-
tion. Both routines return True if successful. If the widget is not editable or if the
function cannot obtain ownership of the clipboard selection, the routines return
False.

XmTextPasteLink() and XmTextFieldPasteLink() interface with the
Uniform Transfer Model by indirectly invoking the XmNdestinationCallback
procedures of the widget. The Text widget itself does not create links to the pri-
mary selection: destination callbacks provided by the programmer are responsi-
ble for performing any data transfer required.

XmTextPasteLink() and XmTextFieldPasteLink() also invoke the
callback routines for the XmNvalueChangedCallback, the XmNmodifyVerify-
Callback, and the XmNmodifyVerifyCallbackWcs callbacks for the specified
widget. If both verification callbacks are present, the XmNmodifyVerifyCallback
procedures are invoked first and the results are passed to the XmNmodifyVerify-
CallbackWcs procedures.

Motif Functions and Macros

Motif Reference Manual 517

Usage
XmTextPasteLink() and XmTextFieldPasteLink() get the current
selection from the clipboard and insert a link to it at the location of the insertion
cursor in the Text or TextField widget.

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link,
Paste, PasteLink, and Clear) shows the use of XmTextPasteLink()1:

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);
break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbut-
ton.time);break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextCopy(1), XmTextCopyLink(1), XmTextCut(1),
XmTextPaste(1), XmText(2), XmTextField(2).

1.Erroneously given as XmTextPaste() in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 518

Name
XmTextPosToXY, XmTextFieldPosToXY – get the x, y position of a character
position.

Synopsis
#include <Xm/Text.h>

Boolean XmTextPosToXY (Widget widget, XmTextPosition position, Position
*x, Position *y)

#include <Xm/TextF.h>

Boolean XmTextFieldPosToXY (Widget widget, XmTextPosition position, Posi-
tion *x, Position *y)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the character position.

Outputs
x Returns the x-coordinate of the character position.
y Returns the y-coordinate of the character position.

Returns
True if the character position is displayed in the widget or False otherwise.

Description
XmTextPosToXY() and XmTextFieldPosToXY() return the x and y coordi-
nates of the character at the specified position within the specified widget.
XmTextPosToXY() works when widget is a Text widget or a TextField widget,
while XmTextFieldPosToXY() only works for a TextField widget. Charac-
ter positions are numbered sequentially, starting with 0 (zero) at the beginning of
the text. The returned coordinate values are specified relative to the upper-left
corner of widget. Both routines return True if the character at position is cur-
rently displayed in the widget. Otherwise, the routines return False and no values
are returned in the x and y arguments.

Usage
XmTextPosToXY() and XmTextFieldPosToXY() provide a way to deter-
mine the actual position of a character in a Text or TextField widget. This infor-
mation is useful if you need to perform additional event processing or draw
special graphics in the widget.

See Also
XmTextXYToPos(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 519

Name
XmTextRemove, XmTextFieldRemove – delete the primary selection.

Synopsis
#include <Xm/Text.h>

Boolean XmTextRemove (Widget widget)

#include <Xm/TextF.h>

Boolean XmTextFieldRemove (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
Returns

True on success or False otherwise.

Description
XmTextRemove() and XmTextFieldRemove() delete the primary selected
text from the specified widget. XmTextRemove() works when widget is a Text
widget or a TextField widget, while XmTextFieldRemove() only works for a
TextField widget. Both routines return True if successful. If the widget is not
editable, if the primary selection is NULL, or if it is not owned by the specified
widget, the routines return False.

XmTextRemove() and XmTextFieldRemove() also invoke the callback rou-
tines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, and
the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If both
verification callbacks are present, the XmNmodifyVerifyCallback procedures are
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures.

Usage
XmTextRemove() and XmTextFieldRemove() are like XmTextCut() and
XmTextFieldCut(), in that they remove selected text from a Text or Text-
Field widget. However, the routines do not copy the selected text to the clipboard
before removing it.

See Also
XmTextClearSelection(1), XmTextCut(1),
XmTextGetSelection(1), XmTextGetSelectionPosition(1),
XmTextGetSelectionWcs(1), XmTextSetSelection(1),
XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 520

Name
XmTextReplace, XmTextFieldReplace – replace part of the text string.

Synopsis
#include <Xm/Text.h>

void XmTextReplace (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
char *value)

#include <Xm/TextF.h>

void XmTextFieldReplace (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
char *value)

Inputs
widget Specifies the Text or TextField widget.
from Specifies the starting position of the text that is to be replaced.
to Specifies the ending position of the text that is to be replaced.
value Specifies the replacement string.

Description
XmTextReplace() and XmTextFieldReplace() replace a portion of the
text string in the specified widget. XmTextReplace() works when widget is a
Text widget or a TextField widget, while XmTextFieldReplace() only
works for a TextField widget. The specified value replaces the text starting at
from_pos and continuing up to, but not including, to_pos, where character posi-
tions are numbered sequentially, starting with 0 (zero) at the beginning of the
text. To replace the characters after the nth character up to the mth character, use
a from_pos value of n and a to_pos value of m.

XmTextReplace() and XmTextFieldReplace() also invoke the callback
routines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback,
and the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If
both verification callbacks are present, the XmNmodifyVerifyCallback proce-
dures are invoked first and the results are passed to the XmNmodifyVerifyCall-
backWcs procedures.

Usage
XmTextReplace() and XmTextFieldReplace() provide a convenient
means of replacing text in a Text or TextField widget. The routines replace text
by modifying the value of the XmNvalue resource of the widget.

Motif Functions and Macros

Motif Reference Manual 521

Example
The following routine shows the use of XmTextReplace() to replace all of the
occurrences of a string in a Text widget. The search and replacement strings are
specified by the user in single-line Text widgets:

Widget text_w, search_w, replace_w;

void search_and_replace (void)
{

char *search_pat, *new_pat;
XmTextPosition curpos, searchpos;
int search_len, pattern_len;
Boolean found = False;

search_len = XmTextGetLastPosition (search_w);

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

pattern_len = XmTextGetLastPosition (replace_w);

if (!(new_pat = XmTextGetString (replace_w)) || !*new_pat) {
XtFree (search_pat);
XtFree (new_pat);
return;

}

curpos = 0;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

while (found) {
XmTextReplace (text_w, searchpos, searchpos + search_len, new_pat);
curpos = searchpos + 1;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

}

XtFree (search_pat);
XtFree (new_pat);

}

See Also

Motif Functions and Macros

Motif Reference Manual 522

XmTextInsert(1), XmTextInsertWcs(1), XmTextReplaceWcs(1),
XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 523

Name
XmTextReplaceWcs, XmTextFieldReplaceWcs – replace part of the wide-char-
acter text string.

Synopsis
#include <Xm/Text.h>

void XmTextReplaceWcs (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
wchar_t *wcstring)

#include <Xm/TextF.h>

void XmTextFieldReplaceWcs (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
wchar_t *wcstring)

Inputs
widget Specifies the Text or TextField widget.
from_pos Specifies the starting position of the text that is to be replaced.
to_pos Specifies the ending position of the text that is to be replaced.
wcstring Specifies the replacement wide-character string.

Availability
Motif 1.2 and later.

Description
XmTextReplaceWcs() and XmTextFieldReplaceWcs() replace a portion
of the text string in the specified widget with the specified wide-character string
wcstring. XmTextReplaceWcs() works when widget is a Text widget or a
TextField widget, while XmTextFieldReplaceWcs() only works for a Text-
Field widget. The specified wcstring replaces the text starting at from_pos and
continuing up to, but not including, to_pos, where character positions are num-
bered sequentially, starting with 0 (zero) at the beginning of the text. To replace
the characters after the nth character up to the mth character, use a from_pos
value of n and a to_pos value of m.

XmTextReplaceWcs() and XmTextFieldReplaceWcs() also invoke the
callback routines for the XmNvalueChangedCallback, the XmNmodifyVerify-
Callback, and the XmNmodifyVerifyCallbackWcs callbacks for the specified
widget. If both verification callbacks are present, the XmNmodifyVerifyCallback
procedures are invoked first and the results are passed to the XmNmodifyVerify-
CallbackWcs procedures.

Motif Functions and Macros

Motif Reference Manual 524

Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings.
XmTextReplaceWcs() and XmTextFieldReplaceWcs() provide a con-
venient means of replacing a string in a Text or TextField widget with a wide-
character string. The routines convert the wide-character string to a multi-byte
string and then replace the text by modifying the value of the XmNvalue resource
of the widget.

See Also
XmTextInsert(1), XmTextInsertWcs(1), XmTextReplace(1),
XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 525

Name
XmTextScroll – scroll the text.

Synopsis
#include <Xm/Text.h>

void XmTextScroll (Widget widget, int lines)
Inputs

widget Specifies the Text widget.
lines Specifies the number of lines.

Description
XmTextScroll() scrolls the text in the specified Text widget by the specified
number of lines. The text is scrolled upward if lines is positive and downward if
lines is negative. In the case of vertical text, a positive value scrolls the text for-
wards, and a negative value scrolls backwards.

Usage
XmTextScroll() provides a way to perform relative scrolling in a Text
widget. The Text widget does not have to be the child of a ScrolledWindow for
the scrolling to occur. The routine simply changes the currently viewable region
of text.

See Also
XmTextGetCursorPosition(1),
XmTextGetInsertionPosition(1), XmTextGetLastPosition(1),
XmTextGetTopCharacter(1), XmTextSetCursorPosition(1),
XmTextSetInsertionPosition(1), XmTextSetTopCharacter(1),
XmText(2).

Motif Functions and Macros

Motif Reference Manual 526

Name
XmTextSetAddMode, XmTextFieldSetAddMode, XmDataFieldSetAddMode –
set the add mode state.

Synopsis
#include <Xm/Text.h>

void XmTextSetAddMode (Widget widget, Boolean state)

#include <Xm/TextF.h>

void XmTextFieldSetAddMode (Widget widget, Boolean state)

#include <Xm/DataF.h>

void XmDataFieldSetAddMode (Widget widget, Boolean state)
Inputs

widget Specifies the Text or TextField widget.
state Specifies the state of add mode.

Description
XmTextSetAddMode(), XmTextFieldSetAddMode(), and XmDa-
taFieldSetAddMode() set the state of add mode for the specified widget.
XmTextSetAddMode() works when widget is a Text widget or a TextField
widget, while XmTextFieldSetAddMode() only works for a TextField
widget and XmDataFieldSetAddMode() only works for a DataField
widget. If state is True add mode is turned on; if state is False, add mode is
turned off. When a Text, TextField, or DataField widget is in add mode, the user
can move the insertion cursor without altering the primary selection.

Usage
XmTextSetAddMode(), XmTextFieldSetAddMode(), and XmDa-
taFieldSetAddMode() provide a way to change the state of add mode in a
Text, TextField, or DataField widget. The distinction between normal mode and
add mode is only important for making keyboard-based selections. In normal
mode, the location cursor and the selection move together, while in add mode,
the location cursor and the selection can be separate.

See Also
XmTextSetCursorPosition(1),
XmTextSetInsertionPosition(1), XmText(2), XmTextField(2),
XmDataField(2).

Motif Functions and Macros

Motif Reference Manual 527

Name
XmTextSetCursorPosition, XmTextFieldSetCursorPosition – set the position of
the insertion cursor.

Synopsis
#include <Xm/Text.h>

void XmTextSetCursorPosition (Widget widget, XmTextPosition position)

#include <Xm/TextF.h>

void XmTextFieldSetCursorPosition (Widget widget, XmTextPosition position)
Inputs

widget Specifies the Text or TextField widget.
position Specifies the position of the insertion cursor.

Description
XmTextSetCursorPosition() and XmTextFieldSetCursorPosi-
tion() set the value of the XmNcursorPosition resource to position for the spec-
ified widget. XmTextSetCursorPosition() works when widget is a Text
widget or a TextField widget, while XmTextFieldSetCursorPosition()
only works for a TextField widget. This resource specifies the location of the
insertion cursor as the number of characters from the beginning of the text, where
the first character position is 0 (zero).

XmTextSetCursorPosition() and XmTextFieldSetCursorPosi-
tion() also invoke the callback routines for the XmNmotionVerifyCallback for
the specified widget if the position of the insertion cursor changes.

Usage
XmTextSetCursorPosition() and XmTextFieldSetCursorPosi-
tion() are convenience routines that set the value of the XmNcursorPosition
resource for a Text or TextField widget. Calling one of the routines is equivalent
to calling XtSetValues() for the resource, although the routines access the
value through the widget instance structures rather than through XtSetVal-
ues().

See Also
XmTextGetCursorPosition(1),
XmTextGetInsertionPosition(1),
XmTextSetInsertionPosition(1), XmTextShowPosition(1),
XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 528

Name
XmTextSetEditable, XmTextFieldSetEditable, XmDataFieldSetEditable – set
the edit permission state.

Synopsis
#include <Xm/Text.h>

void XmTextSetEditable (Widget widget, Boolean editable)

#include <Xm/TextF.h>

void XmTextFieldSetEditable (Widget widget, Boolean editable)

#include <Xm/DataF.h>

void XmDataFieldSetEditable (Widget widget, Boolean editable)
Inputs

widget Specifies the Text or TextField widget.
editable Specifies whether or not the text can be edited.

Description
XmTextSetEditable(), XmTextFieldSetEditable(), and XmDa-
taFieldSetEditable() set the value of the XmNeditable resource to edita-
ble for the specified widget. XmTextSetEditable() works when widget is a
Text widget or a TextField widget, while XmTextFieldSetEditable() only
works for a TextField widget and XmDataFieldSetEditable() only works
for a DataField widget.

Usage
By default, the XmNeditable resource is True, which means that a user can edit
the text string. Setting the resource to False makes a text area read-only.
XmTextSetEditable(), XmTextFieldSetEditable(), and XmDa-
taFieldSetEditable() are convenience routines that set the value of the
XmNeditable resource for a Text, TextField, or DataField widget. Calling one of
the routines is equivalent to calling XtSetValues() for the resource, although
the routines access the value through the widget instance structures rather than
through XtSetValues().

See Also
XmTextGetEditable(1), XmText(2), XmTextField(2), XmDa-
taField(2).

Motif Functions and Macros

Motif Reference Manual 529

Name
XmTextSetHighlight, XmTextFieldSetHighlight, XmDataFieldSetHighlight –
highlight text.

Synopsis
#include <Xm/Text.h>

void XmTextSetHighlight (Widget widget,
XmTextPosition left,
XmTextPosition right,
XmHighlightMode mode)

#include <Xm/TextF.h>

void XmTextFieldSetHighlight (Widget widget,
XmTextPosition left,
XmTextPosition right,
XmHighlightMode mode)

#include <Xm/DataF.h>

void XmDataFieldSetHighlight (Widget widget,
XmTextPosition left,
XmTextPosition right,
XmHighlightMode mode

Inputs
widget Specifies the Text, TextField, or DataField widget.
left Specifies the left boundary position of the text to be highlighted.
right Specifies the right boundary position of the text to be highlighted.
mode Specifies the highlighting mode. Pass one of the following values:

XmHIGHLIGHT_NORMAL, XmHIGHLIGHT_SELECTED, or
XmHIGHLIGHT_SECONDARY_SELECTED1.

Description
XmTextSetHighlight(), XmTextFieldSetHighlight(), and XmDa-
taFieldSetHighlight() highlight text in the specified widget without
selecting the text. XmTextSetHighlight() works when widget is a Text
widget or a TextField widget, while XmTextFieldSetHighlight() only
works for a TextField widget and XmDataFieldSetHighlight() only
works for a DataField widget. The left and right arguments specify the boundary

1.Motif 2.0 defines the additional value XmSEE_DETAIL for the enumerated type, but does not use it for the Text com-
ponents. The Compound String Text, CSText, supports the notion, but this widget is abortive, and has been removed
from the 2.1 distribution. XmSEE_DETAIL is therefore redundant.

Motif Functions and Macros

Motif Reference Manual 530

positions of the text that is to be highlighted. Each boundary value specifies the
position as the number of characters from the beginning of the text, where the
first character position is 0 (zero). The mode parameter indicates the type of high-
lighting that is done. XmHIGHLIGHT_NORMAL removes any highlighting,
XmHIGHLIGHT_SELECTED uses reverse video highlighting, and
XmHIGHLIGHT_SECONDARY_SELECTED uses underline highlighting.

Usage
XmTextSetHighlight(), XmTextFieldSetHighlight(), and XmDa-
taFieldSetHighlight() provide a way to highlight text in a Text, Text-
Field, or DataField widget. These routines are useful if you need to emphasize
certain text in a widget. These routine only highlight text; they do not select the
specified text.

Example
The following routine shows the use of XmTextSetHighlight() to highlight
all of the occurrences of a string in a Text widget. The search string is specified
by the user in a single-line Text widget:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat;
XmTextPosition curpos, searchpos;
int len;
Boolean found = False;

len = XmTextGetLastPosition (search_w);

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

curpos = 0;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

while (found) {
XmTextSetHighlight (text_w, searchpos, searchpos + len,

XmHIGHLIGHT_SECONDARY_SELECTE
D);

curpos = searchpos + 1;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

Motif Functions and Macros

Motif Reference Manual 531

}
XtFree (search_pat);

}

See Also
XmTextSetSelection(1), XmText(2), XmTextField(2), XmDa-
taField(2).

Motif Functions and Macros

Motif Reference Manual 532

Name
XmTextSetInsertionPosition, XmTextFieldSetInsertionPosition, XmDataField-
SetInsertionPosition – set the position of the insertion cursor.

Synopsis
#include <Xm/Text.h>

void XmTextSetInsertionPosition (Widget widget, XmTextPosition position)

#include <Xm/TextF.h>

void XmTextFieldSetInsertionPosition (Widget widget, XmTextPosition posi-
tion)

#include <Xm/DataF.h>

void XmDataFieldSetInsertionPosition (Widget widget, XmTextPosition posi-
tion)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position of the insertion cursor.

Description
The functions, XmTextSetInsertionPosition(), XmTextFieldSe-
tInsertionPosition(), and XmDataFieldSetInsertionPosi-
tion() set the value of the XmNcursorPosition resource to position for the
specified widget. XmTextSetInsertionPosition() works when widget
is a Text widget or a TextField widget, while XmTextFieldSetInser-
tionPosition() only works for a TextField widget and XmDataFieldSe-
tInsertionPosition() only works for a DataField widget. This resource
specifies the location of the insertion cursor as the number of characters from the
beginning of the text, where the first character position is 0 (zero).

XmTextSetInsertionPosition(), XmTextFieldSetInsertionPo-
sition(), and XmDataFieldSetInsertionPosition() also invoke the
callback routines for the XmNmotionVerifyCallback for the specified widget if
the position of the insertion cursor changes.

Usage
The functions, XmTextSetInsertionPosition(), XmTextFieldSe-
tInsertionPosition(), and XmDataFieldSetInsertionPosi-
tion() are convenience routines that set the value of the XmNcursorPosition
resource for a Text, TextField , or DataField widget. Calling one of the routines
is equivalent to calling XtSetValues() for the resource, although the routines

Motif Functions and Macros

Motif Reference Manual 533

access the value through the widget instance structures rather than through
XtSetValues().

Example
The following code shows the use of XmTextSetInsertionPosition() in
a routine that searches for a string in a Text widget and moves the insertion cur-
sor to the string if it is found:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat;
XmTextPosition pos, searchpos;
Boolean found = False;

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

pos = XmTextGetCursorPosition (text_w);
found = XmTextFindString (text_w, pos, search_pat,
XmTEXT_FORWARD, &searchpos);

if (!found) {
found = XmTextFindString (text_w, 0, search_pat,
XmTEXT_FORWARD, &searchpos);

}

if (found)
XmTextSetInsertionPosition (text_w, searchpos);

XtFree (search_pat);
}

See Also
XmTextGetCursorPosition(1),
XmTextGetInsertionPosition(1),
XmTextSetCursorPosition(1), XmTextShowPosition(1),
XmText(2), XmTextField(2), XmDataField(2).

Motif Functions and Macros

Motif Reference Manual 534

Name
XmTextSetMaxLength, XmTextFieldSetMaxLength – set the maximum possible
length of a text string.

Synopsis
#include <Xm/Text.h>

void XmTextSetMaxLength (Widget widget, int max_length)

#include <Xm/TextF.h>

void XmTextFieldSetMaxLength (Widget widget, int max_length)
Inputs

widget Specifies the Text or TextField widget.
max_length Specifies the maximum allowable length of the text string.

Description
XmTextSetMaxLength() and XmTextFieldSetMaxLength() set the
value of the XmNmaxLength resource to max_length for the specified widget.
XmTextSetMaxLength() works when widget is a Text widget or a TextField
widget, while XmTextFieldSetMaxLength() only works for a TextField
widget. This resource specifies the maximum allowable length of a text string
that a user can enter from the keyboard.

Usage
XmTextSetMaxLength() and XmTextFieldSetMaxLength() are con-
venience routines that set the XmNmaxLength resource for a Text or TextField
widget. Calling one of the routines is equivalent to calling XtSetValues() for
the resource, although the routines access the value through the widget instance
structures rather than through XtSetValues(). The resource limits the length
of a text string that a user may type, but it does not limit the length of strings
entered with the XmNvalue or XmNvalueWcs resources or the XmTextSet-
String(), XmTextFieldSetString(), XmTextSetStringWcs(), and
XmTextFieldSetStringWcs() routines.

See Also
XmTextGetMaxLength(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 535

Name
XmTextSetSelection, XmTextFieldSetSelection, XmDataFieldSetSelection – set
the value of the primary selection.

Synopsis
#include <Xm/Text.h>

void XmTextSetSelection (Widget widget, XmTextPosition first, XmTextPosi-
tion last, Time time)

#include <Xm/TextF.h>

void XmTextFieldSetSelection (Widget widget, XmTextPosition first, XmText-
Position last, Time time)

#include <Xm/DataF.h>

char * XmDataFieldSetSelection (Widget widget)
Inputs

widget Specifies the Text or TextField widget.
first Specifies the first character position to be selected.
last Specifies the last character position to be selected.
time Specifies the time of the event that caused the request.

Description
XmTextSetSelection(), XmTextFieldSetSelection(), and XmDa-
taFieldSetSelection() set the primary selection in the specified widget.
XmTextSetSelection() works when widget is a Text widget or a TextField
widget, while XmTextFieldSetSelection() only works for a TextField
widget and XmDataFieldSetSelection() only works for the TextField
widget. The first and last arguments specify the beginning and ending positions
of the text that is to be selected. Each of these values specifies the position as the
number of characters from the beginning of the text, where the first character
position is 0 (zero). For each routine, time specifies the server time of the event
that caused the request to set the selection.

XmTextSetSelection(), XmTextFieldSetSelection(), and XmDa-
taFieldSetSelection() change the insertion cursor for the widget to the
last position of the selection. The routines also invoke the callback routines for
the XmNmotionVerifyCallback for the specified widget.

Usage
XmTextSetSelection(), XmTextFieldSetSelection(), and XmDa-
taFieldSetSelection() provide a convenient way to set the current
selection in a Text, TextField, or DataField widget.

Motif Functions and Macros

Motif Reference Manual 536

See Also
XmTextClearSelection(1), XmTextCopy(1), XmTextCut(1),
XmTextGetSelection(1), XmTextGetSelectionPosition(1),
XmTextGetSelectionWcs(1), XmTextRemove(1), XmText(2),
XmTextField(2), XmDataField(2).

Motif Functions and Macros

Motif Reference Manual 537

Name
XmTextSetSource – set the text source.

Synopsis
#include <Xm/Text.h>

void XmTextSetSource (Widget widget,
XmTextSource source,
XmTextPosition top_character,
XmTextPosition cursor_position)

Inputs
widget Specifies the Text widget.
source Specifies the text source.
top_character Specifies the character position to display at the top of the
widget.
cursor_position Specifies the position of the insertion cursor.

Description
XmTextSetSource() sets the source of the specified Text widget. The
top_character and cursor_position values specify positions as the number of
characters from the beginning of the text, where the first character position is 0
(zero). If source is NULL, the Text widget creates a default string source and dis-
plays a warning message.

Usage
Multiple text widgets can share the same text source, which means that editing in
one of the widgets is reflected in all of the others. XmTextGetSource()
retrieves the source for a widget; this source can then be used to set the source of
another Text widget using XmTextSetSource(). XmTextSetSource() is a
convenience routine that sets the value of the XmNsource resource for the Text
widget. Calling the routine is equivalent to calling XtSetValues() for the
resource, although the routine accesses the value through the widget instance
structures rather than through XtSetValues().

When a new text source is set, the old text source is destroyed unless another
Text widget is using the old source. If you want to replace a text source without
destroying it, create an unmanaged Text widget and set its source to the text
source you want to save.

See Also
XmTextGetSource(1), XmText(2).

Motif Functions and Macros

Motif Reference Manual 538

Name
XmTextSetString, XmTextFieldSetString, XmDataFieldSetString – set the text
string.

Synopsis
#include <Xm/Text.h>

void XmTextSetString (Widget widget, char *value)

#include <Xm/TextF.h>

void XmTextFieldSetString (Widget widget, char *value)

#include <Xm/DataF.h>

void XmTextField (Widget widget, char *value)
Inputs

widget Specifies the Text or TextField widget.
value Specifies the string value.

Availability
XmDataFieldSetString()-Motif 2.2 and later

Description
XmTextSetString(), XmTextFieldSetString(), and XmDataField-
SetString() set the current text string in the specified widget to the specified
value. XmTextSetString() works when widget is a Text widget or a Text-
Field widget, while XmTextFieldSetString() only works for a TextField
widget and XmDataFieldSetString() only works for a DataField widget.
Both functions also set the position of the insertion cursor to the beginning of the
new text string.

XmTextSetString(), XmTextFieldSetString(), and XmDataField-
SetString() invoke the callback routines for the XmNvalueChangedCall-
back, the XmNmodifyVerifyCallback, and the XmNmodifyVerifyCallbackWcs
callbacks for the specified widget. If both verification callbacks are present, the
XmNmodifyVerifyCallback procedures are invoked first and the results are
passed to the XmNmodifyVerifyCallbackWcs procedures. The routines also
invoke the callback routines for the XmNmotionVerifyCallback for the specified
widget.

Usage
XmTextSetString(), XmTextFieldSetString(), and XmDataFieldSet-
String are convenience routines that set the value of the XmNvalue resource for a
Text, TextField, or DataField widget. Calling one of the routines is equivalent to

Motif Functions and Macros

Motif Reference Manual 539

calling XtSetValues() for the resource, although the routines access the value
through the widget instance structures rather than through XtSetValues().

Example
The following code shows the use of XmTextSetString() in a routine that
displays the contents of file in a Text widget. The filename is specified by the
user in a TextField widget:

Widget text_w, file_w;

void read_file (void)
{

char *filename, *text;
struct stat statb;
int fd, len;

if (!(filename = XmTextFieldGetString (file_w)) || !*filename) {
XtFree (filename);
return;

}

if (!(fd = open (filename, O_RDONLY))) {
XtWarning ("internal error -- can’t open file");

}

if (fstat (fd, &statb) == -1 || !(text = XtMalloc ((len = statb.st_size) + 1))) {
XtWarning("internal error -- can’t show text");
(void) close (fd);

}

(void) read (fd, text, len);
text[len] = ‘\0’;
XmTextSetString (text_w, text);
XtFree (text);
XtFree (filename);
(void) close (fd);

}

See Also
XmTextGetString(1), XmTextGetStringWcs(1),
XmTextGetSubstring(1), XmTextGetSubstringWcs(1),
XmTextSetStringWcs(1), XmText(2), XmTextField(2).

Motif Functions and Macros

Motif Reference Manual 540

Name
XmTextSetStringWcs, XmTextFieldSetStringWcs, XmDataFieldSetStringWcs –
set the wide-character text string.

Synopsis
#include <Xm/Text.h>

void XmTextSetStringWcs (Widget widget, wchar_t *wcstring)

#include <Xm/TextF.h>

void XmTextFieldSetStringWcs (Widget widget, wchar_t *wcstring)

#include <Xm/DataF.h>

void XmDataFieldSetStringWcs (Widget widget, wchar_t *wcstring)
Inputs

widget Specifies the Text or TextField widget.
wcstring Specifies the wide-character string value.

Availability
XmDataFieldSetStringWcs()- Motif 2.2 and later, XmTextSetStringWcs,
XmTextFieldSetStringWcs- Motif 1.2 and later.

Description
XmTextSetStringWcs(), XmTextFieldSetStringWcs(), and XmDa-
taFieldSetStringWcs() set the current wide-character text string in the
specified widget to the specified wcstring1. XmTextSetStringWcs() works
when widget is a Text widget or a TextField widget, while XmTextFieldSet-
StringWcs() only works for a TextField widget and XmDataFieldSet-
StringWcs() only works for a DataField widget. Both functions also set the
position of the insertion cursor to the beginning of the new text string.

XmTextSetStringWcs(), XmTextFieldSetStringWcs(), and XmDa-
taFieldSetStringWcs() invoke the callback routines for the XmNval-
ueChangedCallback, the XmNmodifyVerifyCallback, and the
XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If both veri-
fication callbacks are present, the XmNmodifyVerifyCallback procedures are
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures. The routines also invoke the callback routines for the XmNmotion-
VerifyCallback for the specified widget.

1.Erroneously given as string in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 541

Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. XmTextSetStringWcs(), XmText-
FieldSetStringWcs(), and XmDataFieldSetStringWcs() are con-
venience routines that set the value of the XmNvalueWcs resource for a Text,
TextField, or DataField widget. Calling one of the routines is equivalent to call-
ing XtSetValues() for the resource, although the routines access the value
through the widget instance structures rather than through XtSetValues().

See Also
XmTextGetString(1), XmTextGetStringWcs(1),
XmTextGetSubstring(1), XmTextGetSubstringWcs(1),
XmTextSetString(1), XmText(2), XmTextField(2), XmDa-
taField(2).

Motif Functions and Macros

Motif Reference Manual 542

Name
XmTextSetTopCharacter – set the position of the first character of text that is
displayed.

Synopsis
#include <Xm/Text.h>

void XmTextSetTopCharacter (Widget widget, XmTextPosition top_character)
Inputs

widget Specifies the Text widget.
top_character Specifies the position that is to be displayed at the top of the
widget.

Description
XmTextSetTopCharacter() sets the value of the XmNtopCharacter
resource to top_character for the specified Text widget. If the XmNeditMode
resource is set to XmMULTI_LINE_EDIT, the routine scrolls the text so that the
line containing the character position specified by top_character appears at the
top of the widget, but does not shift the text left or right. Otherwise, the character
position specified by top_character is displayed as the first visible character in
the widget. top_character specifies a character position as the number of charac-
ters from the beginning of the text, where the first character position in 0 (zero).

Usage
XmTextSetTopCharacter() is a convenience routine that sets the value of
the XmNtopCharacter resource for a Text widget. Calling the routines is equiva-
lent to calling XtSetValues() for the resource, although the routines accesses
the value through the widget instance structures rather than through XtSet-
Values().

See Also
XmTextGetCursorPosition(1),
XmTextGetInsertionPosition(1), XmTextGetLastPosition(1),
XmTextGetTopCharacter(1), XmTextScroll(1),
XmTextSetCursorPosition(1),
XmTextSetInsertionPosition(1), XmTextShowPosition(1),
XmText(2).

Motif Functions and Macros

Motif Reference Manual 543

Name
XmTextShowPosition, XmTextFieldShowPosition, XmDataFieldShowPosition
– display the text at a specified position.

Synopsis
#include <Xm/Text.h>

void XmTextShowPosition (Widget widget, XmTextPosition position)

#include <Xm/TextF.h>

void XmTextFieldShowPosition (Widget widget, XmTextPosition position)

#include <Xm/DataF.h>

void XmDataFieldShowPosition (Widget widget, XmTextPosition position)
Inputs

widget Specifies the Text or TextField widget.
position Specifies the character position that is to be displayed.

Description
XmTextShowPosition(), XmTextFieldShowPosition(), and XmDa-
taFieldShowPosition() cause the text character at position to be dis-
played in the specified widget. XmTextShowPosition() works when widget
is a Text widget or a TextField widget, while XmTextFieldShowPosi-
tion() only works for a TextField widget and XmDataFieldShowPosi-
tion() only works for a DataField widget. The position argument specifies the
position as the number of characters from the beginning of the text, where the
first character position in 0 (zero).

Usage
XmTextShowPosition() and XmTextFieldShowPosition() provide a
way to force a Text or TextField widget to display a certain portion of its text.
This routine is useful if you modify the value of widget and want the modifica-
tion to be immediately visible without the user having to scroll the text. If the
value of the XmNautoShowCursorPosition resource is True, you should set the
insertion cursor to position as well. You can set the insertion cursor by setting the
XmNcursorPosition1 resource or by using XmTextSetInsertionPosi-
tion(), XmTextFieldSetInsertionPosition(), or XmDataField-
SetInsertionPosition().

1.Erroneously given as XmcursorPosition in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 544

Example
The following code shows the use of XmTextShowPosition() in a routine
that inserts a message into a status Text widget:

Widget status;

void insert_text (char *message)
{

XmTextPosition curpos = XmTextGetInsertionPosition (status);

XmTextInsert (status, curpos, message);
curpos = curpos + strlen (message);
XmTextShowPosition (status, curpos);
XmTextSetInsertionPosition (status, curpos);

}

See Also
XmTextGetCursorPosition(1),
XmTextGetInsertionPosition(1),
XmTextSetCursorPosition(1),
XmTextSetInsertionPosition(1), XmText(2), XmTextField(2),
XmDataField(2).

Motif Functions and Macros

Motif Reference Manual 545

Name
XmTextXYToPos, XmTextFieldXYToPos, XmDataFieldXYToPos – get the
character position for an x, y position.

Synopsis
#include <Xm/Text.h>

XmTextPosition XmTextXYToPos (Widget widget, Position x, Position y)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldXYToPos (Widget widget, Position x, Position y)

#include <Xm/DataF.h>

XmTextPosition XmDataFieldXYToPos (Widget widget, Position x, Position y)
Inputs

widget Specifies the Text or TextField widget.
x Specifies the x-coordinate relative to the upper-left corner of the
widget.
y Specifies the y-coordinate relative to the upper-left corner of the
widget.

Returns
The character position that is closest to the x, y position.

Description
XmTextXYToPos(), XmTextFieldXYToPos(), and XmDataFieldXYTo-
Pos() return the position of the character closest to the specified x and y coordi-
nates within the specified widget. XmTextXYToPos() works when widget is a
Text widget or a TextField widget, while XmTextFieldXYToPos() only
works for a TextField widget and XmDataFieldXYToPos() only works for a
DataField. The x and y coordinates are relative to the upper-left corner of the
widget. Character positions are numbered sequentially, starting with 0 (zero) at
the beginning of the text.

Usage
XmTextXYToPos(), XmTextFieldXYToPos(), and XmTextXYToPos()
provide a way to determine the character at a particular coordinate in a Text, Tex-
tField, or DataField widget. This information is useful if you need to perform
additional event processing or draw special graphics in the widget.

See Also
XmTextPosToXY(1), XmText(2), XmTextField(2), XmDataField(2).

Motif Functions and Macros

Motif Reference Manual 546

Name
XmToggleButtonGetState, XmToggleButtonGadgetGetState – get the state of a
ToggleButton.

Synopsis
#include <Xm/ToggleB.h>

Boolean XmToggleButtonGetState (Widget widget)

#include <Xm/ToggleBG.h>

Boolean XmToggleButtonGadgetGetState (Widget widget)
Inputs

widget Specifies the ToggleButton or ToggleButtonGadget.
Returns

The state of the button.

Description
XmToggleButtonGetState() and XmToggleButtonGadgetGet-
State() return the state of the specified widget. XmToggleButtonGet-
State() works when widget is a ToggleButton or a ToggleButtonGadget, while
XmToggleButtonGadgetGetState() only works for a ToggleButton-
Gadget. In Motif 1.2 and earlier, each of the routines returns True if the button is
selected or False if the button is unselected.

In Motif 2.0 and later, a Toggle can be in any of three states: XmSET, XmINDE-
TERMINATE, and XmUNSET, where XmUNSET is equivalent to False and
XmSET is equivalent to True. The third indeterminate state is enabled if the
Motif 2.x XmNtoggleMode resource of the widget is set to the value
XmTOGGLE_INDETERMINATE. If the toggle mode is
XmTOGGLE_BOOLEAN, the widget has only two dynamic states, which is
consistent with Motif 1.2 behavior.

Usage
XmToggleButtonGetState() and XmToggleButtonGadgetGet-
State() are convenience routines that return the value of the XmNset resource
for a ToggleButton or ToggleButtonGadget. Calling one of the routines is equiv-
alent to calling XtGetValues() for the resource, although the routines access
the value through the widget instance structures rather than through XtGet-
Values().

Motif Functions and Macros

Motif Reference Manual 547

Because XmToggleButtonGetState() returns the toggle set element of its
widget instance structure directly, and because XmINDETERMINATE is neither
True nor False, programs relying on the strictly Boolean nature of XmToggle-
ButtonGetState() are at risk of error if the toggle is configured for three
states. Setting tri-state toggles using a convenience function should be performed
using XmToggleButtonSetValue().

See Also
XmToggleButtonSetState(1), XmToggleButtonSetValue(1),
XmToggleButton(2), XmToggleButtonGadget(2).

Motif Functions and Macros

Motif Reference Manual 548

Name
XmToggleButtonSetState, XmToggleButtonGadgetSetState – set the state of a
ToggleButton.

Synopsis
#include <Xm/ToggleB.h>

void XmToggleButtonSetState (Widget widget, Boolean state, Boolean notify)

#include <Xm/ToggleBG.h>

void XmToggleButtonGadgetSetState (Widget widget, Boolean state, Boolean
notify)

Inputs
widget Specifies the ToggleButton or ToggleButtonGadget.
state Specifies the state of the button.
notify Specifies whether or not the XmNvalueChangedCallback is called.

Description
XmToggleButtonSetState() and XmToggleButtonGadgetSet-
State() set the state of the specified widget. XmToggleButtonSetState()
works when widget is a ToggleButton or a ToggleButtonGadget, while XmTog-
gleButtonGadgetSetState() only works for a ToggleButtonGadget. In
Motif 1.2 and earlier, if state is True, the button is selected, and when state is
False, the button is deselected.

In Motif 2.0 and later, a Toggle can be in any of three states: XmSET, XmINDE-
TERMINATE, and XmUNSET, where XmUNSET is equivalent to False and
XmSET is equivalent to True. The third indeterminate state is enabled if the
Motif 2.x XmNtoggleMode resource of the widget is set to the value
XmTOGGLE_INDETERMINATE. If the toggle mode is
XmTOGGLE_BOOLEAN, the widget has only two dynamic states, which is
consistent with Motif 1.2 behavior.

If notify is True, the routines invoke the callbacks specified by the XmNval-
ueChangedCallback resource. If the specified widget is the child of a RowCol-
umn with XmNradioBehavior set to True, the currently selected child of the
RowColumn is deselected.

Motif Functions and Macros

Motif Reference Manual 549

Usage
XmToggleButtonSetState() and XmToggleButtonGadgetSet-
State() are convenience routines that set the value of the XmNset resource for a
ToggleButton or ToggleButtonGadget. Calling one of the routines is equivalent
to calling XtSetValues() for the resource, although the routines access the
value through the widget instance structures rather than through XtSetVal-
ues().

In Motif 2.0 and later, passing the value XmINDETERMINATE is mapped to
XmSET. It is therefore not possible to set the XmINDETERMINATE state
using XmToggleButtonSetState(). To set a Toggle into an indeterminate state
through the convenience functions, call XmToggleButtonSetValue() or
XmToggleButtonGadgetSetValue().

See Also
XmToggleButtonGetState(1), XmToggleButtonSetValue(1),
XmToggleButton(2), XmToggleButtonGadget(2).

Motif Functions and Macros

Motif Reference Manual 550

Name
XmToggleButtonSetValue, XmToggleButtonGadgetSetValue – set the value of
a ToggleButton.

Synopsis
#include <Xm/ToggleB.h>

Boolean XmToggleButtonSetValue (Widget widget, XmToggleButtonState
state, Boolean notify)

#include <Xm/ToggleBG.h>

Boolean XmToggleButtonGadgetSetValue (Widget widget,
XmToggleButtonState state,
Boolean notify)

Inputs
widget Specifies the ToggleButton or ToggleButtonGadget.
state Specifies the state of the button.
notify Specifies whether or not the XmNvalueChangedCallback is called.

Availability
Motif 2.0 and later.

Description
XmToggleButtonSetValue() and XmToggleButtonGadgetSet-
Value() are similar to XmToggleButtonSetState() and XmToggleBut-
tonGadgetSetState(), except that it is possible to set the ToggleButton into
an XmINDETERMINATE state, provided that the Toggle is in the correct mode.
If the widget has the XmNtoggleMode resource of
XmTOGGLE_INDETERMINATE, the routine sets the XmNset resource of the
widget to the required state, calls any XmNvalueChangedCallback procedures if
notify is True, and then returns True. Otherwise, the function returns False.

Usage
XmToggleButtonSetValue() and XmToggleButtonGadgetSet-
Value() are convenience routines that set the value of the XmNset resource for a
ToggleButton or ToggleButtonGadget which can display an indeterminate state.
Calling one of the routines is equivalent to calling XtSetValues() for the
resource, although the routines access the value through the widget instance
structures rather than through XtSetValues().

Motif Functions and Macros

Motif Reference Manual 551

Structures
The XmToggleButtonState type has the following possible values:

XmSET XmUNSET XmINDETERMINATE

See Also
XmToggleButtonGetState(1), XmToggleButtonSetState(1),
XmToggleButton(2), XmToggleButtonGadget(2).

Motif Functions and Macros

Motif Reference Manual 552

Name
XmTrackingEvent – allow for modal selection of a component.

Synopsis
#include <Xm/Xm.h>

Widget XmTrackingEvent (Widget widget, Cursor cursor, Boolean confine_to,
XEvent *event_return)

Inputs
widget Specifies the widget in which the modal interaction occurs.
cursor Specifies the cursor that is to be used as the pointer.
confine_to Specifies whether or not the pointer is confined to widget.

Outputs
event_return Returns the ButtonRelease or KeyRelease event.

Returns
The widget or gadget that contains the pointer or NULL if no widget or gadget
contains the pointer.

Availability
Motif 1.2 and later.

Description
XmTrackingEvent() grabs the pointer and waits for the user to release BSe-
lect or press and release a key, discarding all of the intervening events. The rou-
tine returns the ID of the widget or gadget containing the pointer when BSelect or
the key is released and event_return contains the release event. If no widget or
gadget contains the pointer when the release occurs, the function returns NULL.
The modal interaction occurs within the specified widget, which is typically a
top-level shell. During the interaction, cursor is used as the pointer shape. If
confine_to is True, the pointer is confined to widget during the interaction; other-
wise the pointer is not confined.

Usage
XmTrackingEvent() provides a way to allow a user to select a component.
This modal interaction is meant to support a context-sensitive help system, where
the user clicks on a widget to obtain more information about it. XmTrackin-
gEvent() returns the selected widget, so that a help callback can be invoked to
provide the appropriate information.

Motif Functions and Macros

Motif Reference Manual 553

Example
The following code shows the use of XmTrackingEvent() in a routine that
initiates context-sensitive help:

Widget toplevel, help_button;
...
XtAddCallback (help_button, XmNactivateCallback, query_for_help, toplevel);
...
void query_for_help (Widget widget, XtPointer client_data, XtPointer call_data)
{

Cursor cursor;
Widget top, help_widget;
XmAnyCallbackStruct cb;
XtCallbackStatus hascb;
XEvent *event;

top = (Widget) client_data;
cursor = XCreateFontCursor (XtDisplay (top), XC_question_arrow);
help_widget = XmTrackingEvent (top, cursor, True, &event);

while (help_widget != NULL) {
hascb = XtHasCallbacks (help_widget, XmNhelpCallback);

if (hascb == XtCallbackHasSome) {
cb.reason = XmCR_HELP;
cb.event = event;
XtCallCallbacks (help_widget, XmNhelpCallback, (XtPointer)
&cb);
help_widget = NULL;

}
else

help_widget = XtParent (help_widget);
}

}

See Also
XmTrackingLocate(1).

Motif Functions and Macros

Motif Reference Manual 554

Name
XmTrackingLocate – allow for modal selection of a component.

Synopsis
Widget XmTrackingLocate (Widget widget, Cursor cursor, Boolean confine_to)

Inputs
widget Specifies the widget in which the modal interaction occurs.
cursor Specifies the cursor that is to be used as the pointer.
confine_to Specifies whether or not the pointer is confined to widget.

Returns
The widget or gadget that contains the pointer or NULL if no widget or gadget
contains the pointer.

Availability
In Motif 1.2, XmTrackingLocate() is obsolete. It has been superseded by
XmTrackingEvent().

Description
XmTrackingLocate() grabs the pointer and waits for the user to release BSe-
lect or press and release a key, discarding all of the intervening events. The rou-
tine returns the ID of the widget or gadget containing the pointer when BSelect or
the key is released. If no widget or gadget contains the pointer when the release
occurs, the function returns NULL. The modal interaction occurs within the spec-
ified widget, which is typically a top-level shell. During the interaction, cursor is
used as the pointer shape. If confine_to is True, the pointer is confined to widget
during the interaction; otherwise the pointer is not confined. XmTrackingLo-
cate() is retained for compatibility with Motif 1.1 and should not be used in
newer applications.

Usage
XmTrackingLocate() provides a way to allow a user to select a component.
This modal interaction is meant to support a context-sensitive help system, where
the user clicks on a widget to obtain more information about it. XmTrackin-
gLocate() returns the selected widget, so that a help callback can be invoked to
provide the appropriate information.

See Also
XmTrackingEvent(1).

Motif Functions and Macros

Motif Reference Manual 555

Name
XmTransfer – introduction to the uniform transfer model.

Synopsis
Public Header:

<Xm/Transfer.h>
Functions/Macros:

XmTransferDone(), XmTransferSendRequest(), XmTransferSet-
Parameters(),
XmTransferStartRequest(), XmTransferValue().

Availability
Motif 2.0 and later.

Description
Motif widgets support several methods of data transfer. Data can be transferred
from a widget to the Primary or Secondary selection, the Clipboard, or, through
the drag and drop mechanisms, to another widget. Up until Motif 2.0, each of
these data transfer operations require a different treatment by the programmer. In
Motif 2.0 and later, the Uniform Transfer Model (UTM) makes it possible to per-
form data transfer using any of the transfer methods using a single programming
interface. UTM is designed to allow applications to use common code for all the
supported data transfer requirements, and is intentionally written to ease the way
in which new transfer targets can be written. Data transfer code written prior to
Motif 2.0 will continue to work in newer versions of the toolkit, although all the
widgets have been rewritten to internally use the UTM where appropriate.

The UTM is implemented through two new callback resources: XmNconvertCall-
back, and XmNdestinationCallback, which are available in the Primitive widget
class (and in any derived classes), as well as in the Container, Scale, and Drawin-
gArea widget classes. The programmer provides XmNconvertCallback and
XmNdestinationCallback procedures which communicate with one another in
order to negotiate the target format in which the data is required. In addition, the
programmer provides a transfer procedure which performs the insertion of data in
the right format into the destination widget.

An XmNconvertCallback procedure is associated with the source of the data. It is
responsible for converting the data, typically the selected items of the source
widget, into the format requested by the destination. It may also provide a list of
the supported transfer targets requested by a XmNdestinationCallback procedure.
The convert procedure transfers data to the destination widget by placing values
within the XmConvertCallbackStruct structure passed as a parameter to the call-
back.

Motif Functions and Macros

Motif Reference Manual 556

The XmNdestinationCallback procedure is responsible for negotiating the format
in which data is required at the destination widget. It may request the set of sup-
ported formats in which the source can export the data, although the simplest pro-
cedure requests data in a specific target format. In specifying the request to the
source of the data, the callback specifies a further transfer procedure which per-
forms the actual insertion of data at the destination. The destination callback
communicates with the source by issuing requests using the XmTransfer-
Value() routine. If the destination callback requests the full list of supported
source targets, the transfer procedure itself decides the best format for the desti-
nation, and internally issues a further XmTransferValue() call, requesting the
data in a specific target format. The programmer will have to provide the logic
which determines the best format within the transfer procedure.

Usage
It is not necessary for the programmer to provide XmNconvertCallback and
XmNdestinationCallback procedures for all the targets which Motif supports. As
part of the UTM, Motif widgets which support the XmNconvertCallback and
XmNdestinationCallback resources also have internal routines which enable
automatic data transfer of a set of built-in target types. The internal routines are
implemented using the XmQTtransfer trait, which has convertProc and destina-
tionProc methods. Where no XmNconvertCallback is supplied by the program-
mer, the convertProc is invoked to perform the data conversion. Similarly, in the
absence of a XmNdestinationCallback, UTM calls the destinationProc. A pro-
grammer only needs to implement XmNconvertCallback or XmNdestination-
Callback procedures where a new target type is being provided over and above
those handled by the widget class default procedures.

Structures
A pointer to the following structure is passed to callbacks on the XmNconvert-
Callback list:

typedef struct {
int reason; /* the reason that the callback is
invoked */
XEvent *event; /* points to event that triggered call-
back */
Atom selection; /* selection for which conversion is
requested */
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information */
XtPointer location_data; /* information about the data to be
transferred */
int flags; /* input status of the conversion*/

Motif Functions and Macros

Motif Reference Manual 557

XtPointer parm; /* parameter data for the target*/
int parm_format; /* format of parameter data*/
unsigned long parm_length; /* number of elements in parameter
data */
Atom parm_type; /* the type of the parameter data*/
int status; /* output status of the conversion*/
XtPointer value; /* returned conversion data*/
Atom type; /* type of conversion data returned*/
int format; /* format of the conversion data*/
unsigned long length; /* number of elements in the conver-
sion data */

} XmConvertCallbackStruct;

selection represents the selection for which conversion is requested. CLIP-
BOARD, PRIMARY, SECONDARY, or _MOTIF_DROP are the possible val-
ues (that is, one of the types of data transfer which the UTM rationalizes).

target represents the required format for the data to transfer, expressed as an
Atom.

source_data provides data related to the source of the selection. If selection is
_MOTIF_DROP, then source_data points to a DragContext object, otherwise it
is NULL.

location_data specifies where the data to be converted is to be found. If
location_data is NULL, conversion data is interpreted as the widget’s current
selection. Otherwise, the interpretation of location_data is widget class specific.

flags specifies the current status of the conversion. Possible values of the enu-
merated type:

XmCONVERTING_NONE /* unused */
XmCONVERTING_PARTIAL /* some, but not all, of target data is
converted */
XmCONVERTING_SAME /* conversion target is source of the
transfer data */
XmCONVERTING_TRANSACT /* unused */

parm contains extra data associated with target. If target is the Atom represented
by _MOTIF_CLIPBOARD_TARGETS or
_MOTIF_DEFERRED_CLIPBOARD_TARGETS, then parm is one of
XmCOPY, XmMOVE, or XmLINK. parm is an array of data items, the number
of such items is specified by parm_length, and the type of each item by
parm_format.

Motif Functions and Macros

Motif Reference Manual 558

parm_format specifies whether the data within parm is represented by a list of
char, short, or long quantities. If parm_format is 0 (zero), parm is NULL. A
parm_format value of 8 indicates parm is logically a list of char, 16 represents a
list of short quantities, and 32 is for a list of long values. parm_format indicates
logical type, and not physical implementation: a parm_format of 32 indicates a
list of long quantities even if a particular machine has 64-bit longs.

parm_length specifies the number of data items at the parm address.

parm_type specifies the type of the parm data, expressed as an Atom. The default
is XA_INTEGER.

status specifies the status of the conversion. The initial (default) value is
XmCONVERT_DEFAULT, which, if unchanged by the callback, invokes any
conversion procedures associated with the widget class when the callback fin-
ishes. These are the convertProc methods of any XmQTtransfer trait which the
widget holds. Any converted data produced by a widget class routine overwrites
any data from the callback. If the callback sets status to
XmCONVERT_MERGE, widget class conversion procedures are invoked,
merging any data so produced with conversion data from the callback. A returned
status of XmCONVERT_REFUSE indicates that the callback terminates the con-
version process without completion, and no widget class procedures are to be
invoked. XmCONVERT_DONE similarly results in no widget class procedure
invocation, except that the callback indicates that conversion has been success-
fully completed.

value is where the callback places the result of the conversion process. The
default is NULL. It is assumed that any value specified is dynamically allocated
by the programmer, although the programmer must not subsequently free the
value: this is performed by the UTM. It is the responsibility of the programmer to
ensure that the type, format, and length elements are appropriately set to match
any data placed in value.

type specifies the logical type of any data returned within value, expressed as an
Atom.

format specifies whether the data within value is represented by a list of char,
short, or long quantities. If format is 0 (zero), value is NULL. A format value of 8
indicates value is logically a list of char, 16 represents a list of short quantities,
and 32 is for a list of long values. format indicates logical type, and not physical
implementation: a format of 32 indicates a list of long values even if they are
actually 64 bits.

length specifies the number of data items at the value address.

Motif Functions and Macros

Motif Reference Manual 559

Callbacks on the XmNdestinationCallback list are passed a pointer to the follow-
ing structure:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* the requested selection type, as an Atom */
XtEnum operation; /* the type of transfer requested */
int flags; /* whether destination and source are the same
*/
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination */
XtPointer location_data; /* information about the data */
Time time; /* time when transfer operation started */

} XmDestinationCallbackStruct;

selection specifies, as an Atom, the type of selection for which data transfer is
required. CLIPBOARD, PRIMARY, SECONDARY, or _MOTIF_DROP are the
possible logical values.

operation indicates the type of data transfer operation requested. The possible
values are:

XmCOPY /* copy transfer */
XmMOVE /* move transfer */
XmLINK /* link transfer */
XmOTHER /* information contained within destination_data element */

If operation is XmOTHER, destination_data contains a pointer to an XmDrop-
ProcCallbackStruct, which contains an operation element. See XmDropSite for
more information concerning the XmDropProcCallbackStruct.

flags indicates whether the source of the transfer data is also the destination. Pos-
sible values are:

XmCONVERTING_NONE /* destination is not the source of the data */
XmCONVERTING_SAME /* destination is the source of the data */

transfer_id specifies a unique identifier for the current transfer request.

destination_data specifies information about the destination of the transfer oper-
ation. If the selection is _MOTIF_DROP, then the callback has been invoked by
an XmDropProc of the drop site, and destination_data contains a pointer to an
XmDropProcCallbackStruct. If the selection is SECONDARY, destination_data
is an Atom representing a target type into which the selection owner suggests the
transfer should be converted. Otherwise, destination_data is NULL.

Motif Functions and Macros

Motif Reference Manual 560

location_data determines where the data is to be transferred. The interpretation
varies between the widget classes. In the Container widget, the value of
location_data is a pointer to an XPoint structure, containing the x and y coordi-
nates of the transfer location. If location_data is NULL, data is to be transferred
to the current cursor location for the widget.

time is the server time when the transfer operation was initiated.

Transfer procedures are passed a pointer to the following structure: the interpre-
tation of the elements is the same as those in the callbacks described above.

typedef struct {
int reason; /* reason that the callback is invoked
*/
XEvent *event; /* points to event that triggered callback
*/
Atom selection; /* the requested selection type, as an Atom
*/
Atom target; /* the conversion target
*/
Atom type; /* type of conversion data returned
*/
XtPointer transfer_id; /* unique identifier for the request
*/
int flags; /* whether destination and source are same
*/
int remaining; /* number transfers remaining for transfer_id
*/
XtPointer value; /* returned conversion data
*/
unsigned long length; /* number of elements in conversion data
*/
int format; /* format of the conversion data
*/

} XmSelectionCallbackStruct;

Example
The following is a specimen XmNdestinationCallback which simply requests
from the source the list of export targets, and which specifies a transfer procedure
for handling the data import.

void destination_handler (Widget w, XtPointer client_data, XtPointer call_data)
{

Motif Functions and Macros

Motif Reference Manual 561

XmDestinationCallbackStruct *dptr = (XmDestinationCallbackStruct *)
call_data;
Atom TARGETS = XmInternAtom (XtDisplay (w), "TARGETS", False);

/* transfer procedure will issue a subsequent request */
/* for data in a specific target format. it receives */
/* the list of supported targets from the source. */
XmTransferValue (dptr->transfer_id, TARGETS, (XtCallbackProc)
transfer_procedure,

NULL, XtLastTimestampProcessed (XtDisplay (w))1);
}

The following specimen XmNconvertCallback procedure exports the selected
text within a Text widget: although the convertProc method associated with the
Text’s XmQTtransfer trait performs this task in a modified form, the code does
outline the basic structure required.

void convert_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmConvertCallbackStruct *cptr = (XmConvertCallbackStruct *)
call_data;
Atom TARGETS, CB_TARGETS,
SELECTED_TEXT;
Atom targets[1];
Display *display = XtDisplay (w);

TARGETS = XmInternAtom (display, "TARGETS", False);
CB_TARGETS = XmInternAtom (display,
"_MOTIF_CLIPBOARD_TARGETS", False);
SELECTED_TEXT = XmInternAtom (display, "SELECTED_TEXT",
False);

/* if the destination has requested the list of supported targets */
/* this is returned in the callback data */
if ((cptr->target == TARGETS) || (cptr->target == CB_TARGETS)) {

targets[0] = SELECTED_TEXT;
cptr->type = XA_ATOM;
cptr->value = (XtPointer) targets;
cptr->length = 1;
cptr->format = 32;
/* merge the data with the list of targets supported by */
/* the convertProc method of the XmQTtransfer trait */

1.Erroneously given as XtLastTimestampProcessed() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 562

cptr->status = XmCONVERT_MERGE;
}
else {

if (cptr->target == SELECTED_TEXT) {
char *selection = XmTextGetSelection (w);
/* destination has requested the new target */
cptr->value = selection;
/* exported target is the requested target */
cptr->type = cptr->target;
cptr->format = 8;
cptr->length = (selection ? strlen (selection) : 0);
/* conversion complete */
cptr->status = XmCONVERT_DONE;

}
else {

/* target is one this procedure is not handling */
/* result is either XmCONVERT_MERGE or
XmCONVERT_DEFAULT */
/* depending on whether we throw away results from any */
/* other convert callback we have registered. */
/* the default is XmCONVERT_DEFAULT */
return XmCONVERT_MERGE;1

}
}
return XmCONVERT_MERGE;2

}

The following is a specimen transfer procedure, which is registered by a
XmNdestinationCallback using XmTransferValue():

void transfer_procedure (Widget w, XtPointer client_data, XtPointer call_data)
{

XmSelectionCallbackStruct *sptr = (XmSelectionCallbackStruct *)
call_data;
Atom TARGETS, CB_TARGETS,
SELECTED_TEXT;
Display *display = XtDisplay (w);

1.The 2nd edition gave XmCONVERT_DEFAULT as the return value here. Since certain focus operations built into
the toolkit use the Uniform Transfer Model as mechanism, you need to inherit these, so XmCONVERT_MERGE is
the better value. Apologies.

2.As above.

Motif Functions and Macros

Motif Reference Manual 563

Atom *targets, choice;
int i;

choice = (Atom) 0;
TARGETS = XmInternAtom (display, "TARGETS", False);
CB_TARGETS = XmInternAtom (display,
"_MOTIF_CLIPBOARD_TARGETS", False); SELECTED_TEXT =
XmInternAtom (display, "SELECTED_TEXT", False);

if (((sptr->target == TARGETS) || (sptr->target == CB_TARGETS)) &&
(sptr->type == XA_ATOM)) {
/* destination callback requested list of targets from the source */
/* the source convertCallback returns the list. We now choose... */
targets = (Atom *) sptr->value;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == SELECTED_TEXT) {
/* the source exports selected text. lets pick this one... */
choice = targets[i];
}

}

/* There’s no selection we like... */
if (choice == (Atom) 0) {

XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_FAIL);
return;

}

/* now go back to source and ask for the data in format of choice */
/* might as well use ourself again as transfer procedure... */
XmTransferValue (sptr->transfer_id, choice, /* Preferred
SELECTED_TEXT target */

transfer_procedure, NULL, XtLastTimestampProc-
essed (display)1);

}
else if (sptr->target == SELECTED_TEXT) {

/* insert the selected text at our own insertion point */
XmTextPosition pos = XmTextGetInsertionPosition (w);
XmTextInsert (w, pos, (char *) sptr->value);
/* all done */

1.Erroneously given as XtLastTimestampProcessed() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 564

XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_SUCCEED);

}
}

See Also
XmTransferDone(1), XmTransferSendRequest(1),
XmTransferSetParameters(1), XmTransferStartRequest(1),
XmTransferValue(1), XmContainer(2), XmDrawingArea(2),
XmPrimitive(2), XmScale(2).

Motif Functions and Macros

Motif Reference Manual 565

Name
XmTransferDone – complete a data transfer operation.

Synopsis
#include <Xm/Transfer.h>

void XmTransferDone (XtPointer transfer_id, XmTransferStatus status)
Inputs

transfer_id Specifies a unique identifier for the transfer operation.
status Specifies the completion status of the transfer.

Availability
Motif 2.0 and later.

Description
Under the Uniform Transfer Model, XmTransferDone() completes a data
transfer operation. The procedure is called from destination callbacks or transfer
procedures in order to signal the end of data transfer back to the source of the
data.

transfer_id uniquely identifies a transfer operation, and the value is supplied
either from the transfer_id element of a XmDestinationCallbackStruct passed to
the destination callback, or from the transfer_id element of a XmSelectionCall-
backStruct passed to a transfer procedure. status is set to indicate the status of the
current transfer operation, which is notified back to the selection owner.

status is one of XmTRANSFER_DONE_FAIL,
XmTRANSFER_DONE_SUCCEED, XmTRANSFER_DONE_CONTINUE, or
XmTRANSFER_DONE_DEFAULT. The status
XmTRANSFER_DONE_DEFAULT ignores all remaining queued transfer oper-
ations which may have been initiated within the destination callbacks and
invokes the widget class default transfer procedures. That is, any unprocessed
multiple batched requests created between XmTransferStartRequest()
and XmTransferSendRequest()1 calls are skipped. If status is
XmTRANSFER_DONE_FAIL, the XmNtransferStatus of the current Drop-
Transfer object is set to XmTRANSFER_FAILURE.
XmTRANSFER_DONE_SUCCEED and XmTRANSFER_DONE_CONTINUE
are similar, except that with XmTRANSFER_DONE_CONTINUE the owner of
the selection is not notified if the target is _MOTIF_SNAPSHOT.

1.Erroneously given as XmTransferEndRequest() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 566

Usage
The Uniform Transfer Model (UTM) enhances the Motif 1.2 data transfer mech-
anisms by providing a standard interface through which Drag and Drop, Primary
and Secondary selection, and Clipboard data transfer is achieved both to and
from a widget. The implementation of the UTM is through XmNconvertCallback
and XmNdestinationCallback resource procedures. A convert callback is associ-
ated with the source of the data, and it is responsible for exporting data in the for-
mat required by the destination widget.

The destination callback is responsible for requesting data from the source in the
format which it requires, and it calls the function XmTransferValue() to do
this. The destination callback typically does not import the data directly, but
specifies a transfer procedure to perform the insertion of data at the destination
widget. The transfer procedure is specified by passing a routine as a parameter to
the XmTransferValue() call. When the transfer is finished, either because it
is completed or because it is aborted due to an error, the transfer procedure calls
XmTransferDone() to return the status to the source.

Structures
The XmTransferStatus type has the following possible values:

XmTRANSFER_DONE_CONTINUE
XmTRANSFER_DONE_DEFAULT
XmTRANSFER_DONE_FAIL
XmTRANSFER_DONE_SUCCEED

Example
The following specimen transfer procedure calls XmTransferDone() to indi-
cate the status of the data drop:

void transfer_procedure (Widget w, XtPointer client_data, XtPointer call_data)
{

XmSelectionCallbackStruct *sptr = (XmSelectionCallbackStruct *)
call_data;
Atom TARGETS, CB_TARGETS,
IMPORT_FORMAT;
Display *display = XtDisplay (w);
Atom *targets, choice;
int i;

TARGETS = XmInternAtom (display, "TARGETS", False);
CB_TARGETS = XmInternAtom (display,
"_MOTIF_CLIPBOARD_TARGETS", False);

Motif Functions and Macros

Motif Reference Manual 567

IMPORT_FORMAT = XmInternAtom (display, "IMPORT_FORMAT",
False);

if (((sptr->target == TARGETS) || (sptr->target == CB_TARGETS)) &&
(sptr->type == XA_ATOM)) {
/* destination callback requested list of targets from the source */
/* the source convertCallback returns the list. We now choose... */
targets = (Atom *) sptr->value;
choice = (Atom) 0;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == IMPORT_FORMAT) {

/* the source exports our required target... */
choice = targets[i];

}
}

if (choice == (Atom) 0) {
/* source does not export what we require */
/* assume destinationProc in the XmQTtransferTrait */
/* does not either... */
XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_FAIL);
return;

}

/* now go back to source and ask for the data in format of choice */
/* might as well use ourself again as transfer procedure... */
XmTransferValue (sptr->transfer_id, choice, /* IMPORT_FORMAT */

transfer_procedure, NULL, XtLastTimestampProc-
essed (display)1);

}
else if (sptr->target == IMPORT_FORMAT) {

/* perform whatever is required to import sptr->value */
...
/* all done */
XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_SUCCEED);

}
else {

/* wrong export target */

1.Erroneously given as XtLastTimestampProcessed() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 568

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);
}

}

See Also
XmTransferSendRequest(1), XmTransferSetParameters(1),
XmTransferStartRequest(1), XmTransferValue(1),
XmTransfer(1), XmDropTransfer(1).

Motif Functions and Macros

Motif Reference Manual 569

Name
XmTransferSendRequest – send a multiple transfer request.

Synopsis
#include <Xm/Transfer.h>

void XmTransferSendRequest (XtPointer transfer_id, Time time)
Inputs

transfer_id Specifies a unique identifier for the transfer operation.
time Specifies the time of the transfer.

Availability
Motif 2.0 and later.

Description
In the Uniform Transfer Model, XmTransferSendRequest() marks the end
of a series of transfer requests started by XmTransferStartRequest().
transfer_id uniquely identifies a transfer operation, and the value is supplied
from the transfer_id element of a XmDestinationCallbackStruct or XmSelection-
CallbackStruct passed to a destination callback or transfer procedure respec-
tively. time specifies the time of the XEvent which initiated the data transfer.
XtLastTimestampProcessed() is the simplest method of specifying the
time value.

Usage
The Uniform Transfer Model (UTM) enhances the Motif 1.2 data transfer mech-
anisms by providing a standard interface through which Drag and Drop, Primary
and Secondary selection, and Clipboard data transfer is achieved both to and
from a widget. The implementation of the UTM is through XmNconvertCallback
and XmNdestinationCallback resource procedures. The destination callback is
responsible for requesting data from the source in the format which it requires,
and it calls the function XmTransferValue() to do this. A set of data transfer
requests can be queued by wrapping the series of XmTransferValue() calls
within XmTransferStartRequest() and XmTransferSendRequest()
calls.

See Also
XmTransferDone(1), XmTransferSetParameters(1),
XmTransferStartRequest(1), XmTransferValue(1),
XmTransfer(1).

Motif Functions and Macros

Motif Reference Manual 570

Name
XmTransferSetParameters – set parameters for next transfer

Synopsis
#include <Xm/Transfer.h>

void XmTransferSetParameters (XtPointer transfer_id,
XtPointer parm,
int parm_format,
unsigned long parm_length,
Atom parm_type)

Inputs
transfer_id Specifies a unique identifier for the transfer operation.
parm Specifies parameters to be passed to conversion routines.
parm_format Specifies the format of data in the parm argument.
parm_length Specifies the number of elements within the parm data.
parm_type Specifies the type of parm.

Availability
Motif 2.0 and later.

Description
In the Uniform Transfer Model, XmTransferSetParameters() defines
parameter data for a subsequent XmTransferValue() call. transfer_id
uniquely identifies a transfer operation, and the value is supplied from the
transfer_id element of a XmDestinationCallbackStruct or XmSelectionCallback-
Struct passed to a destination callback or transfer procedure respectively.

parm specifies parameter data to be passed to the conversion function, and the
XmNconvertCallback procedures, of the source widget which owns the selection.
parm_format specifies whether the data within parm consists of 8, 16, or 32 bit
quantities. parm_length specifies the number of elements, of size determined by
parm_format, which are at the address parm. parm_type specifies the logical type
of parm, and is application specific. Neither Motif, the X toolkit, nor the X
library interpret parm_type in any manner.

Motif Functions and Macros

Motif Reference Manual 571

Usage
The Uniform Transfer Model enhances the Motif 1.2 data transfer mechanisms
by providing a standard interface by which the source and destination of the data
transfer can communicate. The programmer provides XmNdestinationCallback
procedures which issue the request to transfer data from the source of the transfer
by calling XmTransferValue(). Any parameterized data for the XmTrans-
ferValue() procedure is established through a prior XmTransferSetPa-
rameters() call. XmTransferSetParameters() is a convenience
function which maps simply onto a X Toolkit Intrinsics XtSetSelection-
Parameters() call.

See Also
XmTransferDone(1), XmTransferSendRequest(1),
XmTransferStartRequest(1), XmTransferValue(1),
XmTransfer(1).

Motif Functions and Macros

Motif Reference Manual 572

Name
XmTransferStartRequest – initiate a multiple data transfer request

Synopsis
#include <Xm/Transfer.h>

void XmTransferStartRequest (XtPointer transfer_id)
Inputs

transfer_id Specifies a unique identifier for the current data transfer operation.

Availability
Motif 2.0 and later.

Description
XmTransferStartRequest() initiates the start of a series of transfer
requests. transfer_id uniquely identifies a transfer operation, and the value is sup-
plied from the transfer_id element of a XmDestinationCallbackStruct or XmSe-
lectionCallbackStruct passed to a destination callback or transfer procedure
respectively.

Usage
In Motif 2.0 and later, the Uniform Transfer Model enhances the Motif 1.2 data
transfer mechanisms by providing a standard interface by which the source and
destination of the data transfer can communicate. A set of data transfer requests
can be queued by wrapping the series of requests within XmTransferStar-
tRequest() and XmTransferSendRequest() calls. The procedure
XmTransferValue() provides the data transfer requests in the queue.

See Also
XmTransferDone(1), XmTransferSendRequest(1),
XmTransferSetParameters(1), XmTransferValue(1),
XmTransfer(1).

Motif Functions and Macros

Motif Reference Manual 573

Name
XmTransferValue – transfer data to a destination

Synopsis
#include <Xm/Transfer.h>

void XmTransferValue (XtPointer transfer_id,
Atom target,
XtCallbackProc callback,
XtPointer client_data,
Time time)

Inputs
transfer_id Specifies a unique identifier for the current data transfer opera-
tion.
target Specifies the target to which the selection is to be converted.
callback Specifies a transfer procedure to be called when the selection has

been converted by the source.
client_data Specifies application data to be passed to callback.
time Specifies the time of the transfer.

Availability
Motif 2.0 and later.

Description
The Uniform Transfer Model (UTM) enhances the Motif 1.2 data transfer mech-
anisms by providing a standard interface through which Drag and Drop, Primary
and Secondary selection, and Clipboard data transfer is achieved both to and
from a widget. The implementation of the UTM is through XmNconvertCallback
and XmNdestinationCallback resource procedures. A convert callback is associ-
ated with the source of the data, and it is responsible for exporting data in the for-
mat required by the destination. The destination callback is responsible for
requesting data from the source in the format which it requires, and it calls the
function XmTransferValue() to do this. The destination callback itself does
not typically insert the transferred data into the destination widget: it specifies a
transfer procedure, which performs the import, as a parameter to the XmTrans-
ferValue() call.

XmTransferValue() arranges to transfer data from the source of transfer data
to the destination. transfer_id uniquely identifies a transfer operation, and the
value is supplied from the transfer_id element of a XmDestinationCallbackStruct
or XmSelectionCallbackStruct passed to a destination or transfer callback respec-
tively.

Motif Functions and Macros

Motif Reference Manual 574

target specifies the selection which is to be converted and transferred. If target
is _MOTIF_DROP, the function invokes XmDropTransferStart() with
internal transfer procedures to perform the data transfer. Otherwise, the data is
extracted from the selection using XtGetSelectionValue().

callback is a transfer procedure, which is an application procedure that is called
when the data is converted and available from the source. client_data is any data
which the programmer wants to be passed to the callback. The callback is
invoked with three parameters: the destination widget, the application
client_data, and a pointer to a XmSelectionCallbackStruct.

time specifies the time of the XEvent which initiated the data transfer. XtLast-
TimestampProcessed() is the simplest method of specifying the time value.

Usage
XmTransferValue() is called from destination callbacks or transfer proce-
dures to effect the actual transfer of data from the source, whether that be the
clipboard or a widget. The programmer-defined callback replaces the XmNtrans-
ferProc added to a DropTransfer object, which the Uniform Transfer Model
internally encapsulates and hides.

See Also
XmTransferDone(1), XmTransferSendRequest(1),
XmTransferSetParameters(1), XmTransferStartRequest(1),
XmTransfer(1), XmDropTransfer(2).

Motif Functions and Macros

Motif Reference Manual 575

Name
XmTranslateKey – convert a keycode to a keysym using the default translator.

Synopsis
#include <Xm/Xm.h>

void XmTranslateKey (Display *display,
KeyCode keycode,
Modifiers modifiers,
Modifiers *modifiers_return,
KeySym *keysym_return)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
keycode Specifies the keycode that is translated.
modifiers Specifies the modifier keys that are applied to the keycode.

Outputs
modifiers_return Returns the modifiers used by the key translator to generate
the keysym.
keysym_return Returns the resulting keysym.

Availability
Motif 1.2 and later.

Description
XmTranslateKey() is the default XtKeyProc translation procedure used by
Motif applications. The routine takes a keycode and modifiers and returns the
corresponding osf keysym.

Usage
The Motif toolkit uses a mechanism called virtual bindings to map one set of
keysyms to another set. This mapping permits widgets and applications to use
one set of keysyms in translation tables; applications and users can then custom-
ize the keysyms used in the translations based on the particular keyboard that is
being used. Keysyms that can be used in this way are called osf keysyms. Motif
maintains a mapping between the osf keysyms and the actual keysyms that repre-
sent keys on a particular keyboard. See the introduction to Section 2, Motif and
Xt Widget and Classes, for more information about the mapping of osf keysyms
to actual keysyms.

Motif Functions and Macros

Motif Reference Manual 576

XmTranslateKey() is used by the X Toolkit during event processing to trans-
late the keycode of an event to the appropriate osf keysym if there is a mapping
for the keysym. The event is then dispatched to the appropriate action routine if
there is a translation for the osf keysym.

If you need to provide a new translator with expanded functionality, you can call
XmTranslateKey() to get the default translation. Use XtSetKeyTransla-
tor() to register a new key translator. To reinstall the default behavior, you can
call XtSetKeyTranslator() with XmTranslateKey() as the proc argu-
ment.

See Also
xmbind(4).

Motif Functions and Macros

Motif Reference Manual 577

Name
XmUninstallImage – remove an image from the image cache.

Synopsis
Boolean XmUninstallImage (XImage *image)

Inputs
image Specifies the image structure to be removed.

Returns
True on success or False if image is NULL or it cannot be found.

Description
XmUninstallImage() removes the specified image from the image cache.
The routine returns True if it is successful. It returns False if image is NULL or if
image is not found in the image cache.

Usage
XmUninstallImage() removes an image from the image cache. Once an
image is uninstalled, it cannot be referenced again and a new image can be
installed with the same name. If you have created any pixmaps that use the
image, they are not affected by the image being uninstalled, since they are based
on image data, not the image itself. After an image has been uninstalled, you can
safely free the image.

See Also
XmDestroyPixmap(1), XmGetPixmap(1), XmInstallImage(1).

Motif Functions and Macros

Motif Reference Manual 578

Name
XmUpdateDisplay – update the display.

Synopsis
void XmUpdateDisplay (Widget widget)

Inputs
widget Specifies any widget.

Description
XmUpdateDisplay() causes all pending exposure events to be processed
immediately, instead of having them remain in the queue until all of the callbacks
have been invoked.

Usage
XmUpdateDisplay() provides applications with a way to force an visual
update of the display. Because callbacks are invoked before normal exposure
processing occurs, when a menu or a dialog box is unposted, the display is not
updated until all of the callbacks have been called. This routine is useful when-
ever a time-consuming action might delay the redrawing of the windows on the
display.

See Also
XmDisplay(2).

Motif Functions and Macros

Motif Reference Manual 579

Name
XmVaCreateSimpleCheckBox – create a CheckBox compound object.

Synopsis
Widget XmVaCreateSimpleCheckBox (Widget parent,

String name,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup.
callback Specifies the callback procedure that is called when the value of a
button changes.
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleCheckBox() is a RowColumn convenience routine that
creates a CheckBox with ToggleButtonGadgets as its children. This routine is
similar to XmCreateSimpleCheckBox(), but it uses a NULL-terminated var-
iable-length argument list in place of the arglist and argcount parameters. The
variable-length argument list specifies resource name/value pairs as well as the
children of the CheckBox. The callback argument specifies the callback routine
that is added to the XmNvalueChangedCallback of each ToggleButtonGadget
child of the CheckBox. When the callback is invoked, the button number of the
button whose value has changed is passed to the callback in the client_data
parameter.

The name of each ToggleButtonGadget child is button_n, where n is the number
of the button, ranging from 0 (zero) to 1 less than the number of buttons in the
CheckBox. The buttons are created and named in the order in which they are
specified in the variable-length argument list.

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaCHECKBUTTON, a resource name, XtVaTypedList, or XtVaN-
estedList. The variable-length argument list must be NULL-terminated.

Motif Functions and Macros

Motif Reference Manual 580

If the first argument in a group is XmVaCHECKBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a ToggleButtonGadget child of the CheckBox and its associated resources.
(As of Motif 1.2, all but the label argument are ignored.)

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is
XtVaTypedArg, it is followed by four arguments: name, type, value, and size.
This group specifies a resource name and value using the standard XtVaType-
dArg format. If the first argument in a group is XtVaNestedList, it is followed by
one argument of type XtVarArgsList, which is returned by XtVaCre-
ateArgsList().

Example
You can use XmVaCreateSimpleCheckBox() as in the following example:

Widget toplevel, check_box;
XmString normal, bold, italic;

normal = XmStringCreateLocalized ("normal");
bold = XmStringCreateLocalized ("bold");
italic = XmStringCreateLocalized ("italic");
check_box = XmVaCreateSimpleCheckBox (toplevel, "check_box", toggled,

XmVaCHECKBUTTON, normal,
NULL, NULL, NULL,
XmVaCHECKBUTTON, bold,
NULL, NULL, NULL,
XmVaCHECKBUTTON, italic,
NULL, NULL, NULL,
NULL);

XmStringFree (normal);
XmStringFree (bold);
XmStringFree (italic);

See Also
XmCheckBox(2), XmRowColumn(2), XmToggleButtonGadget(2).

Motif Functions and Macros

Motif Reference Manual 581

Name
XmVaCreateSimpleMenuBar – create a MenuBar compound object.

Synopsis
Widget XmVaCreateSimpleMenuBar (Widget parent, char *name,..., NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup.
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleMenuBar() is a RowColumn convenience routine that
creates a MenuBar with CascadeButtonGadgets as its children. This routine is
similar to XmCreateSimpleMenuBar(), but it uses a NULL-terminated vari-
able-length argument list in place of the arglist and argcount parameters. The var-
iable-length argument list specifies resource name/value pairs as well as the
children of the MenuBar.

The name of each CascadeButtonGadget is button_n, where n is the number of
the button, ranging from 0 (zero) to 1 less than the number of buttons in the Men-
uBar. The buttons are created and named in the order in which they are specified
in the variable-length argument list.

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaCASCADEBUTTON, a resource name, XtVaTypedList, or
XtVaNestedList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaCASCADEBUTTON, it is followed by
two arguments: label and mnemonic. This group specifies a CascadeButton-
Gadget child of the MenuBar and its associated resources.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is
XtVaTypedArg, it is followed by four arguments: name, type, value, and size.
This group specifies a resource name and value using the standard XtVaType-
dArg format. If the first argument in a group is XtVaNestedList, it is followed by

Motif Functions and Macros

Motif Reference Manual 582

one argument of type XtVarArgsList, which is returned by XtVaCre-
ateArgsList().

Example
You can use XmVaCreateSimpleMenuBar() as in the following example:

Widget top, mainw, menubar, fmenu, emenu;
XmString file, edit, new, quit, cut, clear, copy, paste;

file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
menubar = XmVaCreateSimpleMenuBar (mainw, "menubar",

XmVaCASCADEBUTTON,
file,’F’,
XmVaCASCADEBUTTON,
edit,’E’,
NULL);

XmStringFree (file);
XmStringFree (edit);

new = XmStringCreateLocalized ("New");
quit = XmStringCreateLocalized ("Quit");
fmenu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON,
new,’N’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON,
quit,’Q’, NULL, NULL,
NULL);

XmStringFree (new);
XmStringFree (quit);

cut = XmStringCreateLocalized ("Cut");
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
emenu = XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 0,
cut_paste,

XmVaPUSHBUTTON,
cut,’C’, NULL, NULL,
XmVaPUSHBUTTON,
copy,’o’, NULL, NULL,
XmVaPUSHBUTTON,
paste,’P’, NULL, NULL,

Motif Functions and Macros

Motif Reference Manual 583

XmVaSEPARATOR,
XmVaPUSHBUTTON,
clear,’l’, NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (clear);
XmStringFree (copy);
XmStringFree (paste);

See Also
XmCascadeButtonGadget(2), XmMenuBar(2), XmRowColumn(2).

Motif Functions and Macros

Motif Reference Manual 584

Name
XmVaCreateSimpleOptionMenu – create an OptionMenu compound object.

Synopsis
Widget XmVaCreateSimpleOptionMenu (Widget parent,

String name,
XmString option_label,
KeySym

option_mnemonic,
int button_set,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource
lookup.
option_label Specifies the label used for the OptionMenu.
option_mnemonic Specifies the mnemonic character associated with the
OptionMenu.
button_set Specifies the initial setting of the OptionMenu.
callback Specifies the callback procedure that is called when a button
is activated.
..., NULL A NULL-terminated variable-length list of resource name/
value pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleOptionMenu() is a RowColumn convenience routine
that creates an OptionMenu along with its submenu of CascadeButtonGadget
and/or PushButtonGadget children. This routine is similar to XmCreateSim-
pleOptionMenu(), but it uses a NULL-terminated variable-length argument
list in place of the arglist and argcount parameters. The variable-length argument
list specifies resource name/value pairs as well as the children of the Option-
Menu.

The option_label, option_mnemonic, and button_set arguments are used to set
the XmNlabelString, XmNmnemonic, and XmNmenuHistory resources of the
RowColumn respectively. The button_set parameter specifies the nth button
child of the OptionMenu, where the first button is button 0 (zero); the XmNmen-
uHistory resource is set to the actual widget. The callback argument specifies the

Motif Functions and Macros

Motif Reference Manual 585

callback routine that is added to the XmNactivateCallback of each CascadeBut-
tonGadget and PushButtonGadget child in the submenu of the OptionMenu.
When the callback is invoked, the button number of the button whose value has
changed is passed to the callback in the client_data parameter.

The name of each button is button_n, where n is the number of the button, rang-
ing from 0 (zero) to 1 less than the number of buttons in the submenu. The name
of each separator is separator_n, where n is the number of the separator, ranging
from 0 (zero) to 1 less than the number of separators in the submenu. The buttons
are created and named in the order in which they are specified in the variable-
length argument list.

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaPUSHBUTTON, XmVaCASCADEBUTTON, XmVaSEPARA-
TOR, XmVaDOUBLE_SEPARATOR, a resource name, XtVaTypedList, or
XtVaNestedList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaPUSHBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a PushButtonGadget in the pulldown submenu of the OptionMenu and its
associated resources. If the first argument in a group is XmVaCASCADEBUT-
TON, it is followed by two arguments: label and mnemonic. This group specifies
a CascadeButtonGadget in the pulldown submenu of the OptionMenu and its
associated resources. If the first argument in a group is XmVaSEPARATOR or
XmVaDOUBLE_SEPARATOR, it is not followed by any arguments. These
groups specify SeparatorGadgets in the pulldown submenu of the OptionMenu.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is
XtVaTypedArg, it is followed by four arguments: name, type, value, and size.
This group specifies a resource name and value using the standard XtVaType-
dArg format. If the first argument in a group is XtVaNestedList, it is followed by
one argument of type XtVarArgsList, which is returned by XtVaCre-
ateArgsList().

Example
You can use XmVaCreateSimpleOptionMenu() as in the following exam-
ple:

Widget rc, option_menu;
XmString draw_shape, line, square, circle;

Motif Functions and Macros

Motif Reference Manual 586

draw_shape = XmStringCreateLocalized ("Draw Mode:");
line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
option_menu = XmVaCreateSimpleOptionMenu (rc, "option_menu",
draw_shape, ’D’, 0, option_cb,

XmVaPUSHBUTTON, line,
’L’, NULL, NULL,
XmVaPUSHBUTTON,
square, ’S’, NULL, NULL,
XmVaPUSHBUTTON, circle,
’C’, NULL, NULL,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (draw_shape);

See Also
XmOptionButtonGadget(1), XmOptionLabelGadget(1),
XmCascadeButtonGadget(2), XmLabelGadget(2),
XmOptionMenu(2), XmPushButtonGadget(2),
XmRowColumn(2), XmSeparatorGadget(2).

Motif Functions and Macros

Motif Reference Manual 587

Name
XmVaCreateSimplePopupMenu – create a PopupMenu compound object as the
child of a MenuShell.

Synopsis
Widget XmVaCreateSimplePopupMenu (Widget parent,

String name,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the MenuShell.
name Specifies the string name of the new widget for resource lookup.
callback Specifies the callback procedure that is called when a button is

activated or its value changes.
...,NULL A NULL-terminated variable-length list of resource name/value

pairs.
Returns

The widget ID of the RowColumn widget.

Description
XmVaCreateSimplePopupMenu() is a RowColumn convenience routine
that creates a PopupMenu along with its button children. The routine creates the
PopupMenu as a child of a MenuShell. This routine is similar to XmCreateS-
implePopupMenu(), but it uses a NULL-terminated variable-length argument
list in place of the arglist and argcount parameters. The variable-length argument
list specifies resource name/value pairs as well as the children of the Popup-
Menu. The callback argument specifies the callback routine that is added to the
XmNactivateCallback of each CascadeButtonGadget and PushButtonGadget
child and the XmNvalueChangedCallback of each ToggleButtonGadget child in
the PopupMenu. When the callback is invoked, the button number of the button
whose value has changed is passed to the callback in the client_data parameter.

The name of each button is button_n, where n is the number of the button, rang-
ing from 0 (zero) to 1 less than the number of buttons in the menu. The name of
each separator is separator_n, where n is the number of the separator, ranging
from 0 (zero) to 1 less than the number of separators in the menu. The name of
each title is label_n, where n is the number of the title, ranging from 0 (zero) to 1
less than the number of titles in the menu. The buttons are created and named in
the order in which they are specified in the variable-length argument list.

Motif Functions and Macros

Motif Reference Manual 588

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaPUSHBUTTON, XmVaCASCADEBUTTON, XmVaRADI-
OBUTTON, XmVaCHECKBUTTON, XmVaTITLE, XmVaSEPARATOR,
XmVaDOUBLE_SEPARATOR, a resource name, XtVaTypedList, or XtVaN-
estedList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaPUSHBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a PushButtonGadget child of the PopupMenu and its associated resources. If
the first argument in a group is XmVaCASCADEBUTTON, it is followed by
two arguments: label and mnemonic. This group specifies a CascadeButton-
Gadget child of the PopupMenu and its associated resources. If the first argument
in a group is XmVaRADIOBUTTON or XmVaCHECKBUTTON, it is followed
by four arguments: label, mnemonic, accelerator, and accelerator text. These
groups specify ToggleButtonGadget children of the PopupMenu and their associ-
ated resources.

If the first argument is XmVaTITLE, it is followed by a title argument. This
group specifies a LabelGadget title in the PopupMenu and its associated
resource. If the first argument in a group is XmVaSEPARATOR or
XmVaDOUBLE_SEPARATOR, it is not followed by any arguments. These
groups specify SeparatorGadgets in the PopupMenu.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is
XtVaTypedArg, it is followed by four arguments: name, type, value, and size.
This group specifies a resource name and value using the standard XtVaType-
dArg format. If the first argument in a group is XtVaNestedList, it is followed by
one argument of type XtVarArgsList, which is returned by XtVaCre-
ateArgsList().

Example
You can use XmVaCreateSimplePopupMenu() as in the following example:

Widget drawing_a, popup_menu;
XmString line, square, circle, quit, quit_acc;

line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");

Motif Functions and Macros

Motif Reference Manual 589

quit = XmStringCreateLocalized ("Quit");
quit_acc = XmStringCreateLocalized ("Ctrl-C");
popup_menu = XmVaCreateSimplePopupMenu (drawing_a, "popup",
popup_cb,

XmVaPUSHBUTTON, line, NULL, NULL,
NULL,
XmVaPUSHBUTTON, square, NULL,
NULL, NULL,
XmVaPUSHBUTTON, circle, NULL,
NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, NULL,
"Ctrl<Key>c", quit_acc,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (quit);
XmStringFree (quit_acc);

See Also
XmCascadeButtonGadget(2), XmLabelGadget(2), XmMenuShell(2),
XmPopupMenu(2), XmPushButtonGadget(2), XmRowColumn(2),
XmSeparatorGadget(2), XmToggleButtonGadget(2).

Motif Functions and Macros

Motif Reference Manual 590

Name
XmVaCreateSimplePulldownMenu – create a PulldownMenu compound object
as the child of a MenuShell.

Synopsis
Widget XmVaCreateSimplePulldownMenu (Widget parent,

String name,
int

post_from_button,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the MenuShell.
name Specifies the string name of the new widget for resource

lookup.
post_from_button Specifies the CascadeButton or CascadeButtonGadget in

the parent widget to which the menu is attached.
callback Specifies the callback procedure that is called when a but-

ton is activated or its value changes.
..., NULL A NULL-terminated variable-length list of resource

name/value pairs.
Returns

The widget ID of the RowColumn widget.

Description
XmVaCreateSimplePulldownMenu() is a RowColumn convenience rou-
tine that creates a PulldownMenu along with its button children. The routine cre-
ates the PulldownMenu as a child of a MenuShell. This routine is similar to
XmCreateSimplePulldownMenu(), but it uses a NULL-terminated varia-
ble-length argument list in place of the arglist and argcount parameters. The vari-
able-length argument list specifies resource name/value pairs as well as the
children of the PulldownMenu.

The post_from_button parameter specifies the CascadeButton or CascadeButton-
Gadget to which the PulldownMenu is attached as a submenu. The argument
specifies the nth CascadeButton or CascadeButtonGadget, where the first button
is button 0 (zero). The callback argument specifies the callback routine that is
added to the XmNactivateCallback of each CascadeButtonGadget and PushBut-
tonGadget child and the XmNvalueChangedCallback of each ToggleButton-
Gadget child in the PulldownMenu. When the callback is invoked, the button

Motif Functions and Macros

Motif Reference Manual 591

number of the button whose value has changed is passed to the callback in the
client_data parameter.

The name of each button is button_n, where n is the number of the button, rang-
ing from 0 (zero) to 1 less than the number of buttons in the menu. The name of
each separator is separator_n, where n is the number of the separator, ranging
from 0 (zero) to 1 less than the number of separators in the menu. The name of
each title is label_n, where n is the number of the title, ranging from 0 (zero) to 1
less than the number of titles in the menu. The buttons are created and named in
the order in which they are specified in the variable-length argument list.

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaPUSHBUTTON, XmVaCASCADEBUTTON, XmVaRADI-
OBUTTON, XmVaCHECKBUTTON, XmVaTITLE, XmVaSEPARATOR,
XmVaDOUBLE_SEPARATOR, a resource name, XtVaTypedList, or XtVaN-
estedList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaPUSHBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a PushButtonGadget child of the PulldownMenu and its associated
resources. If the first argument in a group is XmVaCASCADEBUTTON, it is
followed by two arguments: label and mnemonic. This group specifies a Cas-
cadeButtonGadget child of the PulldownMenu and its associated resources. If the
first argument in a group is XmVaRADIOBUTTON or XmVaCHECKBUT-
TON, it is followed by four arguments: label, mnemonic, accelerator, and accel-
erator text. These groups specify ToggleButtonGadget children of the
PulldownMenu and their associated resources.

If the first argument is XmVaTITLE, it is followed by a title argument. This
group specifies a LabelGadget title in the PulldownMenu and its associated
resource. If the first argument in a group is XmVaSEPARATOR or
XmVaDOUBLE_SEPARATOR, it is not followed by any arguments. These
groups specify SeparatorGadgets in the PulldownMenu.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is
XtVaTypedArg, it is followed by four arguments: name, type, value, and size.
This group specifies a resource name and value using the standard XtVaType-
dArg format. If the first argument in a group is XtVaNestedList, it is followed by

Motif Functions and Macros

Motif Reference Manual 592

one argument of type XtVarArgsList, which is returned by XtVaCre-
ateArgsList().

Example
You can use XmVaCreateSimplePulldownMenu() as in the following
example:

Widget top, mainw, menubar, fmenu, emenu;
XmString file, edit, new, quit, cut, clear, copy, paste;

file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
menubar = XmVaCreateSimpleMenuBar (mainw, "menubar",

XmVaCASCADEBUTTON, file, ’F’,
XmVaCASCADEBUTTON, edit,
’E’,
NULL);

XmStringFree (file);
XmStringFree (edit);

new = XmStringCreateLocalized ("New");
quit = XmStringCreateLocalized ("Quit");
fmenu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, new,
’N’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit,
’Q’, NULL, NULL,
NULL);

XmStringFree (new);
XmStringFree (quit);

cut = XmStringCreateLocalized ("Cut");
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
emenu = XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1,
cut_paste,

XmVaPUSHBUTTON, cut, ’C’,
NULL, NULL,
XmVaPUSHBUTTON, copy,
’o’, NULL, NULL,
XmVaPUSHBUTTON, paste,
’P’, NULL, NULL,

Motif Functions and Macros

Motif Reference Manual 593

XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, ’l’,
NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (clear);
XmStringFree (copy);
XmStringFree (paste);

See Also
XmCascadeButtonGadget(2), XmLabelGadget(2), XmMenuShell(2),
XmPulldownMenu(2), XmPushButtonGadget(2), XmRowColumn(2),
XmSeparatorGadget(2), XmToggleButtonGadget(2).

Motif Functions and Macros

Motif Reference Manual 594

Name
XmVaCreateSimpleRadioBox – create a RadioBox compound object.

Synopsis
Widget XmVaCreateSimpleRadioBox (Widget parent,

String name,
int button_set,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource
lookup.
button_set Specifies the initial setting of the RadioBox.
callback Specifies the callback procedure that is called when the value
of a button changes.
..., NULL A NULL-terminated variable-length list of resource name/
value pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleRadioBox() is a RowColumn convenience routine that
creates a RadioBox with ToggleButtonGadgets as its children. This routine is
similar to XmCreateSimpleRadioBox(), but it uses a NULL-terminated var-
iable-length argument list in place of the arglist and argcount parameters. The
variable-length argument list specifies resource name/value pairs as well as the
children of the CheckBox. The button_set argument is used to set the XmNmen-
uHistory resource of the RowColumn. The parameter specifies the nth button
child of the RadioBox, where the first button is button 0 (zero); the XmNmen-
uHistory resource is set to the actual widget. The callback argument specifies the
callback routine that is added to the XmNvalueChangedCallback of each Toggle-
ButtonGadget child of the RadioBox. When the callback is invoked, the button
number of the button whose value has changed is passed to the callback in the
client_data parameter.

The name of each ToggleButtonGadget child is button_n, where n is the number
of the button, ranging from 0 (zero) to 1 less than the number of buttons in the
RadioBox. The buttons are created and named in the order in which they are
specified in the variable-length argument list.

Motif Functions and Macros

Motif Reference Manual 595

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaRADIOBUTTON, a resource name, XtVaTypedList, or XtVaN-
estedList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaRADIOBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a ToggleButtonGadget child of the RadioBox and its associated resources.
(As of Motif 1.2, all but the label argument are ignored.)

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is
XtVaTypedArg, it is followed by four arguments: name, type, value, and size.
This group specifies a resource name and value using the standard XtVaType-
dArg format. If the first argument in a group is XtVaNestedList, it is followed by
one argument of type XtVarArgsList, which is returned by XtVaCre-
ateArgsList().

Example
You can use XmVaCreateSimpleRadioBox() as in the following example:

Widget toplevel, radio_box;
XmString one, two, three;

one = XmStringCreateLocalized ("WFNX");
two = XmStringCreateLocalized ("WMJX");
three = XmStringCreateLocalized ("WXKS");
radio_box = XmVaCreateSimpleRadioBox (toplevel, "radio_box", 0, toggled,

XmVaRADIOBUTTON, one, NULL,
NULL, NULL,
XmVaRADIOBUTTON, two, NULL,
NULL, NULL,
XmVaRADIOBUTTON, three,
NULL, NULL, NULL,
NULL);

XmStringFree (one);
XmStringFree (two);
XmStringFree (three);

See Also
XmRadioBox(2), XmRowColumn(2), XmToggleButtonGadget(2).

Motif Functions and Macros

Motif Reference Manual 596

Name
XmWidgetGetBaselines – get the positions of the baselines in a widget.

Synopsis
Boolean XmWidgetGetBaselines (Widget widget, Dimension **baselines, int
*line_count)

Inputs
widget Specifies the widget for which to get baseline values.

Outputs
baselines Returns an array containing the value of each baseline of text in the
widget.
line_count Returns the number of lines of text in the widget.

Returns
True if the widget contains at least one baseline or False otherwise.

Availability
Motif 1.2 and later.

Description
XmWidgetGetBaselines() returns an array that contains the baseline values
for the specified widget. For each line of text in the widget, the baseline value is
the vertical offset in pixels from the origin of the bounding box of the widget to
the text baseline. The routine returns the baseline values in baselines and the
number of lines of text in the widget in line_count. XmWidgetGetBase-
lines() returns True if the widget contains at least one line of text and therefore
has a baseline. If the widget does not contain any text, the routine returns False
and the values of baselines and line_count are undefined. The routine allocates
storage for the returned values. The application is responsible for freeing this
storage using XtFree().

Usage
XmWidgetGetBaselines() provide information that is useful when you are laying
out an application and trying to align different components.

See Also
XmWidgetGetDisplayRect(1).

Motif Functions and Macros

Motif Reference Manual 597

Name
XmWidgetGetDisplayRect – get the display rectangle for a widget.

Synopsis
Boolean XmWidgetGetDisplayRect (Widget widget, XRectangle *displayrect)

Inputs
widget Specifies the widget for which to get the display rectangle.

Outputs
displayrect Returns an XRectangle that specifies the display rectangle of the
widget.

Returns
True if the widget has a display rectangle or False otherwise.

Availability
Motif 1.2 and later.

Description
XmWidgetGetDisplayRect() gets the display rectangle for the specified
widget. The routine returns the width, the height, and the x and y-coordinates of
the upper left corner of the display rectangle in the displayrect XRectangle. All
of the values are specified as pixels. The display rectangle for a widget is the
smallest rectangle that encloses the string or the pixmap in the widget. XmWidg-
etGetDisplayRect() returns True if the widget has a display rectangle; other
it returns False and the value of displayrect is undefined.

Usage
XmWidgetGetDisplayRect() provide information that is useful when you
are laying out an application and trying to align different components.

See Also
XmWidgetGetBaselines(1).

Motif Functions and Macros

Motif Reference Manual 598

