
MIT/GNU Scheme Reference Manual
Edition 1.106 for release 10.1.1

2017-02-15

by Chris Hanson
the MIT Scheme Team
and a cast of thousands

This manual documents MIT/GNU Scheme 10.1.1.

Copyright c© 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,
2014, 2015, 2016, 2017, 2018 Massachusetts Institute of Technology

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License.”

i

Short Contents

Acknowledgements . 1
1 Overview . 3

2 Special Forms . 15
3 Equivalence Predicates . 55
4 Numbers . 61
5 Characters . 81
6 Strings . 89

7 Lists . 111
8 Vectors . 127

9 Bit Strings . 131
10 Miscellaneous Datatypes . 135

11 Associations . 149
12 Procedures . 177
13 Environments . 185

14 Input/Output . 189
15 Operating-System Interface . 237
16 Error System . 271
17 Graphics . 295

18 Win32 Package Reference . 309

A GNU Free Documentation License . 319
B Binding Index . 327

C Concept Index . 345

iii

Table of Contents

Acknowledgements . 1

1 Overview . 3
1.1 Notational Conventions . 4

1.1.1 Errors . 4
1.1.2 Examples . 4
1.1.3 Entry Format . 5

1.2 Scheme Concepts . 6
1.2.1 Variable Bindings . 6
1.2.2 Environment Concepts . 6
1.2.3 Initial and Current Environments . 7
1.2.4 Static Scoping . 7
1.2.5 True and False . 8
1.2.6 External Representations . 8
1.2.7 Disjointness of Types . 9
1.2.8 Storage Model . 9

1.3 Lexical Conventions . 9
1.3.1 Whitespace . 9
1.3.2 Delimiters . 10
1.3.3 Identifiers . 10
1.3.4 Uppercase and Lowercase . 10
1.3.5 Naming Conventions . 10
1.3.6 Comments . 11
1.3.7 Additional Notations . 11

1.4 Expressions . 12
1.4.1 Literal Expressions . 13
1.4.2 Variable References . 13
1.4.3 Special Form Syntax . 13
1.4.4 Procedure Call Syntax . 13

2 Special Forms . 15
2.1 Lambda Expressions . 15
2.2 Lexical Binding . 17
2.3 Dynamic Binding . 18

2.3.1 Fluid-Let . 20
2.4 Definitions . 21

2.4.1 Top-Level Definitions . 21
2.4.2 Internal Definitions . 22

2.5 Assignments . 22
2.6 Quoting . 23
2.7 Conditionals . 24
2.8 Sequencing . 27

iv MIT/GNU Scheme 10.1.1

2.9 Iteration . 28
2.10 Structure Definitions . 29
2.11 Macros . 35

2.11.1 Binding Constructs for Syntactic Keywords 35
2.11.2 Pattern Language . 38
2.11.3 Syntactic Closures . 40

2.11.3.1 Syntax Terminology . 40
2.11.3.2 Transformer Definition . 41
2.11.3.3 Identifiers . 45

2.11.4 Explicit Renaming . 47
2.12 SRFI syntax . 49

2.12.1 cond-expand (SRFI 0) . 50
2.12.2 receive (SRFI 8) . 51
2.12.3 and-let* (SRFI 2) . 52
2.12.4 define-record-type (SRFI 9) . 52

3 Equivalence Predicates . 55

4 Numbers . 61
4.1 Numerical types . 61
4.2 Exactness . 62
4.3 Implementation restrictions . 62
4.4 Syntax of numerical constants . 64
4.5 Numerical operations . 64
4.6 Numerical input and output . 71
4.7 Fixnum and Flonum Operations . 74

4.7.1 Fixnum Operations . 75
4.7.2 Flonum Operations . 77

4.8 Random Numbers . 78

5 Characters . 81
5.1 Character implementation . 84
5.2 Unicode . 85
5.3 Character Sets . 86

6 Strings . 89
6.1 Searching and Matching Strings . 101
6.2 Regular Expressions . 104

6.2.1 Regular S-Expressions . 104
6.2.2 Regsexp Procedures . 109

v

7 Lists . 111
7.1 Pairs . 112
7.2 Construction of Lists . 114
7.3 Selecting List Components . 116
7.4 Cutting and Pasting Lists . 117
7.5 Filtering Lists . 118
7.6 Searching Lists . 120
7.7 Mapping of Lists . 121
7.8 Reduction of Lists . 123
7.9 Miscellaneous List Operations . 125

8 Vectors . 127
8.1 Construction of Vectors . 127
8.2 Selecting Vector Components . 128
8.3 Cutting Vectors . 129
8.4 Modifying Vectors . 130

9 Bit Strings . 131
9.1 Construction of Bit Strings . 131
9.2 Selecting Bit String Components . 132
9.3 Cutting and Pasting Bit Strings . 132
9.4 Bitwise Operations on Bit Strings . 133
9.5 Modification of Bit Strings . 133
9.6 Integer Conversions of Bit Strings . 134

10 Miscellaneous Datatypes . 135
10.1 Booleans . 135
10.2 Symbols . 136
10.3 Parameters . 139

10.3.1 Cells . 140
10.4 Records . 140
10.5 Promises . 142
10.6 Streams . 144
10.7 Weak References . 145

10.7.1 Weak Pairs . 146
10.7.2 Ephemerons . 147
10.7.3 Reference barriers . 148

11 Associations . 149
11.1 Association Lists . 149
11.2 1D Tables . 151
11.3 The Association Table . 152
11.4 Hash Tables . 153

11.4.1 Construction of Hash Tables . 153
11.4.2 Basic Hash Table Operations . 158
11.4.3 Resizing of Hash Tables . 161

vi MIT/GNU Scheme 10.1.1

11.4.4 Address Hashing . 163
11.5 Object Hashing . 164
11.6 Red-Black Trees . 165
11.7 Weight-Balanced Trees . 168

11.7.1 Construction of Weight-Balanced Trees 170
11.7.2 Basic Operations on Weight-Balanced Trees 171
11.7.3 Advanced Operations on Weight-Balanced Trees 172
11.7.4 Indexing Operations on Weight-Balanced Trees 174

12 Procedures . 177
12.1 Procedure Operations . 177
12.2 Arity . 178
12.3 Primitive Procedures . 179
12.4 Continuations . 180
12.5 Application Hooks . 182

13 Environments . 185
13.1 Environment Operations . 185
13.2 Environment Variables . 187
13.3 REPL Environment . 187
13.4 Top-level Environments . 188

14 Input/Output . 189
14.1 Ports . 189
14.2 File Ports . 191
14.3 String Ports . 193
14.4 Bytevector Ports . 195
14.5 Input Procedures . 195

14.5.1 Reader Controls . 199
14.6 Output Procedures . 200
14.7 Blocking Mode . 204
14.8 Terminal Mode . 205
14.9 Format . 206
14.10 Custom Output . 208
14.11 Prompting . 209
14.12 Textual Port Primitives . 211

14.12.1 Textual Port Types . 211
14.12.2 Constructors and Accessors for Textual Ports 212
14.12.3 Textual Input Port Operations . 213
14.12.4 Textual Output Port Operations . 215

14.13 Parser Buffers . 216
14.14 Parser Language . 219

14.14.1 *Matcher . 221
14.14.2 *Parser . 224
14.14.3 Parser-language Macros . 227

14.15 XML Support . 228
14.15.1 XML Input . 228

vii

14.15.2 XML Output . 229
14.15.3 XML Names . 230
14.15.4 XML Structure . 232

15 Operating-System Interface 237
15.1 Pathnames . 237

15.1.1 Filenames and Pathnames . 238
15.1.2 Components of Pathnames . 239
15.1.3 Operations on Pathnames . 242
15.1.4 Miscellaneous Pathname Procedures . 245

15.2 Working Directory . 246
15.3 File Manipulation . 247
15.4 Directory Reader . 253
15.5 Date and Time . 253

15.5.1 Universal Time . 254
15.5.2 Decoded Time . 254
15.5.3 File Time . 257
15.5.4 Time-Format Conversion . 257
15.5.5 External Representation of Time . 260

15.6 Machine Time . 261
15.7 Subprocesses . 263

15.7.1 Subprocess Procedures . 263
15.7.2 Subprocess Conditions . 264
15.7.3 Subprocess Options . 264

15.8 TCP Sockets . 267
15.9 Miscellaneous OS Facilities . 269

16 Error System . 271
16.1 Condition Signalling . 272
16.2 Error Messages . 274
16.3 Condition Handling . 275
16.4 Restarts . 277

16.4.1 Establishing Restart Code . 278
16.4.2 Invoking Standard Restart Code . 279
16.4.3 Finding and Invoking General Restart Code 281
16.4.4 The Named Restart Abstraction . 282

16.5 Condition Instances . 282
16.5.1 Generating Operations on Conditions 283
16.5.2 Condition Abstraction . 284
16.5.3 Simple Operations on Condition Instances 285

16.6 Condition Types . 285
16.7 Condition-Type Taxonomy . 286

viii MIT/GNU Scheme 10.1.1

17 Graphics . 295
17.1 Opening and Closing of Graphics Devices . 295
17.2 Coordinates for Graphics . 296
17.3 Drawing Graphics . 296
17.4 Characteristics of Graphics Output . 298
17.5 Buffering of Graphics Output . 299
17.6 Clipping of Graphics Output . 300
17.7 Custom Graphics Operations . 300
17.8 Images . 300
17.9 X Graphics . 301

17.9.1 X Graphics Type . 302
17.9.2 Utilities for X Graphics . 302
17.9.3 Custom Operations on X Graphics Devices 303

17.10 Win32 Graphics . 306
17.10.1 Win32 Graphics Type . 306
17.10.2 Custom Operations for Win32 Graphics 307

18 Win32 Package Reference 309
18.1 Overview . 309
18.2 Foreign Function Interface . 309

18.2.1 Windows Types . 310
18.2.2 Windows Foreign Procedures . 312
18.2.3 Win32 API names and procedures . 314

18.3 Device Independent Bitmap Utilities . 315
18.3.1 DIB procedures . 316
18.3.2 Other parts of the DIB Utilities implementation 317

Appendix A GNU Free Documentation License . . 319
A.1 ADDENDUM: How to use this License for your documents . . . 325

Appendix B Binding Index . 327

Appendix C Concept Index . 345

1

Acknowledgements

While "a cast of thousands" may be an overstatement, it is certainly the case that this
document represents the work of many people. First and foremost, thanks go to the authors
of the Revised^4 Report on the Algorithmic Language Scheme, from which much of this
document is derived. Thanks also to BBN Advanced Computers Inc. for the use of parts of
their Butterfly Scheme Reference, and to Margaret O’Connell for translating it from BBN’s
text-formatting language to ours.

Special thanks to Richard Stallman, Bob Chassell, and Brian Fox, all of the Free Software
Foundation, for creating and maintaining the Texinfo formatting language in which this
document is written.

This report describes research done at the Artificial Intelligence Laboratory and the
Laboratory for Computer Science, both of the Massachusetts Institute of Technology. Sup-
port for this research is provided in part by the Advanced Research Projects Agency of the
Department of Defense and by the National Science Foundation.

3

1 Overview

This manual is a detailed description of the MIT/GNU Scheme runtime system. It is
intended to be a reference document for programmers. It does not describe how to run
Scheme or how to interact with it — that is the subject of the MIT/GNU Scheme User’s
Manual.

This chapter summarizes the semantics of Scheme, briefly describes the MIT/GNU
Scheme programming environment, and explains the syntactic and lexical conventions of
the language. Subsequent chapters describe special forms, numerous data abstractions, and
facilities for input and output.

Throughout this manual, we will make frequent references to standard Scheme, which
is the language defined by the document Revised^4 Report on the Algorithmic Language
Scheme, by William Clinger, Jonathan Rees, et al., or by ieee Std. 1178-1990, IEEE Stan-
dard for the Scheme Programming Language (in fact, several parts of this document are
copied from the Revised Report). MIT/GNU Scheme is an extension of standard Scheme.

These are the significant semantic characteristics of the Scheme language:

Variables are statically scoped
Scheme is a statically scoped programming language, which means that each
use of a variable is associated with a lexically apparent binding of that variable.
Algol is another statically scoped language.

Types are latent
Scheme has latent types as opposed tomanifest types, which means that Scheme
associates types with values (or objects) rather than with variables. Other
languages with latent types (also referred to as weakly typed or dynamically
typed languages) include APL, Snobol, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly typed or statically typed
languages) include Algol 60, Pascal, and C.

Objects have unlimited extent
All objects created during a Scheme computation, including procedures and
continuations, have unlimited extent; no Scheme object is ever destroyed. The
system doesn’t run out of memory because the garbage collector reclaims the
storage occupied by an object when the object cannot possibly be needed by
a future computation. Other languages in which most objects have unlimited
extent include APL and other Lisp dialects.

Proper tail recursion
Scheme is properly tail-recursive, which means that iterative computation can
occur in constant space, even if the iterative computation is described by a syn-
tactically recursive procedure. With a tail-recursive implementation, you can
express iteration using the ordinary procedure-call mechanics; special iteration
expressions are provided only for syntactic convenience.

Procedures are objects
Scheme procedures are objects, which means that you can create them dy-
namically, store them in data structures, return them as the results of other
procedures, and so on. Other languages with such procedure objects include
Common Lisp and ML.

4 MIT/GNU Scheme 10.1.1

Continuations are explicit
In most other languages, continuations operate behind the scenes. In Scheme,
continuations are objects; you can use continuations for implementing a variety
of advanced control constructs, including non-local exits, backtracking, and
coroutines.

Arguments are passed by value
Arguments to Scheme procedures are passed by value, which means that Scheme
evaluates the argument expressions before the procedure gains control, whether
or not the procedure needs the result of the evaluations. ML, C, and APL
are three other languages that pass arguments by value. In languages such as
SASL and Algol 60, argument expressions are not evaluated unless the values
are needed by the procedure.

Scheme uses a parenthesized-list Polish notation to describe programs and (other) data.
The syntax of Scheme, like that of most Lisp dialects, provides for great expressive power,
largely due to its simplicity. An important consequence of this simplicity is the susceptibility
of Scheme programs and data to uniform treatment by other Scheme programs. As with
other Lisp dialects, the read primitive parses its input; that is, it performs syntactic as well
as lexical decomposition of what it reads.

1.1 Notational Conventions

This section details the notational conventions used throughout the rest of this document.

1.1.1 Errors

When this manual uses the phrase “an error will be signalled,” it means that Scheme will
call error, which normally halts execution of the program and prints an error message.

When this manual uses the phrase “it is an error,” it means that the specified action is
not valid in Scheme, but the system may or may not signal the error. When this manual
says that something “must be,” it means that violating the requirement is an error.

1.1.2 Examples

This manual gives many examples showing the evaluation of expressions. The examples
have a common format that shows the expression being evaluated on the left hand side, an
“arrow” in the middle, and the value of the expression written on the right. For example:

(+ 1 2) ⇒ 3

Sometimes the arrow and value will be moved under the expression, due to lack of space.
Occasionally we will not care what the value is, in which case both the arrow and the value
are omitted.

If an example shows an evaluation that results in an error, an error message is shown,
prefaced by ‘ error ’:

(+ 1 ’foo) error Illegal datum

An example that shows printed output marks it with ‘ a ’:
(begin (write ’foo) ’bar)

a foo

⇒ bar

Chapter 1: Overview 5

When this manual indicates that the value returned by some expression is unspecified,
it means that the expression will evaluate to some object without signalling an error, but
that programs should not depend on the value in any way.

1.1.3 Entry Format

Each description of an MIT/GNU Scheme variable, special form, or procedure begins with
one or more header lines in this format:

[category]template
where category specifies the kind of item (“variable”, “special form”, or “procedure”). The
form of template is interpreted depending on category.

Variable Template consists of the variable’s name.

Parameter Template consists of the parameter’s name. See Section 2.3 [Dynamic Binding],
page 18, and Section 10.3 [Parameters], page 139, for more information.

Special Form
Template starts with the syntactic keyword of the special form, followed by a
description of the special form’s syntax. The description is written using the
following conventions.

Named components are italicized in the printed manual, and uppercase in the
Info file. “Noise” keywords, such as the else keyword in the cond special form,
are set in a fixed width font in the printed manual; in the Info file they are not
distinguished. Parentheses indicate themselves.

A horizontal ellipsis (. . .) is describes repeated components. Specifically,

thing . . .

indicates zero or more occurrences of thing, while

thing thing . . .

indicates one or more occurrences of thing.

Brackets, [], enclose optional components.

Several special forms (e.g. lambda) have an internal component consisting of a
series of expressions; usually these expressions are evaluated sequentially un-
der conditions that are specified in the description of the special form. This
sequence of expressions is commonly referred to as the body of the special form.

Procedure Template starts with the name of the variable to which the procedure is bound,
followed by a description of the procedure’s arguments. The arguments are
described using “lambda list” notation (see Section 2.1 [Lambda Expressions],
page 15), except that brackets are used to denote optional arguments, and
ellipses are used to denote “rest” arguments.

The names of the procedure’s arguments are italicized in the printed manual,
and uppercase in the Info file.

When an argument names a Scheme data type, it indicates that the argument
must be that type of data object. For example,

6 MIT/GNU Scheme 10.1.1

[procedure]cdr pair
indicates that the standard Scheme procedure cdr takes one argument, which
must be a pair.

Many procedures signal an error when an argument is of the wrong type; usually
this error is a condition of type condition-type:wrong-type-argument.

In addition to the standard data-type names (pair, list, boolean, string, etc.),
the following names as arguments also imply type restrictions:

• object: any object

• thunk: a procedure of no arguments

• x, y : real numbers

• q, n: integers

• k: an exact non-negative integer

Some examples:

[procedure]list object . . .
indicates that the standard Scheme procedure list takes zero or more arguments, each of
which may be any Scheme object.

[procedure]write-char char [output-port]
indicates that the standard Scheme procedure write-char must be called with a character,
char, and may also be called with a character and an output port.

1.2 Scheme Concepts

1.2.1 Variable Bindings

Any identifier that is not a syntactic keyword may be used as a variable (see Section 1.3.3
[Identifiers], page 10). A variable may name a location where a value can be stored. A
variable that does so is said to be bound to the location. The value stored in the location
to which a variable is bound is called the variable’s value. (The variable is sometimes said
to name the value or to be bound to the value.)

A variable may be bound but still not have a value; such a variable is said to be unas-
signed. Referencing an unassigned variable is an error. When this error is signalled, it is
a condition of type condition-type:unassigned-variable; sometimes the compiler does
not generate code to signal the error. Unassigned variables are useful only in combination
with side effects (see Section 2.5 [Assignments], page 22).

1.2.2 Environment Concepts

An environment is a set of variable bindings. If an environment has no binding for a variable,
that variable is said to be unbound in that environment. Referencing an unbound variable
signals a condition of type condition-type:unbound-variable.

A new environment can be created by extending an existing environment with a set of
new bindings. Note that “extending an environment” does not modify the environment;
rather, it creates a new environment that contains the new bindings and the old ones. The
new bindings shadow the old ones; that is, if an environment that contains a binding for x

Chapter 1: Overview 7

is extended with a new binding for x, then only the new binding is seen when x is looked
up in the extended environment. Sometimes we say that the original environment is the
parent of the new one, or that the new environment is a child of the old one, or that the
new environment inherits the bindings in the old one.

Procedure calls extend an environment, as do let, let*, letrec, and do expressions.
Internal definitions (see Section 2.4.2 [Internal Definitions], page 22) also extend an envi-
ronment. (Actually, all the constructs that extend environments can be expressed in terms
of procedure calls, so there is really just one fundamental mechanism for environment ex-
tension.) A top-level definition (see Section 2.4.1 [Top-Level Definitions], page 21) may add
a binding to an existing environment.

1.2.3 Initial and Current Environments

MIT/GNU Scheme provides an initial environment that contains all of the variable bind-
ings described in this manual. Most environments are ultimately extensions of this initial
environment. In Scheme, the environment in which your programs execute is actually a
child (extension) of the environment containing the system’s bindings. Thus, system names
are visible to your programs, but your names do not interfere with system programs.

The environment in effect at some point in a program is called the current environment
at that point. In particular, every REP loop has a current environment. (REP stands for
“read-eval-print”; the REP loop is the Scheme program that reads your input, evaluates it,
and prints the result.) The environment of the top-level REP loop (the one you are in when
Scheme starts up) starts as user-initial-environment, although it can be changed by
the ge procedure. When a new REP loop is created, its environment is determined by the
program that creates it.

1.2.4 Static Scoping

Scheme is a statically scoped language with block structure. In this respect, it is like Algol
and Pascal, and unlike most other dialects of Lisp except for Common Lisp.

The fact that Scheme is statically scoped (rather than dynamically bound) means that
the environment that is extended (and becomes current) when a procedure is called is the
environment in which the procedure was created (i.e. in which the procedure’s defining
lambda expression was evaluated), not the environment in which the procedure is called.
Because all the other Scheme binding expressions can be expressed in terms of procedures,
this determines how all bindings behave.

Consider the following definitions, made at the top-level REP loop (in the initial envi-
ronment):

(define x 1)

(define (f x) (g 2))

(define (g y) (+ x y))

(f 5) ⇒ 3 ; not 7

Here f and g are bound to procedures created in the initial environment. Because Scheme
is statically scoped, the call to g from f extends the initial environment (the one in which
g was created) with a binding of y to 2. In this extended environment, y is 2 and x is 1.
(In a dynamically bound Lisp, the call to g would extend the environment in effect during
the call to f, in which x is bound to 5 by the call to f, and the answer would be 7.)

8 MIT/GNU Scheme 10.1.1

Note that with static scoping, you can tell what binding a variable reference refers
to just from looking at the text of the program; the referenced binding cannot depend
on how the program is used. That is, the nesting of environments (their parent-child
relationship) corresponds to the nesting of binding expressions in program text. (Because
of this connection to the text of the program, static scoping is also called lexical scoping.)
For each place where a variable is bound in a program there is a corresponding region
of the program text within which the binding is effective. For example, the region of a
binding established by a lambda expression is the entire body of the lambda expression.
The documentation of each binding expression explains what the region of the bindings it
makes is. A use of a variable (that is, a reference to or assignment of a variable) refers to
the innermost binding of that variable whose region contains the variable use. If there is no
such region, the use refers to the binding of the variable in the global environment (which
is an ancestor of all other environments, and can be thought of as a region in which all your
programs are contained).

1.2.5 True and False

In Scheme, the boolean values true and false are denoted by #t and #f. However, any
Scheme value can be treated as a boolean for the purpose of a conditional test. This
manual uses the word true to refer to any Scheme value that counts as true, and the word
false to refer to any Scheme value that counts as false. In conditional tests, all values count
as true except for #f, which counts as false (see Section 2.7 [Conditionals], page 24).

1.2.6 External Representations

An important concept in Scheme is that of the external representation of an object as
a sequence of characters. For example, an external representation of the integer 28 is the
sequence of characters ‘28’, and an external representation of a list consisting of the integers
8 and 13 is the sequence of characters ‘(8 13)’.

The external representation of an object is not necessarily unique. The integer 28 also
has representations ‘#e28.000’ and ‘#x1c’, and the list in the previous paragraph also has
the representations ‘(08 13)’ and ‘(8 . (13 . ()))’.

Many objects have standard external representations, but some, such as procedures
and circular data structures, do not have standard representations (although particular
implementations may define representations for them).

An external representation may be written in a program to obtain the corresponding
object (see Section 2.6 [Quoting], page 23).

External representations can also be used for input and output. The procedure read

parses external representations, and the procedure write generates them. Together, they
provide an elegant and powerful input/output facility.

Note that the sequence of characters ‘(+ 2 6)’ is not an external representation of the
integer 8, even though it is an expression that evaluates to the integer 8; rather, it is an
external representation of a three-element list, the elements of which are the symbol + and
the integers 2 and 6. Scheme’s syntax has the property that any sequence of characters
that is an expression is also the external representation of some object. This can lead to
confusion, since it may not be obvious out of context whether a given sequence of characters
is intended to denote data or program, but it is also a source of power, since it facilitates

Chapter 1: Overview 9

writing programs such as interpreters and compilers that treat programs as data or data as
programs.

1.2.7 Disjointness of Types

Every object satisfies at most one of the following predicates (but see Section 1.2.5 [True
and False], page 8, for an exception):

bit-string? environment? port? symbol?

boolean? null? procedure? vector?

cell? number? promise? weak-pair?

char? pair? string?

condition?

1.2.8 Storage Model

This section describes a model that can be used to understand Scheme’s use of storage.

Variables and objects such as pairs, vectors, and strings implicitly denote locations or
sequences of locations. A string, for example, denotes as many locations as there are
characters in the string. (These locations need not correspond to a full machine word.) A
new value may be stored into one of these locations using the string-set! procedure, but
the string continues to denote the same locations as before.

An object fetched from a location, by a variable reference or by a procedure such as car,
vector-ref, or string-ref, is equivalent in the sense of eqv? to the object last stored in
the location before the fetch.

Every location is marked to show whether it is in use. No variable or object ever refers
to a location that is not in use. Whenever this document speaks of storage being allocated
for a variable or object, what is meant is that an appropriate number of locations are chosen
from the set of locations that are not in use, and the chosen locations are marked to indicate
that they are now in use before the variable or object is made to denote them.

In many systems it is desirable for constants (i.e. the values of literal expressions) to
reside in read-only memory. To express this, it is convenient to imagine that every object
that denotes locations is associated with a flag telling whether that object is mutable or
immutable. The constants and the strings returned by symbol->string are then the im-
mutable objects, while all objects created by other procedures are mutable. It is an error to
attempt to store a new value into a location that is denoted by an immutable object. Note
that the MIT/GNU Scheme compiler takes advantage of this property to share constants,
but that these constants are not immutable. Instead, two constants that are equal? may
be eq? in compiled code.

1.3 Lexical Conventions

This section describes Scheme’s lexical conventions.

1.3.1 Whitespace

Whitespace characters are spaces, newlines, tabs, and page breaks. Whitespace is used to
improve the readability of your programs and to separate tokens from each other, when nec-
essary. (A token is an indivisible lexical unit such as an identifier or number.) Whitespace

10 MIT/GNU Scheme 10.1.1

is otherwise insignificant. Whitespace may occur between any two tokens, but not within a
token. Whitespace may also occur inside a string, where it is significant.

1.3.2 Delimiters

All whitespace characters are delimiters. In addition, the following characters act as delim-
iters:

() ; " ’ ‘ |

Finally, these next characters act as delimiters, despite the fact that Scheme does not
define any special meaning for them:

[] { }

For example, if the value of the variable name is "max":

(list"Hi"name(+ 1 2)) ⇒ ("Hi" "max" 3)

1.3.3 Identifiers

An identifier is a sequence of one or more non-delimiter characters. Identifiers are used in
several ways in Scheme programs:

• An identifier can be used as a variable or as a syntactic keyword.

• When an identifier appears as a literal or within a literal, it denotes a symbol.

Scheme accepts most of the identifiers that other programming languages allow.
MIT/GNU Scheme allows all of the identifiers that standard Scheme does, plus many
more.

MIT/GNU Scheme defines a potential identifier to be a sequence of non-delimiter char-
acters that does not begin with either of the characters ‘#’ or ‘,’. Any such sequence of
characters that is not a syntactically valid number (see Chapter 4 [Numbers], page 61) is
considered to be a valid identifier. Note that, although it is legal for ‘#’ and ‘,’ to appear
in an identifier (other than in the first character position), it is poor programming practice.

Here are some examples of identifiers:

lambda q

list->vector soup

+ V17a

<=? a34kTMNs

the-word-recursion-has-many-meanings

1.3.4 Uppercase and Lowercase

Scheme doesn’t distinguish uppercase and lowercase forms of a letter except within character
and string constants; in other words, Scheme is case-insensitive. For example, ‘Foo’ is the
same identifier as ‘FOO’, and ‘#x1AB’ is the same number as ‘#X1ab’. But ‘#\a’ and ‘#\A’
are different characters.

1.3.5 Naming Conventions

A predicate is a procedure that always returns a boolean value (#t or #f). By convention,
predicates usually have names that end in ‘?’.

A mutation procedure is a procedure that alters a data structure. By convention, mu-
tation procedures usually have names that end in ‘!’.

Chapter 1: Overview 11

1.3.6 Comments

The beginning of a comment is indicated with a semicolon (;). Scheme ignores everything
on a line in which a semicolon appears, from the semicolon until the end of the line. The
entire comment, including the newline character that terminates it, is treated as whitespace.

An alternative form of comment (sometimes called an extended comment) begins with
the characters ‘#|’ and ends with the characters ‘|#’. This alternative form is an MIT/GNU
Scheme extension. As with ordinary comments, all of the characters in an extended com-
ment, including the leading ‘#|’ and trailing ‘|#’, are treated as whitespace. Comments
of this form may extend over multiple lines, and additionally may be nested (unlike the
comments of the programming language C, which have a similar syntax).

;;; This is a comment about the FACT procedure. Scheme

;;; ignores all of this comment. The FACT procedure computes

;;; the factorial of a non-negative integer.

#|

This is an extended comment.

Such comments are useful for commenting out code fragments.

|#

(define fact

(lambda (n)

(if (= n 0) ;This is another comment:

1 ;Base case: return 1

(* n (fact (- n 1))))))

1.3.7 Additional Notations

The following list describes additional notations used in Scheme. See Chapter 4 [Numbers],
page 61, for a description of the notations used for numbers.

+ - . The plus sign, minus sign, and period are used in numbers, and may also occur
in an identifier. A delimited period (not occurring within a number or identifier)
is used in the notation for pairs and to indicate a “rest” parameter in a formal
parameter list (see Section 2.1 [Lambda Expressions], page 15).

() Parentheses are used for grouping and to notate lists (see Chapter 7 [Lists],
page 111).

" The double quote delimits strings (see Chapter 6 [Strings], page 89).

\ The backslash is used in the syntax for character constants (see Chapter 5
[Characters], page 81) and as an escape character within string constants (see
Chapter 6 [Strings], page 89).

; The semicolon starts a comment.

’ The single quote indicates literal data; it suppresses evaluation (see Section 2.6
[Quoting], page 23).

‘ The backquote indicates almost-constant data (see Section 2.6 [Quoting],
page 23).

12 MIT/GNU Scheme 10.1.1

, The comma is used in conjunction with the backquote (see Section 2.6 [Quoting],
page 23).

,@ A comma followed by an at-sign is used in conjunction with the backquote (see
Section 2.6 [Quoting], page 23).

The sharp (or pound) sign has different uses, depending on the character that
immediately follows it:

#t #f These character sequences denote the boolean constants (see Section 10.1
[Booleans], page 135).

#\ This character sequence introduces a character constant (see Chapter 5 [Char-
acters], page 81).

#(This character sequence introduces a vector constant (see Chapter 8 [Vectors],
page 127). A close parenthesis, ‘)’, terminates a vector constant.

#e #i #b #o #d #l #s #x

These character sequences are used in the notation for numbers (see Chapter 4
[Numbers], page 61).

#| This character sequence introduces an extended comment. The comment is
terminated by the sequence ‘|#’. This notation is an MIT/GNU Scheme exten-
sion.

#! This character sequence is used to denote a small set of named constants. Cur-
rently there are only two of these, #!optional and #!rest, both of which are
used in the lambda special form to mark certain parameters as being “optional”
or “rest” parameters. This notation is an MIT/GNU Scheme extension.

#* This character sequence introduces a bit string (see Chapter 9 [Bit Strings],
page 131). This notation is an MIT/GNU Scheme extension.

#[This character sequence is used to denote objects that do not have a readable
external representation (see Section 14.10 [Custom Output], page 208). A close
bracket, ‘]’, terminates the object’s notation. This notation is an MIT/GNU
Scheme extension.

#@ This character sequence is a convenient shorthand used to refer to objects by
their hash number (see Section 14.10 [Custom Output], page 208). This nota-
tion is an MIT/GNU Scheme extension.

#=

These character sequences introduce a notation used to show circular structures
in printed output, or to denote them in input. The notation works much like
that in Common Lisp, and is an MIT/GNU Scheme extension.

1.4 Expressions

A Scheme expression is a construct that returns a value. An expression may be a literal, a
variable reference, a special form, or a procedure call.

Chapter 1: Overview 13

1.4.1 Literal Expressions

Literal constants may be written by using an external representation of the data. In general,
the external representation must be quoted (see Section 2.6 [Quoting], page 23); but some
external representations can be used without quotation.

"abc" ⇒ "abc"

145932 ⇒ 145932

#t ⇒ #t

#\a ⇒ #\a

The external representation of numeric constants, string constants, character constants,
and boolean constants evaluate to the constants themselves. Symbols, pairs, lists, and
vectors require quoting.

1.4.2 Variable References

An expression consisting of an identifier (see Section 1.3.3 [Identifiers], page 10) is a variable
reference; the identifier is the name of the variable being referenced. The value of the
variable reference is the value stored in the location to which the variable is bound. An
error is signalled if the referenced variable is unbound or unassigned.

(define x 28)

x ⇒ 28

1.4.3 Special Form Syntax

(keyword component ...)

A parenthesized expression that starts with a syntactic keyword is a special form. Each
special form has its own syntax, which is described later in the manual.

Note that syntactic keywords and variable bindings share the same namespace. A local
variable binding may shadow a syntactic keyword, and a local syntactic-keyword definition
may shadow a variable binding.

The following list contains all of the syntactic keywords that are defined when MIT/GNU
Scheme is initialized:

access and begin
case cond cons-stream
declare define
define-integrable define-structure define-syntax
delay do er-macro-transformer
fluid-let if lambda
let let* let*-syntax
let-syntax letrec letrec-syntax
local-declare named-lambda non-hygienic-macro-

transformer

or quasiquote quote
rsc-macro-transformer sc-macro-transformer set!
syntax-rules the-environment

1.4.4 Procedure Call Syntax

(operator operand ...)

14 MIT/GNU Scheme 10.1.1

A procedure call is written by simply enclosing in parentheses expressions for the proce-
dure to be called (the operator) and the arguments to be passed to it (the operands). The
operator and operand expressions are evaluated and the resulting procedure is passed the
resulting arguments. See Section 2.1 [Lambda Expressions], page 15, for a more complete
description of this.

Another name for the procedure call expression is combination. This word is more
specific in that it always refers to the expression; “procedure call” sometimes refers to the
process of calling a procedure.

Unlike some other dialects of Lisp, Scheme always evaluates the operator expression
and the operand expressions with the same evaluation rules, and the order of evaluation is
unspecified.

(+ 3 4) ⇒ 7

((if #f = *) 3 4) ⇒ 12

A number of procedures are available as the values of variables in the initial environment;
for example, the addition and multiplication procedures in the above examples are the values
of the variables + and *. New procedures are created by evaluating lambda expressions.

If the operator is a syntactic keyword, then the expression is not treated as a procedure
call: it is a special form.

15

2 Special Forms

A special form is an expression that follows special evaluation rules. This chapter describes
the basic Scheme special forms.

2.1 Lambda Expressions

[special form]lambda formals expression expression . . .
A lambda expression evaluates to a procedure. The environment in effect when the
lambda expression is evaluated is remembered as part of the procedure; it is called
the closing environment. When the procedure is later called with some arguments,
the closing environment is extended by binding the variables in the formal parameter
list to fresh locations, and the locations are filled with the arguments according to
rules about to be given. The new environment created by this process is referred to
as the invocation environment.

Once the invocation environment has been constructed, the expressions in the body
of the lambda expression are evaluated sequentially in it. This means that the region
of the variables bound by the lambda expression is all of the expressions in the body.
The result of evaluating the last expression in the body is returned as the result of
the procedure call.

Formals, the formal parameter list, is often referred to as a lambda list.

The process of matching up formal parameters with arguments is somewhat involved.
There are three types of parameters, and the matching treats each in sequence:

Required All of the required parameters are matched against the arguments first.
If there are fewer arguments than required parameters, an error of type
condition-type:wrong-number-of-arguments is signalled; this error is
also signalled if there are more arguments than required parameters and
there are no further parameters.

Optional Once the required parameters have all been matched, the optional param-
eters are matched against the remaining arguments. If there are fewer ar-
guments than optional parameters, the unmatched parameters are bound
to special objects called default objects. If there are more arguments
than optional parameters, and there are no further parameters, an error
of type condition-type:wrong-number-of-arguments is signalled.

The predicate default-object?, which is true only of default objects,
can be used to determine which optional parameters were supplied, and
which were defaulted.

Rest Finally, if there is a rest parameter (there can only be one), any remaining
arguments are made into a list, and the list is bound to the rest parameter.
(If there are no remaining arguments, the rest parameter is bound to the
empty list.)

In Scheme, unlike some other Lisp implementations, the list to which a
rest parameter is bound is always freshly allocated. It has infinite extent
and may be modified without affecting the procedure’s caller.

16 MIT/GNU Scheme 10.1.1

Specially recognized keywords divide the formals parameters into these three classes.
The keywords used here are ‘#!optional’, ‘.’, and ‘#!rest’. Note that only ‘.’ is
defined by standard Scheme — the other keywords are MIT/GNU Scheme extensions.
‘#!rest’ has the same meaning as ‘.’ in formals.

The use of these keywords is best explained by means of examples. The following
are typical lambda lists, followed by descriptions of which parameters are required,
optional, and rest. We will use ‘#!rest’ in these examples, but anywhere it appears
‘.’ could be used instead.

(a b c) a, b, and c are all required. The procedure must be passed exactly three
arguments.

(a b #!optional c)

a and b are required, c is optional. The procedure may be passed either
two or three arguments.

(#!optional a b c)

a, b, and c are all optional. The procedure may be passed any number
of arguments between zero and three, inclusive.

a

(#!rest a)

These two examples are equivalent. a is a rest parameter. The procedure
may be passed any number of arguments. Note: this is the only case in
which ‘.’ cannot be used in place of ‘#!rest’.

(a b #!optional c d #!rest e)

a and b are required, c and d are optional, and e is rest. The procedure
may be passed two or more arguments.

Some examples of lambda expressions:

(lambda (x) (+ x x)) ⇒ #[compound-procedure 53]

((lambda (x) (+ x x)) 4) ⇒ 8

(define reverse-subtract

(lambda (x y)

(- y x)))

(reverse-subtract 7 10) ⇒ 3

(define foo

(let ((x 4))

(lambda (y) (+ x y))))

(foo 6) ⇒ 10

[special form]named-lambda formals expression expression . . .
The named-lambda special form is similar to lambda, except that the first “required
parameter” in formals is not a parameter but the name of the resulting procedure; thus
formals must have at least one required parameter. This name has no semantic mean-
ing, but is included in the external representation of the procedure, making it useful

Chapter 2: Special Forms 17

for debugging. In MIT/GNU Scheme, lambda is implemented as named-lambda, with
a special name that means “unnamed”.

(named-lambda (f x) (+ x x)) ⇒ #[compound-procedure 53 f]

((named-lambda (f x) (+ x x)) 4) ⇒ 8

2.2 Lexical Binding

The three binding constructs let, let*, and letrec, give Scheme block structure. The
syntax of the three constructs is identical, but they differ in the regions they establish for
their variable bindings. In a let expression, the initial values are computed before any
of the variables become bound. In a let* expression, the evaluations and bindings are
sequentially interleaved. And in a letrec expression, all the bindings are in effect while
the initial values are being computed (thus allowing mutually recursive definitions).

[special form]let ((variable init) . . .) expression expression . . .
The inits are evaluated in the current environment (in some unspecified order), the
variables are bound to fresh locations holding the results, the expressions are evalu-
ated sequentially in the extended environment, and the value of the last expression is
returned. Each binding of a variable has the expressions as its region.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

Note that the following are equivalent:

(let ((variable init) ...) expression expression ...)

((lambda (variable ...) expression expression ...) init ...)

Some examples:

(let ((x 2) (y 3))

(* x y)) ⇒ 6

(let ((x 2) (y 3))

(let ((foo (lambda (z) (+ x y z)))

(x 7))

(foo 4))) ⇒ 9

See Section 2.9 [Iteration], page 28, for information on “named let”.

[special form]let* ((variable init) . . .) expression expression . . .
let* is similar to let, but the bindings are performed sequentially from left to right,
and the region of a binding is that part of the let* expression to the right of the
binding. Thus the second binding is done in an environment in which the first binding
is visible, and so on.

Note that the following are equivalent:

(let* ((variable1 init1)

(variable2 init2)

...

(variableN initN))

expression

expression ...)

18 MIT/GNU Scheme 10.1.1

(let ((variable1 init1))

(let ((variable2 init2))

...

(let ((variableN initN))

expression

expression ...)

...))

An example:

(let ((x 2) (y 3))

(let* ((x 7)

(z (+ x y)))

(* z x))) ⇒ 70

[special form]letrec ((variable init) . . .) expression expression . . .
The variables are bound to fresh locations holding unassigned values, the inits are
evaluated in the extended environment (in some unspecified order), each variable is
assigned to the result of the corresponding init, the expressions are evaluated sequen-
tially in the extended environment, and the value of the last expression is returned.
Each binding of a variable has the entire letrec expression as its region, making it
possible to define mutually recursive procedures.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

(letrec ((even?

(lambda (n)

(if (zero? n)

#t

(odd? (- n 1)))))

(odd?

(lambda (n)

(if (zero? n)

#f

(even? (- n 1))))))

(even? 88)) ⇒ #t

One restriction on letrec is very important: it shall be possible to evaluated each
init without assigning or referring to the value of any variable. If this restriction
is violated, then it is an error. The restriction is necessary because Scheme passes
arguments by value rather than by name. In the most common uses of letrec, all the
inits are lambda or delay expressions and the restriction is satisfied automatically.

2.3 Dynamic Binding

[special form]parameterize ((parameter value) . . .) expression expression . . .
Note that both parameter and value are expressions. It is an error if the value of any
parameter expression is not a parameter object.

Chapter 2: Special Forms 19

A parameterize expression is used to change the values of specified parameter objects
during the evaluation of the body expressions.

The parameter and value expressions are evaluated in an unspecified order. The body
is evaluated in a dynamic environment in which each parameter is bound to the con-
verted value—the result of passing value to the conversion procedure specified when
the parameter was created. Then the previous value of parameter is restored without
passing it to the conversion procedure. The value of the parameterize expression is
the value of the last body expression.

The parameterize special form is standardized by SRFI 39 and by R7RS.

Parameter objects can be used to specify configurable settings for a computation without
the need to pass the value to every procedure in the call chain explicitly.

(define radix

(make-parameter

10

(lambda (x)

(if (and (exact-integer? x) (<= 2 x 16))

x

(error "invalid radix")))))

(define (f n) (number->string n (radix)))

(f 12) ⇒ "12"

(parameterize ((radix 2))

(f 12)) ⇒ "1100"

(f 12) ⇒ "12"

(radix 16) error Wrong number of arguments

(parameterize ((radix 0))

(f 12)) error invalid radix

A dynamic binding changes the value of a parameter (see Section 10.3 [Parameters],
page 139) object temporarily, for a dynamic extent. The set of all dynamic bindings at a
given time is called the dynamic environment. The new values are only accessible to the
thread that constructed the dynamic environment, and any threads created within that
environment.

The extent of a dynamic binding is defined to be the time period during which calling
the parameter returns the new value. Normally this time period begins when the body is
entered and ends when it is exited, a contiguous time period. However Scheme has first-class
continuations by which it is possible to leave the body and reenter it many times. In this
situation, the extent is non-contiguous.

When the body is exited by invoking a continuation, the current dynamic environment
is unwound until it can be re-wound to the environment captured by the continuation.
When the continuation returns, the process is reversed, restoring the original dynamic
environment.

The following example shows the interaction between dynamic binding and continu-
ations. Side effects to the binding that occur both inside and outside of the body are
preserved, even if continuations are used to jump in and out of the body repeatedly.

http://srfi.schemers.org/srfi-39/srfi-39.html
http://r7rs.org/

20 MIT/GNU Scheme 10.1.1

(define (complicated-dynamic-parameter)

(let ((variable (make-settable-parameter 1))

(inside-continuation))

(write-line (variable))

(call-with-current-continuation

(lambda (outside-continuation)

(parameterize ((variable 2))

(write-line (variable))

(variable 3)

(call-with-current-continuation

(lambda (k)

(set! inside-continuation k)

(outside-continuation #t)))

(write-line (variable))

(set! inside-continuation #f))))

(write-line (variable))

(if inside-continuation

(begin

(variable 4)

(inside-continuation #f)))))

Evaluating ‘(complicated-dynamic-binding)’ writes the following on the console:

1

2

1

3

4

Commentary: the first two values written are the initial binding of variable and its new
binding inside parameterize’s body. Immediately after they are written, the binding vis-
ible in the body is set to ‘3’, and outside-continuation is invoked, exiting the body.
At this point, ‘1’ is written, demonstrating that the original binding of variable is still
visible outside the body. Then we set variable to ‘4’ and reenter the body by invoking
inside-continuation. At this point, ‘3’ is written, indicating that the binding modified
in the body is still the binding visible in the body. Finally, we exit the body normally, and
write ‘4’, demonstrating that the binding modified outside of the body was also preserved.

2.3.1 Fluid-Let

The fluid-let special form can change the value of any variable for a dynamic extent,
but it is difficult to implement in a multi-processing (SMP) world. It and the cell object
type (see [Cells], page 140) are now deprecated. They are still available and functional in a
uni-processing (non-SMP) world, but will signal an error when used in an SMP world. The
parameterize special form (see [parameterize], page 18) should be used instead.

[special form]fluid-let ((variable init) . . .) expression expression . . .
The inits are evaluated in the current environment (in some unspecified order), the
current values of the variables are saved, the results are assigned to the variables, the
expressions are evaluated sequentially in the current environment, the variables are
restored to their original values, and the value of the last expression is returned.

Chapter 2: Special Forms 21

The syntax of this special form is similar to that of let, but fluid-let temporarily
rebinds existing variables. Unlike let, fluid-let creates no new bindings; instead
it assigns the value of each init to the binding (determined by the rules of lexical
scoping) of its corresponding variable.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are temporarily unassigned.

An error of type condition-type:unbound-variable is signalled if any of the vari-
ables are unbound. However, because fluid-let operates by means of side effects,
it is valid for any variable to be unassigned when the form is entered.

2.4 Definitions

[special form]define variable [expression]
[special form]define formals expression expression . . .

Definitions are valid in some but not all contexts where expressions are allowed.
Definitions may only occur at the top level of a program and at the beginning of
a lambda body (that is, the body of a lambda, let, let*, letrec, fluid-let, or
“procedure define” expression). A definition that occurs at the top level of a program
is called a top-level definition, and a definition that occurs at the beginning of a body
is called an internal definition.

In the second form of define (called “procedure define”), the component formals is
identical to the component of the same name in a named-lambda expression. In fact,
these two expressions are equivalent:

(define (name1 name2 ...)

expression

expression ...)

(define name1

(named-lambda (name1 name2 ...)

expression

expression ...))

2.4.1 Top-Level Definitions

A top-level definition,

(define variable expression)

has essentially the same effect as this assignment expression, if variable is bound:

(set! variable expression)

If variable is not bound, however, define binds variable to a new location in the current
environment before performing the assignment (it is an error to perform a set! on an
unbound variable). If you omit expression, the variable becomes unassigned; an attempt to
reference such a variable is an error.

22 MIT/GNU Scheme 10.1.1

(define add3

(lambda (x) (+ x 3))) ⇒ unspecified
(add3 3) ⇒ 6

(define first car) ⇒ unspecified
(first ’(1 2)) ⇒ 1

(define bar) ⇒ unspecified
bar error Unassigned variable

2.4.2 Internal Definitions

An internal definition is a definition that occurs at the beginning of a body (that is, the
body of a lambda, let, let*, letrec, fluid-let, or “procedure define” expression),
rather than at the top level of a program. The variable defined by an internal definition is
local to the body. That is, variable is bound rather than assigned, and the region of the
binding is the entire body. For example,

(let ((x 5))

(define foo (lambda (y) (bar x y)))

(define bar (lambda (a b) (+ (* a b) a)))

(foo (+ x 3))) ⇒ 45

A body containing internal definitions can always be converted into a completely equiva-
lent letrec expression. For example, the let expression in the above example is equivalent
to

(let ((x 5))

(letrec ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))

(foo (+ x 3))))

2.5 Assignments

[special form]set! variable [expression]
If expression is specified, evaluates expression and stores the resulting value in the
location to which variable is bound. If expression is omitted, variable is altered to be
unassigned; a subsequent reference to such a variable is an error. In either case, the
value of the set! expression is unspecified.

Variable must be bound either in some region enclosing the set! expression, or at
the top level. However, variable is permitted to be unassigned when the set! form
is entered.

(define x 2) ⇒ unspecified
(+ x 1) ⇒ 3

(set! x 4) ⇒ unspecified
(+ x 1) ⇒ 5

Variable may be an access expression (see Chapter 13 [Environments], page 185).
This allows you to assign variables in an arbitrary environment. For example,

Chapter 2: Special Forms 23

(define x (let ((y 0)) (the-environment)))

(define y ’a)

y ⇒ a

(access y x) ⇒ 0

(set! (access y x) 1) ⇒ unspecified
y ⇒ a

(access y x) ⇒ 1

2.6 Quoting

This section describes the expressions that are used to modify or prevent the evaluation of
objects.

[special form]quote datum
(quote datum) evaluates to datum. Datum may be any external representation of a
Scheme object (see Section 1.2.6 [External Representations], page 8). Use quote to
include literal constants in Scheme code.

(quote a) ⇒ a

(quote #(a b c)) ⇒ #(a b c)

(quote (+ 1 2)) ⇒ (+ 1 2)

(quote datum) may be abbreviated as ’datum. The two notations are equivalent in
all respects.

’a ⇒ a

’#(a b c) ⇒ #(a b c)

’(+ 1 2) ⇒ (+ 1 2)

’(quote a) ⇒ (quote a)

’’a ⇒ (quote a)

Numeric constants, string constants, character constants, and boolean constants eval-
uate to themselves, so they don’t need to be quoted.

’"abc" ⇒ "abc"

"abc" ⇒ "abc"

’145932 ⇒ 145932

145932 ⇒ 145932

’#t ⇒ #t

#t ⇒ #t

’#\a ⇒ #\a

#\a ⇒ #\a

[special form]quasiquote template
“Backquote” or “quasiquote” expressions are useful for constructing a list or vector
structure when most but not all of the desired structure is known in advance. If no
commas appear within the template, the result of evaluating ‘template is equivalent
(in the sense of equal?) to the result of evaluating ’template. If a comma appears
within the template, however, the expression following the comma is evaluated (“un-
quoted”) and its result is inserted into the structure instead of the comma and the
expression. If a comma appears followed immediately by an at-sign (@), then the
following expression shall evaluate to a list; the opening and closing parentheses of

24 MIT/GNU Scheme 10.1.1

the list are then “stripped away” and the elements of the list are inserted in place of
the comma at-sign expression sequence.

‘(list ,(+ 1 2) 4) ⇒ (list 3 4)

(let ((name ’a)) ‘(list ,name ’,name)) ⇒ (list a ’a)

‘(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b) ⇒ (a 3 4 5 6 b)

‘((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))

⇒ ((foo 7) . cons)

‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)

⇒ #(10 5 2 4 3 8)

‘,(+ 2 3) ⇒ 5

Quasiquote forms may be nested. Substitutions are made only for unquoted compo-
nents appearing at the same nesting level as the outermost backquote. The nesting
level increases by one inside each successive quasiquotation, and decreases by one
inside each unquotation.

‘(a ‘(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

⇒ (a ‘(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 ’x)

(name2 ’y))

‘(a ‘(b ,,name1 ,’,name2 d) e))

⇒ (a ‘(b ,x ,’y d) e)

The notations ‘template and (quasiquote template) are identical in all respects.
,expression is identical to (unquote expression) and ,@expression is identical
to (unquote-splicing expression).

(quasiquote (list (unquote (+ 1 2)) 4))

⇒ (list 3 4)

’(quasiquote (list (unquote (+ 1 2)) 4))

⇒ ‘(list ,(+ 1 2) 4)

i.e., (quasiquote (list (unquote (+ 1 2)) 4))

Unpredictable behavior can result if any of the symbols quasiquote, unquote, or
unquote-splicing appear in a template in ways otherwise than as described above.

2.7 Conditionals

The behavior of the conditional expressions is determined by whether objects are true or
false. The conditional expressions count only #f as false. They count everything else,
including #t, pairs, symbols, numbers, strings, vectors, and procedures as true (but see
Section 1.2.5 [True and False], page 8).

Chapter 2: Special Forms 25

In the descriptions that follow, we say that an object has “a true value” or “is true”
when the conditional expressions treat it as true, and we say that an object has “a false
value” or “is false” when the conditional expressions treat it as false.

[special form]if predicate consequent [alternative]
Predicate, consequent, and alternative are expressions. An if expression is evaluated
as follows: first, predicate is evaluated. If it yields a true value, then consequent is
evaluated and its value is returned. Otherwise alternative is evaluated and its value
is returned. If predicate yields a false value and no alternative is specified, then the
result of the expression is unspecified.

An if expression evaluates either consequent or alternative, never both. Programs
should not depend on the value of an if expression that has no alternative.

(if (> 3 2) ’yes ’no) ⇒ yes

(if (> 2 3) ’yes ’no) ⇒ no

(if (> 3 2)

(- 3 2)

(+ 3 2)) ⇒ 1

[special form]cond clause clause . . .
Each clause has this form:

(predicate expression ...)

where predicate is any expression. The last clause may be an else clause, which has
the form:

(else expression expression ...)

A cond expression does the following:

1. Evaluates the predicate expressions of successive clauses in order, until one of
the predicates evaluates to a true value.

2. When a predicate evaluates to a true value, cond evaluates the expressions in
the associated clause in left to right order, and returns the result of evaluating
the last expression in the clause as the result of the entire cond expression.

If the selected clause contains only the predicate and no expressions, cond returns
the value of the predicate as the result.

3. If all predicates evaluate to false values, and there is no else clause, the result of
the conditional expression is unspecified; if there is an else clause, cond evaluates
its expressions (left to right) and returns the value of the last one.

(cond ((> 3 2) ’greater)

((< 3 2) ’less)) ⇒ greater

(cond ((> 3 3) ’greater)

((< 3 3) ’less)

(else ’equal)) ⇒ equal

Normally, programs should not depend on the value of a cond expression that has no
else clause. However, some Scheme programmers prefer to write cond expressions
in which at least one of the predicates is always true. In this style, the final clause is
equivalent to an else clause.

26 MIT/GNU Scheme 10.1.1

Scheme supports an alternative clause syntax:

(predicate => recipient)

where recipient is an expression. If predicate evaluates to a true value, then recipient
is evaluated. Its value must be a procedure of one argument; this procedure is then
invoked on the value of the predicate.

(cond ((assv ’b ’((a 1) (b 2))) => cadr)

(else #f)) ⇒ 2

[special form]case key clause clause . . .
Key may be any expression. Each clause has this form:

((object ...) expression expression ...)

No object is evaluated, and all the objects must be distinct. The last clause may be
an else clause, which has the form:

(else expression expression ...)

A case expression does the following:

1. Evaluates key and compares the result with each object.

2. If the result of evaluating key is equivalent (in the sense of eqv?; see Chapter 3
[Equivalence Predicates], page 55) to an object, case evaluates the expressions
in the corresponding clause from left to right and returns the result of evaluating
the last expression in the clause as the result of the case expression.

3. If the result of evaluating key is different from every object, and if there’s an
else clause, case evaluates its expressions and returns the result of the last one
as the result of the case expression. If there’s no else clause, case returns an
unspecified result. Programs should not depend on the value of a case expression
that has no else clause.

For example,

(case (* 2 3)

((2 3 5 7) ’prime)

((1 4 6 8 9) ’composite)) ⇒ composite

(case (car ’(c d))

((a) ’a)

((b) ’b)) ⇒ unspecified

(case (car ’(c d))

((a e i o u) ’vowel)

((w y) ’semivowel)

(else ’consonant)) ⇒ consonant

[special form]and expression . . .
The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a false value is returned. Any remaining expressions are not evalu-
ated. If all the expressions evaluate to true values, the value of the last expression is
returned. If there are no expressions then #t is returned.

Chapter 2: Special Forms 27

(and (= 2 2) (> 2 1)) ⇒ #t

(and (= 2 2) (< 2 1)) ⇒ #f

(and 1 2 ’c ’(f g)) ⇒ (f g)

(and) ⇒ #t

[special form]or expression . . .
The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a true value is returned. Any remaining expressions are not eval-
uated. If all expressions evaluate to false values, the value of the last expression is
returned. If there are no expressions then #f is returned.

(or (= 2 2) (> 2 1)) ⇒ #t

(or (= 2 2) (< 2 1)) ⇒ #t

(or #f #f #f) ⇒ #f

(or (memq ’b ’(a b c)) (/ 3 0)) ⇒ (b c)

2.8 Sequencing

The begin special form is used to evaluate expressions in a particular order.

[special form]begin expression expression . . .
The expressions are evaluated sequentially from left to right, and the value of the last
expression is returned. This expression type is used to sequence side effects such as
input and output.

(define x 0)

(begin (set! x 5)

(+ x 1)) ⇒ 6

(begin (display "4 plus 1 equals ")

(display (+ 4 1)))

a 4 plus 1 equals 5

⇒ unspecified

Often the use of begin is unnecessary, because many special forms already support
sequences of expressions (that is, they have an implicit begin). Some of these special
forms are:

case

cond

define ;‘‘procedure define” only
do

fluid-let

lambda

let

let*

letrec

named-lambda

The obsolete special form sequence is identical to begin. It should not be used in
new code.

28 MIT/GNU Scheme 10.1.1

2.9 Iteration

The iteration expressions are: “named let” and do. They are also binding expressions,
but are more commonly referred to as iteration expressions. Because Scheme is properly
tail-recursive, you don’t need to use these special forms to express iteration; you can simply
use appropriately written “recursive” procedure calls.

[special form]let name ((variable init) . . .) expression expression . . .
MIT/GNU Scheme permits a variant on the syntax of let called “named let” which
provides a more general looping construct than do, and may also be used to express
recursions.

Named let has the same syntax and semantics as ordinary let except that name is
bound within the expressions to a procedure whose formal arguments are the variables
and whose body is the expressions. Thus the execution of the expressions may be
repeated by invoking the procedure named by name.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

Note: the following expressions are equivalent:

(let name ((variable init) ...)

expression

expression ...)

((letrec ((name

(named-lambda (name variable ...)

expression

expression ...)))

name)

init ...)

Here is an example:

(let loop

((numbers ’(3 -2 1 6 -5))

(nonneg ’())

(neg ’()))

(cond ((null? numbers)

(list nonneg neg))

((>= (car numbers) 0)

(loop (cdr numbers)

(cons (car numbers) nonneg)

neg))

(else

(loop (cdr numbers)

nonneg

(cons (car numbers) neg)))))

⇒ ((6 1 3) (-5 -2))

Chapter 2: Special Forms 29

[special form]do ((variable init step) . . .) (test expression . . .) command
. . .

do is an iteration construct. It specifies a set of variables to be bound, how they are
to be initialized at the start, and how they are to be updated on each iteration. When
a termination condition is met, the loop exits with a specified result value.

do expressions are evaluated as follows: The init expressions are evaluated (in some
unspecified order), the variables are bound to fresh locations, the results of the init
expressions are stored in the bindings of the variables, and then the iteration phase
begins.

Each iteration begins by evaluating test; if the result is false, then the command
expressions are evaluated in order for effect, the step expressions are evaluated in
some unspecified order, the variables are bound to fresh locations, the results of the
steps are stored in the bindings of the variables, and the next iteration begins.

If test evaluates to a true value, then the expressions are evaluated from left to right
and the value of the last expression is returned as the value of the do expression. If no
expressions are present, then the value of the do expression is unspecified in standard
Scheme; in MIT/GNU Scheme, the value of test is returned.

The region of the binding of a variable consists of the entire do expression except
for the inits. It is an error for a variable to appear more than once in the list of do
variables.

A step may be omitted, in which case the effect is the same as if (variable init

variable) had been written instead of (variable init).

(do ((vec (make-vector 5))

(i 0 (+ i 1)))

((= i 5) vec)

(vector-set! vec i i)) ⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

(do ((x x (cdr x))

(sum 0 (+ sum (car x))))

((null? x) sum))) ⇒ 25

2.10 Structure Definitions

This section provides examples and describes the options and syntax of define-structure,
an MIT/GNU Scheme macro that is very similar to defstruct in Common Lisp. The
differences between them are summarized at the end of this section. For more information,
see Steele’s Common Lisp book.

[special form]define-structure (name structure-option . . .) slot-description
. . .

Each slot-description takes one of the following forms:

slot-name

(slot-name default-init [slot-option value]*)

The fields name and slot-name must both be symbols. The field default-init is an
expression for the initial value of the slot. It is evaluated each time a new instance

30 MIT/GNU Scheme 10.1.1

is constructed. If it is not specified, the initial content of the slot is undefined.
Default values are only useful with a boa constructor with argument list or a keyword
constructor (see below).

Evaluation of a define-structure expression defines a structure descriptor and a
set of procedures to manipulate instances of the structure. These instances are repre-
sented as records by default (see Section 10.4 [Records], page 140) but may alternately
be lists or vectors. The accessors and modifiers are marked with compiler declara-
tions so that calls to them are automatically transformed into appropriate references.
Often, no options are required, so a simple call to define-structure looks like:

(define-structure foo a b c)

This defines a type descriptor rtd:foo, a constructor make-foo, a predicate foo?,
accessors foo-a, foo-b, and foo-c, and modifiers set-foo-a!, set-foo-b!, and
set-foo-c!.

In general, if no options are specified, define-structure defines the following (using
the simple call above as an example):

type descriptor
The name of the type descriptor is "rtd:" followed by the name of
the structure, e.g. ‘rtd:foo’. The type descriptor satisfies the predicate
record-type?.

constructor
The name of the constructor is "make-" followed by the name of the
structure, e.g. ‘make-foo’. The number of arguments accepted by the
constructor is the same as the number of slots; the arguments are the
initial values for the slots, and the order of the arguments matches the
order of the slot definitions.

predicate The name of the predicate is the name of the structure followed by "?",
e.g. ‘foo?’. The predicate is a procedure of one argument, which re-
turns #t if its argument is a record of the type defined by this structure
definition, and #f otherwise.

accessors For each slot, an accessor is defined. The name of the accessor is formed
by appending the name of the structure, a hyphen, and the name of the
slot, e.g. ‘foo-a’. The accessor is a procedure of one argument, which
must be a record of the type defined by this structure definition. The
accessor extracts the contents of the corresponding slot in that record
and returns it.

modifiers For each slot, a modifier is defined. The name of the modifier is formed by
appending "set-", the name of the accessor, and "!", e.g. ‘set-foo-a!’.
The modifier is a procedure of two arguments, the first of which must
be a record of the type defined by this structure definition, and the sec-
ond of which may be any object. The modifier modifies the contents of
the corresponding slot in that record to be that object, and returns an
unspecified value.

When options are not supplied, (name) may be abbreviated to name. This convention
holds equally for structure-options and slot-options. Hence, these are equivalent:

Chapter 2: Special Forms 31

(define-structure foo a b c)

(define-structure (foo) (a) b (c))

as are

(define-structure (foo keyword-constructor) a b c)

(define-structure (foo (keyword-constructor)) a b c)

When specified as option values, false and nil are equivalent to #f, and true and
t are equivalent to #t.

Possible slot-options are:

[slot option]read-only value
When given a value other than #f, this specifies that no modifier should be created
for the slot.

[slot option]type type-descriptor
This is accepted but not presently used.

Possible structure-options are:

[structure option]predicate [name]
This option controls the definition of a predicate procedure for the structure. If name
is not given, the predicate is defined with the default name (see above). If name is
#f, the predicate is not defined at all. Otherwise, name must be a symbol, and the
predicate is defined with that symbol as its name.

[structure option]copier [name]
This option controls the definition of a procedure to copy instances of the struc-
ture. This is a procedure of one argument, a structure instance, that makes a newly
allocated copy of the structure and returns it. If name is not given, the copier is
defined, and the name of the copier is "copy-" followed by the structure name (e.g.
‘copy-foo’). If name is #f, the copier is not defined. Otherwise, name must be a
symbol, and the copier is defined with that symbol as its name.

[structure option]print-procedure expression
Evaluating expression must yield a procedure of two arguments, which is used to
print instances of the structure. The procedure is a print method (see Section 14.10
[Custom Output], page 208).

[structure option]constructor [name [argument-list]]
This option controls the definition of constructor procedures. These constructor pro-
cedures are called “boa constructors”, for “By Order of Arguments”, because the
arguments to the constructor specify the initial contents of the structure’s slots by
the order in which they are given. This is as opposed to “keyword constructors”, which
specify the initial contents using keywords, and in which the order of arguments is
irrelevant.

If name is not given, a constructor is defined with the default name and arguments (see
above). If name is #f, no constructor is defined; argument-list may not be specified
in this case. Otherwise, name must be a symbol, and a constructor is defined with
that symbol as its name. If name is a symbol, argument-list is optionally allowed;

32 MIT/GNU Scheme 10.1.1

if it is omitted, the constructor accepts one argument for each slot in the structure
definition, in the same order in which the slots appear in the definition. Otherwise,
argument-list must be a lambda list (see Section 2.1 [Lambda Expressions], page 15),
and each of the parameters of the lambda list must be the name of a slot in the
structure. The arguments accepted by the constructor are defined by this lambda
list. Any slot that is not specified by the lambda list is initialized to the default-init
as specified above; likewise for any slot specified as an optional parameter when the
corresponding argument is not supplied.

If the constructor option is specified, the default constructor is not defined. Addi-
tionally, the constructor option may be specified multiple times to define multiple
constructors with different names and argument lists.

(define-structure (foo

(constructor make-foo (#!optional a b)))

(a 6 read-only #t)

(b 9))

[structure option]keyword-constructor [name]
This option controls the definition of keyword constructor procedures. A keyword
constructor is a procedure that accepts arguments that are alternating slot names
and values. If name is omitted, a keyword constructor is defined, and the name of
the constructor is "make-" followed by the name of the structure (e.g. ‘make-foo’).
Otherwise, name must be a symbol, and a keyword constructor is defined with this
symbol as its name.

If the keyword-constructor option is specified, the default constructor is not defined.
Additionally, the keyword-constructor option may be specified multiple times to
define multiple keyword constructors; this is usually not done since such constructors
would all be equivalent.

(define-structure (foo (keyword-constructor make-bar)) a b)

(foo-a (make-bar ’b 20 ’a 19)) ⇒ 19

[structure option]type-descriptor name
This option cannot be used with the type or named options.

By default, structures are implemented as records. The name of the structure is
defined to hold the type descriptor of the record defined by the structure. The
type-descriptor option specifies a different name to hold the type descriptor.

(define-structure foo a b)

foo ⇒ #[record-type 18]

(define-structure (bar (type-descriptor <bar>)) a b)

bar error Unbound variable: bar

<bar> ⇒ #[record-type 19]

[structure option]conc-name [name]
By default, the prefix for naming accessors and modifiers is the name of the structure
followed by a hyphen. The conc-name option can be used to specify an alternative.
If name is not given, the prefix is the name of the structure followed by a hyphen (the

Chapter 2: Special Forms 33

default). If name is #f, the slot names are used directly, without prefix. Otherwise,
name must a symbol, and that symbol is used as the prefix.

(define-structure (foo (conc-name moby/)) a b)

defines accessors moby/a and moby/b, and modifiers set-moby/a! and set-moby/b!.

(define-structure (foo (conc-name #f)) a b)

defines accessors a and b, and modifiers set-a! and set-b!.

[structure option]type representation-type
This option cannot be used with the type-descriptor option.

By default, structures are implemented as records. The type option overrides this
default, allowing the programmer to specify that the structure be implemented using
another data type. The option value representation-type specifies the alternate data
type; it is allowed to be one of the symbols vector or list, and the data type used
is the one corresponding to the symbol.

If this option is given, and the named option is not specified, the representation will
not be tagged, and neither a predicate nor a type descriptor will be defined; also, the
print-procedure option may not be given.

(define-structure (foo (type list)) a b)

(make-foo 1 2) ⇒ (1 2)

[structure option]named [expression]
This is valid only in conjunction with the type option and specifies that the structure
instances be tagged to make them identifiable as instances of this structure type. This
option cannot be used with the type-descriptor option.

In the usual case, where expression is not given, the named option causes a type
descriptor and predicate to be defined for the structure (recall that the type option
without named suppresses their definition), and also defines a default print method for
the structure instances (which can be overridden by the print-procedure option). If
the default print method is not wanted then the print-procedure option should be
specified as #f. This causes the structure to be printed in its native representation,
as a list or vector, which includes the type descriptor. The type descriptor is a unique
object, not a record type, that describes the structure instances and is additionally
stored in the structure instances to identify them: if the representation type is vector,
the type descriptor is stored in the zero-th slot of the vector, and if the representation
type is list, it is stored as the first element of the list.

(define-structure (foo (type vector) named) a b c)

(vector-ref (make-foo 1 2 3) 0) ⇒ #[structure-type 52]

If expression is specified, it is an expression that is evaluated to yield a tag object.
The expression is evaluated once when the structure definition is evaluated (to specify
the print method), and again whenever a predicate or constructor is called. Because
of this, expression is normally a variable reference or a constant. The value yielded by
expression may be any object at all. That object is stored in the structure instances
in the same place that the type descriptor is normally stored, as described above. If
expression is specified, no type descriptor is defined, only a predicate.

(define-structure (foo (type vector) (named ’foo)) a b c)

(vector-ref (make-foo 1 2 3) 0) ⇒ foo

34 MIT/GNU Scheme 10.1.1

[structure option]safe-accessors [boolean]
This option allows the programmer to have some control over the safety of the slot
accessors (and modifiers) generated by define-structure. If safe-accessors is not
specified, or if boolean is #f, then the accessors are optimized for speed at the expense
of safety; when compiled, the accessors will turn into very fast inline sequences, usually
one to three machine instructions in length. However, if safe-accessors is specified
and boolean is either omitted or #t, then the accessors are optimized for safety, will
check the type and structure of their argument, and will be close-coded.

(define-structure (foo safe-accessors) a b c)

[structure option]initial-offset offset
This is valid only in conjunction with the type option. Offset must be an exact non-
negative integer and specifies the number of slots to leave open at the beginning of
the structure instance before the specified slots are allocated. Specifying an offset of
zero is equivalent to omitting the initial-offset option.

If the named option is specified, the structure tag appears in the first slot, followed
by the “offset” slots, and then the regular slots. Otherwise, the “offset” slots come
first, followed by the regular slots.

(define-structure (foo (type vector) (initial-offset 3))

a b c)

(make-foo 1 2 3) ⇒ #(() () () 1 2 3)

The essential differences between MIT/GNU Scheme’s define-structure and Common
Lisp’s defstruct are:

• The default constructor procedure takes positional arguments, in the same order as
specified in the definition of the structure. A keyword constructor may be specified by
giving the option keyword-constructor.

• boa constructors are described using Scheme lambda lists. Since there is nothing
corresponding to &aux in Scheme lambda lists, this functionality is not implemented.

• By default, no copier procedure is defined.

• The side-effect procedure corresponding to the accessor foo is given the name
set-foo!.

• Keywords are ordinary symbols – use foo instead of :foo.

• The option values false, nil, true, and t are treated as if the appropriate boolean
constant had been specified instead.

• The print-function option is named print-procedure. Its argument is a procedure
of two arguments (the structure instance and a textual output port) rather than three
as in Common Lisp.

• By default, named structures are tagged with a unique object of some kind. In Common
Lisp, the structures are tagged with symbols. This depends on the Common Lisp
package system to help generate unique tags; MIT/GNU Scheme has no such way to
generate unique symbols.

• The named option may optionally take an argument, which is normally the name of
a variable (any expression may be used, but it is evaluated whenever the tag name is
needed). If used, structure instances will be tagged with that variable’s value. The
variable must be defined when define-structure is evaluated.

Chapter 2: Special Forms 35

• The type option is restricted to the values vector and list.

• The include option is not implemented.

2.11 Macros

(This section is largely taken from the Revised^4 Report on the Algorithmic Language
Scheme. The section on Syntactic Closures is derived from a document written by Chris
Hanson. The section on Explicit Renaming is derived from a document written by William
Clinger.)

Scheme programs can define and use new derived expression types, called macros.
Program-defined expression types have the syntax

(keyword datum ...)

where keyword is an identifier that uniquely determines the expression type. This identifier
is called the syntactic keyword, or simply keyword, of the macro. The number of the datums,
and their syntax, depends on the expression type.

Each instance of a macro is called a use of the macro. The set of rules that specifies how
a use of a macro is transcribed into a more primitive expression is called the transformer
of the macro.

MIT/GNU Scheme also supports anonymous syntactic keywords. This means that it’s
not necessary to bind a macro transformer to a syntactic keyword before it is used. Instead,
any macro-transformer expression can appear as the first element of a form, and the form
will be expanded by the transformer.

The macro definition facility consists of these parts:

• A set of expressions used to establish that certain identifiers are macro keywords,
associate them with macro transformers, and control the scope within which a macro
is defined.

• A standard high-level pattern language for specifying macro transformers, introduced
by the syntax-rules special form.

• Two non-standard low-level languages for specifying macro transformers, syntactic clo-
sures and explicit renaming.

The syntactic keyword of a macro may shadow variable bindings, and local variable
bindings may shadow keyword bindings. All macros defined using the pattern language are
“hygienic” and “referentially transparent” and thus preserve Scheme’s lexical scoping:

• If a macro transformer inserts a binding for an identifier (variable or keyword), the
identifier will in effect be renamed throughout its scope to avoid conflicts with other
identifiers.

• If a macro transformer inserts a free reference to an identifier, the reference refers to
the binding that was visible where the transformer was specified, regardless of any local
bindings that may surround the use of the macro.

2.11.1 Binding Constructs for Syntactic Keywords

let-syntax, letrec-syntax, let*-syntax and define-syntax are analogous to let,
letrec, let* and define, but they bind syntactic keywords to macro transformers in-
stead of binding variables to locations that contain values.

36 MIT/GNU Scheme 10.1.1

Any argument named transformer-spec must be a macro-transformer expression, which
is one of the following:

• A macro transformer defined by the pattern language and denoted by the syntactic
keyword syntax-rules.

• A macro transformer defined by one of the low-level mechanisms and denoted by
one of the syntactic keywords sc-macro-transformer, rsc-macro-transformer, or
er-macro-transformer.

• A syntactic keyword bound in the enclosing environment. This is used to bind another
name to an existing macro transformer.

[special form]let-syntax bindings expression expression . . .
Bindings should have the form

((keyword transformer-spec) ...)

Each keyword is an identifier, each transformer-spec is a a macro-transformer ex-
pression, and the body is a sequence of one or more expressions. It is an error for a
keyword to appear more than once in the list of keywords being bound.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the let-syntax expression with macros whose keywords are
the keywords, bound to the specified transformers. Each binding of a keyword has
the expressions as its region.

(let-syntax ((when (syntax-rules ()

((when test stmt1 stmt2 ...)

(if test

(begin stmt1

stmt2 ...))))))

(let ((if #t))

(when if (set! if ’now))

if)) ⇒ now

(let ((x ’outer))

(let-syntax ((m (syntax-rules () ((m) x))))

(let ((x ’inner))

(m)))) ⇒ outer

[special form]letrec-syntax bindings expression expression . . .
The syntax of letrec-syntax is the same as for let-syntax.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the letrec-syntax expression with macros whose keywords
are the keywords, bound to the specified transformers. Each binding of a keyword
has the bindings as well as the expressions within its region, so the transformers
can transcribe expressions into uses of the macros introduced by the letrec-syntax
expression.

Chapter 2: Special Forms 37

(letrec-syntax

((my-or (syntax-rules ()

((my-or) #f)

((my-or e) e)

((my-or e1 e2 ...)

(let ((temp e1))

(if temp

temp

(my-or e2 ...)))))))

(let ((x #f)

(y 7)

(temp 8)

(let odd?)

(if even?))

(my-or x

(let temp)

(if y)

y))) ⇒ 7

[special form]let*-syntax bindings expression expression . . .
The syntax of let*-syntax is the same as for let-syntax.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the letrec-syntax expression with macros whose keywords
are the keywords, bound to the specified transformers. Each binding of a keyword
has the subsequent bindings as well as the expressions within its region. Thus

(let*-syntax

((a (syntax-rules ...))

(b (syntax-rules ...)))

...)

is equivalent to

(let-syntax ((a (syntax-rules ...)))

(let-syntax ((b (syntax-rules ...)))

...))

[special form]define-syntax keyword transformer-spec
Keyword is an identifier, and transformer-spec is a macro transformer expression.
The syntactic environment is extended by binding the keyword to the specified trans-
former.

The region of the binding introduced by define-syntax is the entire block in which
it appears. However, the keyword may only be used after it has been defined.

MIT/GNU Scheme permits define-syntax to appear both at top level and within
lambda bodies. The Revised^4 Report permits only top-level uses of define-syntax.

When compiling a program, a top-level instance of define-syntax both defines the
syntactic keyword and generates code that will redefine the keyword when the program
is loaded. This means that the same syntax can be used for defining macros that will
be used during compilation and for defining macros to be used at run time.

38 MIT/GNU Scheme 10.1.1

Although macros may expand into definitions and syntax definitions in any context
that permits them, it is an error for a definition or syntax definition to shadow a
syntactic keyword whose meaning is needed to determine whether some form in the
group of forms that contains the shadowing definition is in fact a definition, or, for
internal definitions, is needed to determine the boundary between the group and the
expressions that follow the group. For example, the following are errors:

(define define 3)

(begin (define begin list))

(let-syntax

((foo (syntax-rules ()

((foo (proc args ...) body ...)

(define proc

(lambda (args ...)

body ...))))))

(let ((x 3))

(foo (plus x y) (+ x y))

(define foo x)

(plus foo x)))

2.11.2 Pattern Language

MIT/GNU Scheme supports a high-level pattern language for specifying macro transform-
ers. This pattern language is defined by the Revised^4 Report and is portable to other
conforming Scheme implementations. To use the pattern language, specify a transformer-
spec as a syntax-rules form:

[special form]syntax-rules literals syntax-rule . . .
Literals is a list of identifiers and each syntax-rule should be of the form

(pattern template)

The pattern in a syntax-rule is a list pattern that begins with the keyword for the
macro.

A pattern is either an identifier, a constant, or one of the following

(pattern ...)

(pattern pattern pattern)

(pattern ... pattern ellipsis)

and a template is either an identifier, a constant, or one of the following

(element ...)

(element element template)

where an element is a template optionally followed by an ellipsis and an ellipsis is
the identifier ‘...’ (which cannot be used as an identifier in either a template or a
pattern).

An instance of syntax-rules produces a new macro transformer by specifying a
sequence of hygienic rewrite rules. A use of a macro whose keyword is associated with
a transformer specified by syntax-rules is matched against the patterns contained

Chapter 2: Special Forms 39

in the syntax-rules, beginning with the leftmost syntax-rule. When a match is found,
the macro use is transcribed hygienically according to the template.

An identifier that appears in the pattern of a syntax-rule is a pattern-variable, unless
it is the keyword that begins the pattern, is listed in literals, or is the identifier ‘...’.
Pattern variables match arbitrary input elements and are used to refer to elements
of the input in the template. It is an error for the same pattern variable to appear
more than once in a pattern.

The keyword at the beginning of the pattern in a syntax-rule is not involved in the
matching and is not considered a pattern variable or literal identifier.

Identifiers that appear in literals are interpreted as literal identifiers to be matched
against corresponding subforms of the input. A subform in the input matches a literal
identifier if and only if it is an identifier and either both its occurrence in the macro
expression and its occurrence in the macro definition have the same lexical binding,
or the two identifiers are equal and both have no lexical binding.

A subpattern followed by ‘...’ can match zero or more elements of the input. It is an
error for ‘...’ to appear in literals. Within a pattern the identifier ‘...’ must follow
the last element of a nonempty sequence of subpatterns.

More formally, an input form F matches a pattern P if and only if:

• P is a non-literal identifier; or

• P is a literal identifier and F is an identifier with the same binding; or

• P is a list (P_1 ... P_n) and F is a list of n forms that match P 1 through P n,
respectively; or

• P is an improper list (P_1 P_2 ... P_n . P_n+1) and F is a list or improper list
of n or more forms that match P 1 through P n, respectively, and whose nth
“cdr” matches P n+1; or

• P is of the form (P_1 ... P_n P_n+1 ellipsis) where ellipsis is the identifier
‘...’ and F is a proper list of at least n forms, the first n of which match P 1
through P n, respectively, and each remaining element of F matches P n+1; or

• P is a datum and F is equal to P in the sense of the equal? procedure.

It is an error to use a macro keyword, within the scope of its binding, in an expression
that does not match any of the patterns.

When a macro use is transcribed according to the template of the matching syntax
rule, pattern variables that occur in the template are replaced by the subforms they
match in the input. Pattern variables that occur in subpatterns followed by one
or more instances of the identifier ‘...’ are allowed only in subtemplates that are
followed by as many instances of ‘...’. They are replaced in the output by all of
the subforms they match in the input, distributed as indicated. It is an error if the
output cannot be built up as specified.

Identifiers that appear in the template but are not pattern variables or the identifier
‘...’ are inserted into the output as literal identifiers. If a literal identifier is inserted
as a free identifier then it refers to the binding of that identifier within whose scope
the instance of syntax-rules appears. If a literal identifier is inserted as a bound
identifier then it is in effect renamed to prevent inadvertent captures of free identifiers.

40 MIT/GNU Scheme 10.1.1

(let ((=> #f))

(cond (#t => ’ok))) ⇒ ok

The macro transformer for cond recognizes => as a local variable, and hence an
expression, and not as the top-level identifier =>, which the macro transformer treats
as a syntactic keyword. Thus the example expands into

(let ((=> #f))

(if #t (begin => ’ok)))

instead of

(let ((=> #f))

(let ((temp #t))

(if temp

(’ok temp))))

which would result in an invalid procedure call.

2.11.3 Syntactic Closures

MIT/GNU Scheme’s syntax-transformation engine is an implementation of syntactic clo-
sures, a mechanism invented by Alan Bawden and Jonathan Rees. The main feature of the
syntactic-closures mechanism is its simplicity and its close relationship to the environment
models commonly used with Scheme. Using the mechanism to write macro transformers
is somewhat cumbersome and can be confusing for the newly initiated, but it is easily
mastered.

2.11.3.1 Syntax Terminology

This section defines the concepts and data types used by the syntactic closures facility.

• Forms are the syntactic entities out of which programs are recursively constructed. A
form is any expression, any definition, any syntactic keyword, or any syntactic closure.
The variable name that appears in a set! special form is also a form. Examples of
forms:

17

#t

car

(+ x 4)

(lambda (x) x)

(define pi 3.14159)

if

define

• An alias is an alternate name for a given symbol. It can appear anywhere in a form that
the symbol could be used, and when quoted it is replaced by the symbol; however, it
does not satisfy the predicate symbol?. Macro transformers rarely distinguish symbols
from aliases, referring to both as identifiers. Another name for an alias is synthetic
identifier; this document uses both names.

• A syntactic environment maps identifiers to their meanings. More precisely, it deter-
mines whether an identifier is a syntactic keyword or a variable. If it is a keyword,
the meaning is an interpretation for the form in which that keyword appears. If it
is a variable, the meaning identifies which binding of that variable is referenced. In

Chapter 2: Special Forms 41

short, syntactic environments contain all of the contextual information necessary for
interpreting the meaning of a particular form.

• A syntactic closure consists of a form, a syntactic environment, and a list of identifiers.
All identifiers in the form take their meaning from the syntactic environment, except
those in the given list. The identifiers in the list are to have their meanings determined
later.

A syntactic closure may be used in any context in which its form could have been used.
Since a syntactic closure is also a form, it may not be used in contexts where a form
would be illegal. For example, a form may not appear as a clause in the cond special
form.

A syntactic closure appearing in a quoted structure is replaced by its form.

2.11.3.2 Transformer Definition

This section describes the special forms for defining syntactic-closures macro transformers,
and the associated procedures for manipulating syntactic closures and syntactic environ-
ments.

[special form]sc-macro-transformer expression
The expression is expanded in the syntactic environment of the sc-macro-

transformer expression, and the expanded expression is evaluated in the
transformer environment to yield a macro transformer as described below. This
macro transformer is bound to a macro keyword by the special form in which the
transformer expression appears (for example, let-syntax).

In the syntactic closures facility, a macro transformer is a procedure that takes two
arguments, a form and a syntactic environment, and returns a new form. The first
argument, the input form, is the form in which the macro keyword occurred. The
second argument, the usage environment, is the syntactic environment in which the
input form occurred. The result of the transformer, the output form, is automatically
closed in the transformer environment, which is the syntactic environment in which
the transformer expression occurred.

For example, here is a definition of a push macro using syntax-rules:

(define-syntax push

(syntax-rules ()

((push item list)

(set! list (cons item list)))))

Here is an equivalent definition using sc-macro-transformer:

(define-syntax push

(sc-macro-transformer

(lambda (exp env)

(let ((item (make-syntactic-closure env ’() (cadr exp)))

(list (make-syntactic-closure env ’() (caddr exp))))

‘(set! ,list (cons ,item ,list))))))

In this example, the identifiers set! and cons are closed in the transformer environ-
ment, and thus will not be affected by the meanings of those identifiers in the usage
environment env.

42 MIT/GNU Scheme 10.1.1

Some macros may be non-hygienic by design. For example, the following defines a
loop macro that implicitly binds exit to an escape procedure. The binding of exit
is intended to capture free references to exit in the body of the loop, so exit must
be left free when the body is closed:

(define-syntax loop

(sc-macro-transformer

(lambda (exp env)

(let ((body (cdr exp)))

‘(call-with-current-continuation

(lambda (exit)

(let f ()

,@(map (lambda (exp)

(make-syntactic-closure env ’(exit)

exp))

body)

(f))))))))

[special form]rsc-macro-transformer expression
This form is an alternative way to define a syntactic-closures macro transformer. Its
syntax and usage are identical to sc-macro-transformer, except that the roles of the
usage environment and transformer environment are reversed. (Hence RSC stands for
Reversed Syntactic Closures.) In other words, the procedure specified by expression
still accepts two arguments, but its second argument will be the transformer environ-
ment rather than the usage environment, and the returned expression is closed in the
usage environment rather than the transformer environment.

The advantage of this arrangement is that it allows a simpler definition style in some
situations. For example, here is the push macro from above, rewritten in this style:

(define-syntax push

(rsc-macro-transformer

(lambda (exp env)

‘(,(make-syntactic-closure env ’() ’SET!)

,(caddr exp)

(,(make-syntactic-closure env ’() ’CONS)

,(cadr exp)

,(caddr exp))))))

In this style only the introduced keywords are closed, while everything else remains
open.

Note that rsc-macro-transformer and sc-macro-transformer are easily
interchangeable. Here is how to emulate rsc-macro-transformer using
sc-macro-transformer. (This technique can be used to effect the opposite
emulation as well.)

Chapter 2: Special Forms 43

(define-syntax push

(sc-macro-transformer

(lambda (exp usage-env)

(capture-syntactic-environment

(lambda (env)

(make-syntactic-closure usage-env ’()

‘(,(make-syntactic-closure env ’() ’SET!)

,(caddr exp)

(,(make-syntactic-closure env ’() ’CONS)

,(cadr exp)

,(caddr exp)))))))))

To assign meanings to the identifiers in a form, use make-syntactic-closure to close
the form in a syntactic environment.

[procedure]make-syntactic-closure environment free-names form
Environment must be a syntactic environment, free-names must be a list of identi-
fiers, and form must be a form. make-syntactic-closure constructs and returns a
syntactic closure of form in environment, which can be used anywhere that form could
have been used. All the identifiers used in form, except those explicitly excepted by
free-names, obtain their meanings from environment.

Here is an example where free-names is something other than the empty list. It is
instructive to compare the use of free-names in this example with its use in the loop
example above: the examples are similar except for the source of the identifier being
left free.

(define-syntax let1

(sc-macro-transformer

(lambda (exp env)

(let ((id (cadr exp))

(init (caddr exp))

(exp (cadddr exp)))

‘((lambda (,id)

,(make-syntactic-closure env (list id) exp))

,(make-syntactic-closure env ’() init))))))

let1 is a simplified version of let that only binds a single identifier, and whose body
consists of a single expression. When the body expression is syntactically closed in
its original syntactic environment, the identifier that is to be bound by let1 must be
left free, so that it can be properly captured by the lambda in the output form.

In most situations, the free-names argument to make-syntactic-closure is the empty
list. In those cases, the more succinct close-syntax can be used:

[procedure]close-syntax form environment
Environment must be a syntactic environment and form must be a form. Returns a
new syntactic closure of form in environment, with no free names. Entirely equivalent
to

(make-syntactic-closure environment ’() form)

44 MIT/GNU Scheme 10.1.1

To obtain a syntactic environment other than the usage environment, use
capture-syntactic-environment.

[procedure]capture-syntactic-environment procedure
capture-syntactic-environment returns a form that will, when transformed, call
procedure on the current syntactic environment. Procedure should compute and
return a new form to be transformed, in that same syntactic environment, in place of
the form.

An example will make this clear. Suppose we wanted to define a simple loop-until
keyword equivalent to

(define-syntax loop-until

(syntax-rules ()

((loop-until id init test return step)

(letrec ((loop

(lambda (id)

(if test return (loop step)))))

(loop init)))))

The following attempt at defining loop-until has a subtle bug:

(define-syntax loop-until

(sc-macro-transformer

(lambda (exp env)

(let ((id (cadr exp))

(init (caddr exp))

(test (cadddr exp))

(return (cadddr (cdr exp)))

(step (cadddr (cddr exp)))

(close

(lambda (exp free)

(make-syntactic-closure env free exp))))

‘(letrec ((loop

(lambda (,id)

(if ,(close test (list id))

,(close return (list id))

(loop ,(close step (list id)))))))

(loop ,(close init ’())))))))

This definition appears to take all of the proper precautions to prevent unintended
captures. It carefully closes the subexpressions in their original syntactic environment
and it leaves the id identifier free in the test, return, and step expressions, so that it
will be captured by the binding introduced by the lambda expression. Unfortunately
it uses the identifiers if and loop within that lambda expression, so if the user of
loop-until just happens to use, say, if for the identifier, it will be inadvertently
captured.

The syntactic environment that if and loop want to be exposed to is the one just
outside the lambda expression: before the user’s identifier is added to the syntactic
environment, but after the identifier loop has been added. capture-syntactic-

environment captures exactly that environment as follows:

Chapter 2: Special Forms 45

(define-syntax loop-until

(sc-macro-transformer

(lambda (exp env)

(let ((id (cadr exp))

(init (caddr exp))

(test (cadddr exp))

(return (cadddr (cdr exp)))

(step (cadddr (cddr exp)))

(close

(lambda (exp free)

(make-syntactic-closure env free exp))))

‘(letrec ((loop

,(capture-syntactic-environment

(lambda (env)

‘(lambda (,id)

(,(make-syntactic-closure env ’() ‘if)

,(close test (list id))

,(close return (list id))

(,(make-syntactic-closure env ’() ‘loop)

,(close step (list id)))))))))

(loop ,(close init ’())))))))

In this case, having captured the desired syntactic environment, it is convenient to
construct syntactic closures of the identifiers if and the loop and use them in the
body of the lambda.

A common use of capture-syntactic-environment is to get the transformer envi-
ronment of a macro transformer:

(sc-macro-transformer

(lambda (exp env)

(capture-syntactic-environment

(lambda (transformer-env)

...))))

2.11.3.3 Identifiers

This section describes the procedures that create and manipulate identifiers. The identi-
fier data type extends the syntactic closures facility to be compatible with the high-level
syntax-rules facility.

As discussed earlier, an identifier is either a symbol or an alias. An alias is implemented
as a syntactic closure whose form is an identifier:

(make-syntactic-closure env ’() ’a) ⇒ an alias

Aliases are implemented as syntactic closures because they behave just like syntactic closures
most of the time. The difference is that an alias may be bound to a new value (for example
by lambda or let-syntax); other syntactic closures may not be used this way. If an alias is
bound, then within the scope of that binding it is looked up in the syntactic environment
just like any other identifier.

46 MIT/GNU Scheme 10.1.1

Aliases are used in the implementation of the high-level facility syntax-rules. A macro
transformer created by syntax-rules uses a template to generate its output form, substi-
tuting subforms of the input form into the template. In a syntactic closures implementation,
all of the symbols in the template are replaced by aliases closed in the transformer envi-
ronment, while the output form itself is closed in the usage environment. This guarantees
that the macro transformation is hygienic, without requiring the transformer to know the
syntactic roles of the substituted input subforms.

[procedure]identifier? object
Returns #t if object is an identifier, otherwise returns #f. Examples:

(identifier? ’a) ⇒ #t

(identifier? (make-syntactic-closure env ’() ’a))

⇒ #t

(identifier? "a") ⇒ #f

(identifier? #\a) ⇒ #f

(identifier? 97) ⇒ #f

(identifier? #f) ⇒ #f

(identifier? ’(a)) ⇒ #f

(identifier? ’#(a)) ⇒ #f

The predicate eq? is used to determine if two identifers are “the same”. Thus eq? can
be used to compare identifiers exactly as it would be used to compare symbols. Often,
though, it is useful to know whether two identifiers “mean the same thing”. For example,
the cond macro uses the symbol else to identify the final clause in the conditional. A
macro transformer for cond cannot just look for the symbol else, because the cond form
might be the output of another macro transformer that replaced the symbol else with an
alias. Instead the transformer must look for an identifier that “means the same thing” in
the usage environment as the symbol else means in the transformer environment.

[procedure]identifier=? environment1 identifier1 environment2 identifier2
Environment1 and environment2 must be syntactic environments, and identifier1 and
identifier2 must be identifiers. identifier=? returns #t if the meaning of identifier1
in environment1 is the same as that of identifier2 in environment2, otherwise it returns
#f. Examples:

(let-syntax

((foo

(sc-macro-transformer

(lambda (form env)

(capture-syntactic-environment

(lambda (transformer-env)

(identifier=? transformer-env ’x env ’x)))))))

(list (foo)

(let ((x 3))

(foo))))

⇒ (#t #f)

Chapter 2: Special Forms 47

(let-syntax ((bar foo))

(let-syntax

((foo

(sc-macro-transformer

(lambda (form env)

(capture-syntactic-environment

(lambda (transformer-env)

(identifier=? transformer-env ’foo

env (cadr form))))))))

(list (foo foo)

(foo bar))))

⇒ (#f #t)

Sometimes it is useful to be able to introduce a new identifier that is guaranteed to
be different from any existing identifier, similarly to the way that generate-uninterned-
symbol is used.

[procedure]make-synthetic-identifier identifier
Creates and returns and new synthetic identifier (alias) that is guaranteed to be
different from all existing identifiers. Identifier is any existing identifier, which is
used in deriving the name of the new identifier.

2.11.4 Explicit Renaming

Explicit renaming is an alternative facility for defining macro transformers. In the
MIT/GNU Scheme implementation, explicit-renaming transformers are implemented as an
abstraction layer on top of syntactic closures. An explicit-renaming macro transformer is
defined by an instance of the er-macro-transformer keyword:

[special form]er-macro-transformer expression
The expression is expanded in the syntactic environment of the er-macro-

transformer expression, and the expanded expression is evaluated in the
transformer environment to yield a macro transformer as described below. This
macro transformer is bound to a macro keyword by the special form in which the
transformer expression appears (for example, let-syntax).

In the explicit-renaming facility, a macro transformer is a procedure that takes three
arguments, a form, a renaming procedure, and a comparison predicate, and returns
a new form. The first argument, the input form, is the form in which the macro
keyword occurred.

The second argument to a transformation procedure is a renaming procedure that
takes the representation of an identifier as its argument and returns the representa-
tion of a fresh identifier that occurs nowhere else in the program. For example, the
transformation procedure for a simplified version of the let macro might be written
as

48 MIT/GNU Scheme 10.1.1

(lambda (exp rename compare)

(let ((vars (map car (cadr exp)))

(inits (map cadr (cadr exp)))

(body (cddr exp)))

‘((lambda ,vars ,@body)

,@inits)))

This would not be hygienic, however. A hygienic letmacro must rename the identifier
lambda to protect it from being captured by a local binding. The renaming effectively
creates an fresh alias for lambda, one that cannot be captured by any subsequent
binding:

(lambda (exp rename compare)

(let ((vars (map car (cadr exp)))

(inits (map cadr (cadr exp)))

(body (cddr exp)))

‘((,(rename ’lambda) ,vars ,@body)

,@inits)))

The expression returned by the transformation procedure will be expanded in the
syntactic environment obtained from the syntactic environment of the macro appli-
cation by binding any fresh identifiers generated by the renaming procedure to the
denotations of the original identifiers in the syntactic environment in which the macro
was defined. This means that a renamed identifier will denote the same thing as the
original identifier unless the transformation procedure that renamed the identifier
placed an occurrence of it in a binding position.

The renaming procedure acts as a mathematical function in the sense that the identi-
fiers obtained from any two calls with the same argument will be the same in the sense
of eqv?. It is an error if the renaming procedure is called after the transformation
procedure has returned.

The third argument to a transformation procedure is a comparison predicate that
takes the representations of two identifiers as its arguments and returns true if and
only if they denote the same thing in the syntactic environment that will be used to
expand the transformed macro application. For example, the transformation proce-
dure for a simplified version of the cond macro can be written as

(lambda (exp rename compare)

(let ((clauses (cdr exp)))

(if (null? clauses)

‘(,(rename ’quote) unspecified)

(let* ((first (car clauses))

(rest (cdr clauses))

(test (car first)))

(cond ((and (identifier? test)

(compare test (rename ’else)))

‘(,(rename ’begin) ,@(cdr first)))

(else ‘(,(rename ’if)

,test

(,(rename ’begin) ,@(cdr first))

(cond ,@rest))))))))))

Chapter 2: Special Forms 49

In this example the identifier else is renamed before being passed to the comparison
predicate, so the comparison will be true if and only if the test expression is an
identifier that denotes the same thing in the syntactic environment of the expression
being transformed as else denotes in the syntactic environment in which the cond

macro was defined. If else were not renamed before being passed to the comparison
predicate, then it would match a local variable that happened to be named else, and
the macro would not be hygienic.

Some macros are non-hygienic by design. For example, the following defines a loop

macro that implicitly binds exit to an escape procedure. The binding of exit is
intended to capture free references to exit in the body of the loop, so exit is not
renamed.

(define-syntax loop

(er-macro-transformer

(lambda (x r c)

(let ((body (cdr x)))

‘(,(r ’call-with-current-continuation)

(,(r ’lambda) (exit)

(,(r ’let) ,(r ’f) () ,@body (,(r ’f)))))))))

Suppose a while macro is implemented using loop, with the intent that exit may
be used to escape from the while loop. The while macro cannot be written as

(define-syntax while

(syntax-rules ()

((while test body ...)

(loop (if (not test) (exit #f))

body ...))))

because the reference to exit that is inserted by the while macro is intended to be
captured by the binding of exit that will be inserted by the loop macro. In other
words, this while macro is not hygienic. Like loop, it must be written using the
er-macro-transformer syntax:

(define-syntax while

(er-macro-transformer

(lambda (x r c)

(let ((test (cadr x))

(body (cddr x)))

‘(,(r ’loop)

(,(r ’if) (,(r ’not) ,test) (exit #f))

,@body)))))

2.12 SRFI syntax

Several special forms have been introduced to support some of the Scheme Requests for
Implementation (SRFI). Note that MIT/GNU Scheme has for some time supported SRFI

23 (error-reporting mechanism) and SRFI 30 (nested multi-line comments), since these SRFIs
reflect existing practice rather than introducing new functionality.

http://srfi.schemers.org/
http://srfi.schemers.org/
http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-30/srfi-30.html

50 MIT/GNU Scheme 10.1.1

2.12.1 cond-expand (SRFI 0)

SRFI 0 is a mechanism for portably determining the availability of SRFI features. The
cond-expand special form conditionally expands according to the features available.

[special form]cond-expand clause clause dots
Each clause has the form

(feature-requirement expression ...)

where feature-requirement can have one of the following forms:

feature-identifier

(and feature-requirement ...)

(or feature-requirement ...)

(not feature-requirement)

else

(Note that at most one else clause may be present, and it must always be the last
clause.)

The cond-expand special form tests for the existence of features at macro-expansion
time. It either expands into the body of one of its clauses or signals an error during
syntactic processing. cond-expand expands into the body of the first clause whose
feature-requirement is currently satisfied (an else clause, if present, is selected if none
of the previous clauses is selected).

A feature-requirement has an obvious interpretation as a logical formula, where the
feature-identifier variables have meaning true if the feature corresponding to the
feature-identifier, as specified in the SRFI registry, is in effect at the location of the
cond-expand form, and false otherwise. A feature-requirement is satisfied if its for-
mula is true under this interpretation.

(cond-expand

((and srfi-1 srfi-10)

(write 1))

((or srfi-1 srfi-10)

(write 2))

(else))

(cond-expand

(command-line

(define (program-name) (car (argv)))))

The second example assumes that command-line is an alias for some feature which
gives access to command line arguments. Note that an error will be signaled at
macro-expansion time if this feature is not present.

Note that MIT/GNU Scheme allows cond-expand in any context where a special
form is allowed. This is an extension of the semantics defined by SRFI 0, which only
allows cond-expand at top level.

http://srfi.schemers.org/srfi-0/srfi-0.html
http://srfi.schemers.org/

Chapter 2: Special Forms 51

2.12.2 receive (SRFI 8)

SRFI 8 defines a convenient syntax to bind an identifier to each of the values of a multiple-
valued expression and then evaluate an expression in the scope of the bindings. As an
instance of this pattern, consider the following excerpt from a ‘quicksort’ procedure:

(call-with-values

(lambda ()

(partition (precedes pivot) others))

(lambda (fore aft)

(append (qsort fore) (cons pivot (qsort aft)))))

Here ‘partition’ is a multiple-valued procedure that takes two arguments, a predicate
and a list, and returns two lists, one comprising the list elements that satisfy the predicate,
the other those that do not. The purpose of the expression shown is to partition the list
‘others’, sort each of the sublists, and recombine the results into a sorted list.

For our purposes, the important step is the binding of the identifiers ‘fore’ and ‘aft’ to
the values returned by ‘partition’. Expressing the construction and use of these bindings
with the call-by-values primitive is cumbersome: One must explicitly embed the expres-
sion that provides the values for the bindings in a parameterless procedure, and one must
explicitly embed the expression to be evaluated in the scope of those bindings in another
procedure, writing as its parameters the identifiers that are to be bound to the values
received.

These embeddings are boilerplate, exposing the underlying binding mechanism but not
revealing anything relevant to the particular program in which it occurs. So the use of a syn-
tactic abstraction that exposes only the interesting parts – the identifiers to be bound, the
multiple-valued expression that supplies the values, and the body of the receiving procedure
– makes the code more concise and more readable:

(receive (fore aft) (partition (precedes pivot) others)

(append (qsort fore) (cons pivot (qsort aft))))

The advantages are similar to those of a ‘let’ expression over a procedure call with a
‘lambda’ expression as its operator. In both cases, cleanly separating a “header” in which
the bindings are established from a “body” in which they are used makes it easier to follow
the code.

[special form]receive formals expression body
Formals and body are defined as for ‘lambda’ (see Section 2.1 [Lambda Expressions],
page 15). Specifically, formals can have the following forms (the use of ‘#!optional’
and ‘#!rest’ is also allowed in formals but is omitted for brevity):

‘(ident1 ... identN)’
The environment in which the ‘receive’ expression is evaluated is ex-
tended by binding ident1, . . . , identN to fresh locations. The expression
is evaluated, and its values are stored into those locations. (It is an error
if expression does not have exactly N values.)

‘ident’ The environment in which the ‘receive’ expression is evaluated is ex-
tended by binding ident to a fresh location. The expression is evaluated,
its values are converted into a newly allocated list, and the list is stored
in the location bound to ident.

http://srfi.schemers.org/srfi-8/srfi-8.html

52 MIT/GNU Scheme 10.1.1

‘(ident1 ... identN . identN+1)’
The environment in which the ‘receive’ expression is evaluated is ex-
tended by binding ident1, . . . , identN+1 to fresh locations. The expres-
sion is evaluated. Its first N values are stored into the locations bound
to ident1 . . . identN. Any remaining values are converted into a newly
allocated list, which is stored into the location bound to identN+1. (It is
an error if expression does not have at least N values.)

In any case, the expressions in body are evaluated sequentially in the extended envi-
ronment. The results of the last expression in the body are the values of the ‘receive’
expression.

2.12.3 and-let* (SRFI 2)

SRFI 2 provides a form that combines ‘and’ and ‘let*’ for a logically short-circuiting se-
quential binding operator.

[special form]and-let* (clause . . .) body
Runs through each of the clauses left-to-right, short-circuiting like ‘and’ in that the
first false clause will result in the whole ‘and-let*’ form returning false. If a body is
supplied, and all of the clauses evaluate true, then the body is evaluated sequentially
as if in a ‘begin’ form, and the value of the ‘and-let*’ expression is the value of the
last body form, evaluated in a tail position with respect to the ‘and-let*’ expression.
If no body is supplied, the value of the last clause, also evaluated in a tail position
with respect to the ‘and-let*’ expression, is used instead.

Each clause should have one of the following forms:

‘identifier’
in which case identifier’s value is tested.

‘(expression)’
in which case the value of expression is tested.

‘(identifier expression)’
in which case expression is evaluated, and, if its value is not false, iden-
tifier is bound to that value for the remainder of the clauses and the
optional body.

Example:

(and-let* ((list (compute-list))

((pair? list))

(item (car list))

((integer? item)))

(sqrt item))

2.12.4 define-record-type (SRFI 9)

The ‘define-record-type’ syntax described in SRFI 9 is a slight simplification of one
written for Scheme 48 by Jonathan Rees. Unlike many record-defining special forms, it does
not create any new identifiers. Instead, the names of the record type, predicate, constructor,
and so on are all listed explicitly in the source. This has the following advantages:

http://srfi.schemers.org/srfi-2/srfi-2.html
http://srfi.schemers.org/srfi-9/srfi-9.html

Chapter 2: Special Forms 53

• It can be defined using a simple macro in Scheme implementations that provide a
procedural interface for creating record types.

• It does not restrict users to a particular naming convention.

• Tools like grep and the GNU Emacs tag facility will see the defining occurance of each
identifier.

[special form]define-record-type type-name (constructor-name field-tag . . .)
predicate-name field-spec . . .

Type-name, contructor-name, field-tag, and predicate-name are identifiers. Field-
spec has one of these two forms:

(field-tag accessor-name)

(field-tag accessor-name modifier-name)

where field-tag, accessor-name, and modifier-name are each identifiers.

define-record-type is generative: each use creates a new record type that is distinct
from all existing types, including other record types and Scheme’s predefined types.
Record-type definitions may only occur at top-level (there are two possible semantics
for “internal” record-type definitions, generative and nongenerative, and no consensus
as to which is better).

An instance of define-record-type is equivalent to the following definitions:

• Type-name is bound to a representation of the record type itself. Operations
on record types, such as defining print methods, reflection, etc. are left to other
SRFIs.

• constructor-name is bound to a procedure that takes as many arguments as
there are field-tags in the (constructor-name . . .) subform and returns a new
type-name record. Fields whose tags are listed with constructor-name have the
corresponding argument as their initial value. The initial values of all other fields
are unspecified.

• predicate-name is a predicate that returns #t when given a value returned by
constructor-name and #f for everything else.

• Each accessor-name is a procedure that takes a record of type type-name and
returns the current value of the corresponding field. It is an error to pass an
accessor a value which is not a record of the appropriate type.

• Each modifier-name is a procedure that takes a record of type type-name and
a value which becomes the new value of the corresponding field; an unspecified
value is returned. It is an error to pass a modifier a first argument which is not
a record of the appropriate type.

Assigning the value of any of these identifiers has no effect on the behavior of any of
their original values.

The following

(define-record-type :pare

(kons x y)

pare?

(x kar set-kar!)

(y kdr))

54 MIT/GNU Scheme 10.1.1

defines ‘kons’ to be a constructor, ‘kar’ and ‘kdr’ to be accessors, ‘set-kar!’ to be a
modifier, and ‘pare?’ to be a predicate for objects of type ‘:pare’.

(pare? (kons 1 2)) ⇒ #t

(pare? (cons 1 2)) ⇒ #f

(kar (kons 1 2)) ⇒ 1

(kdr (kons 1 2)) ⇒ 2

(let ((k (kons 1 2)))

(set-kar! k 3)

(kar k)) ⇒ 3

55

3 Equivalence Predicates

A predicate is a procedure that always returns a boolean value (#t or #f). An equivalence
predicate is the computational analogue of a mathematical equivalence relation (it is sym-
metric, reflexive, and transitive). Of the equivalence predicates described in this section,
eq? is the finest or most discriminating, and equal? is the coarsest. eqv? is slightly less
discriminating than eq?.

[procedure]eqv? obj1 obj2
The eqv? procedure defines a useful equivalence relation on objects. Briefly, it returns
#t if obj1 and obj2 should normally be regarded as the same object.

The eqv? procedure returns #t if:

• obj1 and obj2 are both #t or both #f.

• obj1 and obj2 are both interned symbols and

(string=? (symbol->string obj1)

(symbol->string obj2))

⇒ #t

• obj1 and obj2 are both numbers, are numerically equal according to the = pro-
cedure, and are either both exact or both inexact (see Chapter 4 [Numbers],
page 61).

• obj1 and obj2 are both characters and are the same character according to the
char=? procedure (see Chapter 5 [Characters], page 81).

• both obj1 and obj2 are the empty list.

• obj1 and obj2 are procedures whose location tags are equal.

• obj1 and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote the same locations in the store.

The eqv? procedure returns #f if:

• obj1 and obj2 are of different types.

• one of obj1 and obj2 is #t but the other is #f.

• obj1 and obj2 are symbols but

(string=? (symbol->string obj1)

(symbol->string obj2))

⇒ #f

• one of obj1 and obj2 is an exact number but the other is an inexact number.

• obj1 and obj2 are numbers for which the = procedure returns #f.

• obj1 and obj2 are characters for which the char=? procedure returns #f.

• one of obj1 and obj2 is the empty list but the other is not.

• obj1 and obj2 are procedures that would behave differently (return a different
value or have different side effects) for some arguments.

• obj1 and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote distinct locations.

56 MIT/GNU Scheme 10.1.1

Some examples:

(eqv? ’a ’a) ⇒ #t

(eqv? ’a ’b) ⇒ #f

(eqv? 2 2) ⇒ #t

(eqv? ’() ’()) ⇒ #t

(eqv? 100000000 100000000) ⇒ #t

(eqv? (cons 1 2) (cons 1 2)) ⇒ #f

(eqv? (lambda () 1)

(lambda () 2)) ⇒ #f

(eqv? #f ’nil) ⇒ #f

(let ((p (lambda (x) x)))

(eqv? p p)) ⇒ #t

The following examples illustrate cases in which the above rules do not fully specify
the behavior of eqv?. All that can be said about such cases is that the value returned
by eqv? must be a boolean.

(eqv? "" "") ⇒ unspecified
(eqv? ’#() ’#()) ⇒ unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) ⇒ unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) ⇒ unspecified

The next set of examples shows the use of eqv? with procedures that have local state.
gen-counter must return a distinct procedure every time, since each procedure has
its own internal counter. gen-loser, however, returns equivalent procedures each
time, since the local state does not affect the value or side effects of the procedures.

(define gen-counter

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) n))))

(let ((g (gen-counter)))

(eqv? g g)) ⇒ #t

(eqv? (gen-counter) (gen-counter))

⇒ #f

(define gen-loser

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) ⇒ #t

(eqv? (gen-loser) (gen-loser))

⇒ unspecified

Chapter 3: Equivalence Predicates 57

(letrec ((f (lambda () (if (eqv? f g) ’both ’f)))

(g (lambda () (if (eqv? f g) ’both ’g)))

(eqv? f g))

⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))

(g (lambda () (if (eqv? f g) ’g ’both)))

(eqv? f g))

⇒ #f

Objects of distinct types must never be regarded as the same object.

Since it is an error to modify constant objects (those returned by literal expressions),
the implementation may share structure between constants where appropriate. Thus
the value of eqv? on constants is sometimes unspecified.

(let ((x ’(a)))

(eqv? x x)) ⇒ #t

(eqv? ’(a) ’(a)) ⇒ unspecified
(eqv? "a" "a") ⇒ unspecified
(eqv? ’(b) (cdr ’(a b))) ⇒ unspecified

Rationale: The above definition of eqv? allows implementations latitude in their
treatment of procedures and literals: implementations are free either to detect or to
fail to detect that two procedures or two literals are equivalent to each other, and
can decide whether or not to merge representations of equivalent objects by using the
same pointer or bit pattern to represent both.

58 MIT/GNU Scheme 10.1.1

[procedure]eq? obj1 obj2
eq? is similar to eqv? except that in some cases it is capable of discerning distinctions
finer than those detectable by eqv?.

eq? and eqv? are guaranteed to have the same behavior on symbols, booleans, the
empty list, pairs, records, and non-empty strings and vectors. eq?’s behavior on
numbers and characters is implementation-dependent, but it will always return either
true or false, and will return true only when eqv? would also return true. eq? may
also behave differently from eqv? on empty vectors and empty strings.

(eq? ’a ’a) ⇒ #t

(eq? ’(a) ’(a)) ⇒ unspecified
(eq? (list ’a) (list ’a)) ⇒ #f

(eq? "a" "a") ⇒ unspecified
(eq? "" "") ⇒ unspecified
(eq? ’() ’()) ⇒ #t

(eq? 2 2) ⇒ unspecified
(eq? #\A #\A) ⇒ unspecified
(eq? car car) ⇒ #t

(let ((n (+ 2 3)))

(eq? n n)) ⇒ unspecified
(let ((x ’(a)))

(eq? x x)) ⇒ #t

(let ((x ’#()))

(eq? x x)) ⇒ #t

(let ((p (lambda (x) x)))

(eq? p p)) ⇒ #t

Rationale: It will usually be possible to implement eq? much more efficiently than
eqv?, for example, as a simple pointer comparison instead of as some more compli-
cated operation. One reason is that it may not be possible to compute eqv? of two
numbers in constant time, whereas eq? implemented as pointer comparison will always
finish in constant time. eq? may be used like eqv? in applications using procedures
to implement objects with state since it obeys the same constraints as eqv?.

59

[procedure]equal? obj1 obj2
equal? recursively compares the contents of pairs, vectors, and strings, applying
eqv? on other objects such as numbers, symbols, and records. A rule of thumb is
that objects are generally equal? if they print the same. equal? may fail to terminate
if its arguments are circular data structures.

(equal? ’a ’a) ⇒ #t

(equal? ’(a) ’(a)) ⇒ #t

(equal? ’(a (b) c)

’(a (b) c)) ⇒ #t

(equal? "abc" "abc") ⇒ #t

(equal? 2 2) ⇒ #t

(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) ⇒ #t

(equal? (lambda (x) x)

(lambda (y) y)) ⇒ unspecified

61

4 Numbers

(This section is largely taken from the Revised^4 Report on the Algorithmic Language
Scheme.)

Numerical computation has traditionally been neglected by the Lisp community. Until
Common Lisp there was no carefully thought out strategy for organizing numerical com-
putation, and with the exception of the MacLisp system little effort was made to execute
numerical code efficiently. This report recognizes the excellent work of the Common Lisp
committee and accepts many of their recommendations. In some ways this report simplifies
and generalizes their proposals in a manner consistent with the purposes of Scheme.

It is important to distinguish between the mathematical numbers, the Scheme numbers
that attempt to model them, the machine representations used to implement the Scheme
numbers, and notations used to write numbers. This report uses the types number, complex,
real, rational, and integer to refer to both mathematical numbers and Scheme numbers.
Machine representations such as fixed point and floating point are referred to by names
such as fixnum and flonum.

4.1 Numerical types

Mathematically, numbers may be arranged into a tower of subtypes in which each level is
a subset of the level above it:

number
complex
real
rational
integer

For example, 3 is an integer. Therefore 3 is also a rational, a real, and a complex. The
same is true of the Scheme numbers that model 3. For Scheme numbers, these types are
defined by the predicates number?, complex?, real?, rational?, and integer?.

There is no simple relationship between a number’s type and its representation inside
a computer. Although most implementations of Scheme will offer at least two different
representations of 3, these different representations denote the same integer.

Scheme’s numerical operations treat numbers as abstract data, as independent of their
representation as possible. Although an implementation of Scheme may use fixnum, flonum,
and perhaps other representations for numbers, this should not be apparent to a casual
programmer writing simple programs.

It is necessary, however, to distinguish between numbers that are represented exactly
and those that may not be. For example, indexes into data structures must be known
exactly, as must some polynomial coefficients in a symbolic algebra system. On the other
hand, the results of measurements are inherently inexact, and irrational numbers may be
approximated by rational and therefore inexact approximations. In order to catch uses of
inexact numbers where exact numbers are required, Scheme explicitly distinguishes exact
from inexact numbers. This distinction is orthogonal to the dimension of type.

62 MIT/GNU Scheme 10.1.1

4.2 Exactness

Scheme numbers are either exact or inexact. A number is exact if it was written as an
exact constant or was derived from exact numbers using only exact operations. A number
is inexact if it was written as an inexact constant, if it was derived using inexact ingredients,
or if it was derived using inexact operations. Thus inexactness is a contagious property of
a number.

If two implementations produce exact results for a computation that did not involve in-
exact intermediate results, the two ultimate results will be mathematically equivalent. This
is generally not true of computations involving inexact numbers since approximate methods
such as floating point arithmetic may be used, but it is the duty of each implementation to
make the result as close as practical to the mathematically ideal result.

Rational operations such as + should always produce exact results when given exact
arguments. If the operation is unable to produce an exact result, then it may either report
the violation of an implementation restriction or it may silently coerce its result to an
inexact value. See Section 4.3 [Implementation restrictions], page 62.

With the exception of exact, the operations described in this section must generally
return inexact results when given any inexact arguments. An operation may, however,
return an exact result if it can prove that the value of the result is unaffected by the
inexactness of its arguments. For example, multiplication of any number by an exact zero
may produce an exact zero result, even if the other argument is inexact.

4.3 Implementation restrictions

Implementations of Scheme are not required to implement the whole tower of subtypes
(see Section 4.1 [Numerical types], page 61), but they must implement a coherent subset
consistent with both the purposes of the implementation and the spirit of the Scheme
language. For example, an implementation in which all numbers are real may still be quite
useful.1

Implementations may also support only a limited range of numbers of any type, subject
to the requirements of this section. The supported range for exact numbers of any type
may be different from the supported range for inexact numbers of that type. For example,
an implementation that uses flonums to represent all its inexact real numbers may support
a practically unbounded range of exact integers and rationals while limiting the range of
inexact reals (and therefore the range of inexact integers and rationals) to the dynamic range
of the flonum format. Furthermore the gaps between the representable inexact integers and
rationals are likely to be very large in such an implementation as the limits of this range
are approached.

An implementation of Scheme must support exact integers throughout the range of
numbers that may be used for indexes of lists, vectors, and strings or that may result
from computing the length of a list, vector, or string. The length, vector-length, and
string-length procedures must return an exact integer, and it is an error to use anything
but an exact integer as an index. Furthermore any integer constant within the index range,

1 MIT/GNU Scheme implements the whole tower of numerical types. It has unlimited-precision exact
integers and exact rationals. Flonums are used to implement all inexact reals; on machines that support
ieee floating-point arithmetic these are double-precision floating-point numbers.

Chapter 4: Numbers 63

if expressed by an exact integer syntax, will indeed be read as an exact integer, regardless of
any implementation restrictions that may apply outside this range. Finally, the procedures
listed below will always return an exact integer result provided all their arguments are exact
integers and the mathematically expected result is representable as an exact integer within
the implementation:

* gcd modulo

+ imag-part numerator

- exact quotient

abs lcm rationalize

angle magnitude real-part

ceiling make-polar remainder

denominator make-rectangular round

expt max truncate

floor min

Implementations are encouraged, but not required, to support exact integers and exact
rationals of practically unlimited size and precision, and to implement the above procedures
and the / procedure in such a way that they always return exact results when given exact
arguments. If one of these procedures is unable to deliver an exact result when given exact
arguments, then it may either report a violation of an implementation restriction or it may
silently coerce its result to an inexact number. Such a coercion may cause an error later.

An implementation may use floating point and other approximate representation strate-
gies for inexact numbers. This report recommends, but does not require, that the ieee
32-bit and 64-bit floating point standards be followed by implementations that use flonum
representations, and that implementations using other representations should match or ex-
ceed the precision achievable using these floating point standards.

In particular, implementations that use flonum representations must follow these rules:
A flonum result must be represented with at least as much precision as is used to express any
of the inexact arguments to that operation. It is desirable (but not required) for potentially
inexact operations such as sqrt, when applied to exact arguments, to produce exact answers
whenever possible (for example the square root of an exact 4 ought to be an exact 2). If,
however, an exact number is operated upon so as to produce an inexact result (as by sqrt),
and if the result is represented as a flonum, then the most precise flonum format available
must be used; but if the result is represented in some other way then the representation
must have at least as much precision as the most precise flonum format available.

Although Scheme allows a variety of written notations for numbers, any particular im-
plementation may support only some of them.2 For example, an implementation in which
all numbers are real need not support the rectangular and polar notations for complex num-
bers. If an implementation encounters an exact numerical constant that it cannot represent
as an exact number, then it may either report a violation of an implementation restriction
or it may silently represent the constant by an inexact number.

2 MIT/GNU Scheme implements all of the written notations for numbers.

64 MIT/GNU Scheme 10.1.1

4.4 Syntax of numerical constants

A number may be written in binary, octal, decimal, or hexadecimal by the use of a radix
prefix. The radix prefixes are #b (binary), #o (octal), #d (decimal), and #x (hexadecimal).
With no radix prefix, a number is assumed to be expressed in decimal.

A numerical constant may be specified to be either exact or inexact by a prefix. The
prefixes are #e for exact, and #i for inexact. An exactness prefix may appear before or after
any radix prefix that is used. If the written representation of a number has no exactness
prefix, the constant may be either inexact or exact. It is inexact if it contains a decimal
point, an exponent, or a # character in the place of a digit, otherwise it is exact.

In systems with inexact numbers of varying precisions it may be useful to specify the
precision of a constant. For this purpose, numerical constants may be written with an
exponent marker that indicates the desired precision of the inexact representation. The
letters s, f, d, and l specify the use of short, single, double, and long precision, respectively.
(When fewer than four internal inexact representations exist, the four size specifications
are mapped onto those available. For example, an implementation with two internal repre-
sentations may map short and single together and long and double together.) In addition,
the exponent marker e specifies the default precision for the implementation. The default
precision has at least as much precision as double, but implementations may wish to allow
this default to be set by the user.

3.14159265358979F0

Round to single — 3.141593

0.6L0

Extend to long — .600000000000000

4.5 Numerical operations

See Section 1.1.3 [Entry Format], page 5, for a summary of the naming conventions used
to specify restrictions on the types of arguments to numerical routines. The examples
used in this section assume that any numerical constant written using an exact notation is
indeed represented as an exact number. Some examples also assume that certain numerical
constants written using an inexact notation can be represented without loss of accuracy;
the inexact constants were chosen so that this is likely to be true in implementations that
use flonums to represent inexact numbers.

[procedure]number? object
[procedure]complex? object
[procedure]real? object
[procedure]rational? object
[procedure]integer? object

These numerical type predicates can be applied to any kind of argument, including
non-numbers. They return #t if the object is of the named type, and otherwise they
return #f. In general, if a type predicate is true of a number then all higher type
predicates are also true of that number. Consequently, if a type predicate is false of
a number, then all lower type predicates are also false of that number.3

3 In MIT/GNU Scheme the rational? procedure is the same as real?, and the complex? procedure is
the same as number?.

Chapter 4: Numbers 65

If z is an inexact complex number, then (real? z) is true if and only if (zero?
(imag-part z)) is true. If x is an inexact real number, then (integer? x) is true if
and only if (= x (round x)).

(complex? 3+4i) ⇒ #t

(complex? 3) ⇒ #t

(real? 3) ⇒ #t

(real? -2.5+0.0i) ⇒ #t

(real? #e1e10) ⇒ #t

(rational? 6/10) ⇒ #t

(rational? 6/3) ⇒ #t

(integer? 3+0i) ⇒ #t

(integer? 3.0) ⇒ #t

(integer? 8/4) ⇒ #t

Note: The behavior of these type predicates on inexact numbers is unreliable, since
any inaccuracy may affect the result.

[procedure]exact? z
[procedure]inexact? z

These numerical predicates provide tests for the exactness of a quantity. For any
Scheme number, precisely one of these predicates is true.

[procedure]exact-integer? object
[procedure]exact-nonnegative-integer? object
[procedure]exact-rational? object

These procedures test for some very common types of numbers. These tests could be
written in terms of simpler predicates, but are more efficient.

[procedure]= z1 z2 z3 . . .
[procedure]< x1 x2 x3 . . .
[procedure]> x1 x2 x3 . . .
[procedure]<= x1 x2 x3 . . .
[procedure]>= x1 x2 x3 . . .

These procedures return #t if their arguments are (respectively): equal, monotonically
increasing, monotonically decreasing, monotonically nondecreasing, or monotonically
nonincreasing.

These predicates are transitive. Note that the traditional implementations of these
predicates in Lisp-like languages are not transitive.

Note: While it is not an error to compare inexact numbers using these predicates,
the results may be unreliable because a small inaccuracy may affect the result; this
is especially true of = and zero?. When in doubt, consult a numerical analyst.

[procedure]zero? z
[procedure]positive? x
[procedure]negative? x
[procedure]odd? x
[procedure]even? x

These numerical predicates test a number for a particular property, returning #t or
#f. See note above regarding inexact numbers.

66 MIT/GNU Scheme 10.1.1

[procedure]max x1 x2 . . .
[procedure]min x1 x2 . . .

These procedures return the maximum or minimum of their arguments.

(max 3 4) ⇒ 4 ; exact
(max 3.9 4) ⇒ 4.0 ; inexact

Note: If any argument is inexact, then the result will also be inexact (unless the
procedure can prove that the inaccuracy is not large enough to affect the result, which
is possible only in unusual implementations). If min or max is used to compare numbers
of mixed exactness, and the numerical value of the result cannot be represented as an
inexact number without loss of accuracy, then the procedure may report a violation
of an implementation restriction.4

[procedure]+ z1 . . .
[procedure]* z1 . . .

These procedures return the sum or product of their arguments.

(+ 3 4) ⇒ 7

(+ 3) ⇒ 3

(+) ⇒ 0

(* 4) ⇒ 4

(*) ⇒ 1

[procedure]- z1 z2 . . .
[procedure]/ z1 z2 . . .

With two or more arguments, these procedures return the difference or quotient of
their arguments, associating to the left. With one argument, however, they return
the additive or multiplicative inverse of their argument.

(- 3 4) ⇒ -1

(- 3 4 5) ⇒ -6

(- 3) ⇒ -3

(/ 3 4 5) ⇒ 3/20

(/ 3) ⇒ 1/3

[procedure]1+ z
[procedure]-1+ z

(1+ z) is equivalent to (+ z 1); (-1+ z) is equivalent to (- z 1).

[procedure]abs x
abs returns the magnitude of its argument.

(abs -7) ⇒ 7

[procedure]quotient n1 n2
[procedure]remainder n1 n2
[procedure]modulo n1 n2

These procedures implement number-theoretic (integer) division: for positive integers
n1 and n2, if n3 and n4 are integers such that

n1 = n2n3 + n4

4 MIT/GNU Scheme signals an error of type condition-type:bad-range-argument in this case.

Chapter 4: Numbers 67

0 ≤ n4 < n2

then

(quotient n1 n2) ⇒ n3

(remainder n1 n2) ⇒ n4

(modulo n1 n2) ⇒ n4

For integers n1 and n2 with n2 not equal to 0,

(= n1

(+ (* n2 (quotient n1 n2))

(remainder n1 n2)))

⇒ #t

provided all numbers involved in that computation are exact.

The value returned by quotient always has the sign of the product of its arguments.
remainder and modulo differ on negative arguments — the remainder always has
the sign of the dividend, the modulo always has the sign of the divisor:

(modulo 13 4) ⇒ 1

(remainder 13 4) ⇒ 1

(modulo -13 4) ⇒ 3

(remainder -13 4) ⇒ -1

(modulo 13 -4) ⇒ -3

(remainder 13 -4) ⇒ 1

(modulo -13 -4) ⇒ -1

(remainder -13 -4) ⇒ -1

(remainder -13 -4.0) ⇒ -1.0 ; inexact

Note that quotient is the same as integer-truncate.

[procedure]integer-floor n1 n2
[procedure]integer-ceiling n1 n2
[procedure]integer-truncate n1 n2
[procedure]integer-round n1 n2

These procedures combine integer division with rounding. For example, the following
are equivalent:

(integer-floor n1 n2)

(floor (/ n1 n2))

However, the former is faster and does not produce an intermediate result.

Note that integer-truncate is the same as quotient.

[procedure]integer-divide n1 n2
[procedure]integer-divide-quotient qr
[procedure]integer-divide-remainder qr

integer-divide is equivalent to performing both quotient and remainder at
once. The result of integer-divide is an object with two components; the

68 MIT/GNU Scheme 10.1.1

procedures integer-divide-quotient and integer-divide-remainder select
those components. These procedures are useful when both the quotient and
remainder are needed; often computing both of these numbers simultaneously is
much faster than computing them separately.

For example, the following are equivalent:

(lambda (n d)

(cons (quotient n d)

(remainder n d)))

(lambda (n d)

(let ((qr (integer-divide n d)))

(cons (integer-divide-quotient qr)

(integer-divide-remainder qr))))

[procedure]gcd n1 . . .
[procedure]lcm n1 . . .

These procedures return the greatest common divisor or least common multiple of
their arguments. The result is always non-negative.

(gcd 32 -36) ⇒ 4

(gcd) ⇒ 0

(lcm 32 -36) ⇒ 288

(lcm 32.0 -36) ⇒ 288.0 ; inexact
(lcm) ⇒ 1

[procedure]numerator q
[procedure]denominator q

These procedures return the numerator or denominator of their argument; the result
is computed as if the argument was represented as a fraction in lowest terms. The
denominator is always positive. The denominator of 0 is defined to be 1.

(numerator (/ 6 4)) ⇒ 3

(denominator (/ 6 4)) ⇒ 2

(denominator (inexact (/ 6 4))) ⇒ 2.0

[procedure]floor x
[procedure]ceiling x
[procedure]truncate x
[procedure]round x

These procedures return integers. floor returns the largest integer not larger than
x. ceiling returns the smallest integer not smaller than x. truncate returns the
integer closest to x whose absolute value is not larger than the absolute value of x.
round returns the closest integer to x, rounding to even when x is halfway between
two integers.

Rationale: round rounds to even for consistency with the rounding modes required
by the ieee floating point standard.

Chapter 4: Numbers 69

Note: If the argument to one of these procedures is inexact, then the result will also
be inexact. If an exact value is needed, the result should be passed to the exact

procedure (or use one of the procedures below).

(floor -4.3) ⇒ -5.0

(ceiling -4.3) ⇒ -4.0

(truncate -4.3) ⇒ -4.0

(round -4.3) ⇒ -4.0

(floor 3.5) ⇒ 3.0

(ceiling 3.5) ⇒ 4.0

(truncate 3.5) ⇒ 3.0

(round 3.5) ⇒ 4.0 ; inexact

(round 7/2) ⇒ 4 ; exact
(round 7) ⇒ 7

[procedure]floor->exact x
[procedure]ceiling->exact x
[procedure]truncate->exact x
[procedure]round->exact x

These procedures are similar to the preceding procedures except that they always
return an exact result. For example, the following are equivalent

(floor->exact x)

(exact (floor x))

except that the former is faster and has fewer range restrictions.

[procedure]rationalize x y
[procedure]rationalize->exact x y

rationalize returns the simplest rational number differing from x by no more than
y. A rational number r1 is simpler than another rational number r2 if r1=p1/q1
and r2=p2/q2 (both in lowest terms) and |p1|<=|p2| and |q1|<=|q2|. Thus 3/5 is
simpler than 4/7. Although not all rationals are comparable in this ordering (consider
2/7 and 3/5) any interval contains a rational number that is simpler than every other
rational number in that interval (the simpler 2/5 lies between 2/7 and 3/5). Note
that 0=0/1 is the simplest rational of all.

(rationalize (exact .3) 1/10) ⇒ 1/3 ; exact
(rationalize .3 1/10) ⇒ #i1/3 ; inexact

rationalize->exact is similar to rationalize except that it always returns an exact
result.

[procedure]simplest-rational x y
[procedure]simplest-exact-rational x y

simplest-rational returns the simplest rational number between x and y inclusive;
simplest-exact-rational is similar except that it always returns an exact result.

These procedures implement the same functionality as rationalize and
rationalize->exact, except that they specify the input range by its endpoints;
rationalize specifies the range by its center point and its (half-) width.

70 MIT/GNU Scheme 10.1.1

[procedure]exp z
[procedure]log z
[procedure]sin z
[procedure]cos z
[procedure]tan z
[procedure]asin z
[procedure]acos z
[procedure]atan z
[procedure]atan y x

These procedures compute the usual transcendental functions. log computes the
natural logarithm of z (not the base ten logarithm). asin, acos, and atan compute
arcsine, arccosine, and arctangent, respectively. The two-argument variant of atan
computes (angle (make-rectangular x y)) (see below).

In general, the mathematical functions log, arcsine, arccosine, and arctangent are
multiply defined. For nonzero real x, the value of log x is defined to be the one
whose imaginary part lies in the range minus pi (exclusive) to pi (inclusive). log 0 is
undefined. The value of log z when z is complex is defined according to the formula

log z = logmagnitude(z) + iangle(z)

With log defined this way, the values of arcsine, arccosine, and arctangent are accord-
ing to the following formulae:

sin−1 z = −i log(iz +
√
1− z2)

cos−1 z = π/2− sin−1 z

tan−1 z = (log(1 + iz)− log(1− iz))/(2i)

The above specification follows Common Lisp: the Language, which in turn cites
Principal Values and Branch Cuts in Complex APL; refer to these sources for more
detailed discussion of branch cuts, boundary conditions, and implementation of these
functions. When it is possible these procedures produce a real result from a real
argument.

[procedure]sqrt z
Returns the principal square root of z. The result will have either positive real part,
or zero real part and non-negative imaginary part.

[procedure]expt z1 z2
Returns z1 raised to the power z2:

z1
z2 = ez2 log z1

00 is defined to be equal to 1.

[procedure]make-rectangular x1 x2
[procedure]make-polar x3 x4
[procedure]real-part z
[procedure]imag-part z

Chapter 4: Numbers 71

[procedure]magnitude z
[procedure]angle z
[procedure]conjugate z

Suppose x1, x2, x3, and x4 are real numbers and z is a complex number such that

z = x1 + x2i = x3 · eix4

Then make-rectangular and make-polar return z, real-part returns x1, imag-part
returns x2, magnitude returns x3, and angle returns x4. In the case of angle, whose
value is not uniquely determined by the preceding rule, the value returned will be the
one in the range minus pi (exclusive) to pi (inclusive).

conjugate returns the complex conjugate of z.

The procedures exact and inexact implement the natural one-to-one correspondence
between exact and inexact integers throughout an implementation-dependent range.

[procedure]inexact z
[procedure]exact->inexact z

inexact returns an inexact representation of z. The value returned is the inexact
number that is numerically closest to the argument. If an exact argument has no
reasonably close inexact equivalent, then a violation of an implementation restriction
may be reported; MIT/GNU Scheme signals an error of type condition-type:bad-
range-argument in this case.

The procedure exact->inexact has been deprecated by R7RS.

[procedure]inexact z
[procedure]exact->inexact z

inexact returns an inexact representation of z. The value returned is the inexact
number that is numerically closest to the argument. If an exact argument has no
reasonably close inexact equivalent, then a violation of an implementation restriction
may be reported; MIT/GNU Scheme signals an error of type condition-type:bad-
range-argument in this case.

exact returns an exact representation of z. The value returned is the exact number
that is numerically closest to the argument. If an inexact argument has no reason-
ably close exact equivalent, then a violation of an implementation restriction may be
reported; in MIT/GNU Scheme this case does not occur because all inexact numbers
are representable as exact numbers.

The procedure inexact->exact has been deprecated by R7RS.

4.6 Numerical input and output

[procedure]number->string number [radix]
Radix must be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to
10. The procedure number->string takes a number and a radix and returns as a
string an external representation of the given number in the given radix such that

http://r7rs.org/
http://r7rs.org/

72 MIT/GNU Scheme 10.1.1

(let ((number number)

(radix radix))

(eqv? number

(string->number (number->string number radix)

radix)))

is true. It is an error if no possible result makes this expression true.

If number is inexact, the radix is 10, and the above expression can be satisfied by
a result that contains a decimal point, then the result contains a decimal point and
is expressed using the minimum number of digits (exclusive of exponent and trailing
zeroes) needed to make the above expression true; otherwise the format of the result
is unspecified.

The result returned by number->string never contains an explicit radix prefix.

Note: The error case can occur only when number is not a complex number or is a
complex number with an non-rational real or imaginary part.

Rationale: If number is an inexact number represented using flonums, and the radix
is 10, then the above expression is normally satisfied by a result containing a decimal
point. The unspecified case allows for infinities, NaNs, and non-flonum representa-
tions.

[variable]flonum-parser-fast?
This variable controls the behavior of string->number when parsing inexact numbers.
Specifically, it allows the user to trade off accuracy against speed.

When set to its default value, #f, the parser provides maximal accuracy, as required
by the Scheme standard. If set to #t, the parser uses faster algorithms that will
sometimes introduce small errors in the result. The errors affect a few of the least-
significant bits of the result, and consequently can be tolerated by many applications.

[variable]flonum-unparser-cutoff
This variable is deprecated; use param:flonum-printer-cutoff instead.

[parameter]param:flonum-printer-cutoff
This parameter controls the action of number->string when number is a flonum (and
consequently controls all printing of flonums). This parameter may be called with an
argument to set its value.

The value of this parameter is normally a list of three items:

rounding-type
One of the following symbols: normal, relative, or absolute. The sym-
bol normal means that the number should be printed with full precision.
The symbol relative means that the number should be rounded to a
specific number of digits. The symbol absolute means that the number
should be rounded so that there are a specific number of digits to the
right of the decimal point.

precision An exact integer. If rounding-type is normal, precision is ignored. If
rounding-type is relative, precision must be positive, and it specifies
the number of digits to which the printed representation will be rounded.

Chapter 4: Numbers 73

If rounding-type is absolute, the printed representation will be rounded
precision digits to the right of the decimal point; if precision is negative,
the representation is rounded (- precision) digits to the left of the
decimal point.

format-type
One of the symbols: normal, scientific, or engineering. This speci-
fies the format in which the number will be printed.
scientific specifies that the number will be printed using scientific no-
tation: x.xxxeyyy. In other words, the number is printed as a significand
between zero inclusive and ten exclusive, and an exponent. engineering
is like scientific, except that the exponent is always a power of three,
and the significand is constrained to be between zero inclusive and 1000
exclusive. If normal is specified, the number will be printed in positional
notation if it is “small enough”, otherwise it is printed in scientific nota-
tion. A number is “small enough” when the number of digits that would
be printed using positional notation does not exceed the number of digits
of precision in the underlying floating-point number representation; ieee
double-precision floating-point numbers have 17 digits of precision.

This three-element list may be abbreviated in two ways. First, the symbol normal
may be used, which is equivalent to the list (normal 0 normal). Second, the third
element of the list, format-type, may be omitted, in which case it defaults to normal.

The default value for param:flonum-printer-cutoff is normal. If it is bound to a
value different from those described here, number->string issues a warning and acts
as though the value had been normal.

Some examples of param:flonum-printer-cutoff:

(number->string (* 4 (atan 1 1)))

⇒ "3.141592653589793"

(parameterize ((param:flonum-printer-cutoff ’(relative 5)))

(lambda ()

(number->string (* 4 (atan 1 1)))))

⇒ "3.1416"

(parameterize ((param:flonum-printer-cutoff ’(relative 5)))

(lambda ()

(number->string (* 4000 (atan 1 1)))))

⇒ "3141.6"

(parameterize ((param:flonum-printer-cutoff ’(relative 5 scientific)))

(lambda ()

(number->string (* 4000 (atan 1 1)))))

⇒ "3.1416e3"

(parameterize ((param:flonum-printer-cutoff ’(relative 5 scientific)))

(lambda ()

(number->string (* 40000 (atan 1 1)))))

⇒ "3.1416e4"

(parameterize ((param:flonum-printer-cutoff ’(relative 5 engineering)))

(lambda ()

74 MIT/GNU Scheme 10.1.1

(number->string (* 40000 (atan 1 1)))))

⇒ "31.416e3"

(parameterize ((param:flonum-printer-cutoff ’(absolute 5)))

(lambda ()

(number->string (* 4 (atan 1 1)))))

⇒ "3.14159"

(parameterize ((param:flonum-printer-cutoff ’(absolute 5)))

(lambda ()

(number->string (* 4000 (atan 1 1)))))

⇒ "3141.59265"

(parameterize ((param:flonum-printer-cutoff ’(absolute -4)))

(lambda ()

(number->string (* 4e10 (atan 1 1)))))

⇒ "31415930000."

(parameterize ((param:flonum-printer-cutoff ’(absolute -4 scientific)))

(lambda ()

(number->string (* 4e10 (atan 1 1)))))

⇒ "3.141593e10"

(parameterize ((param:flonum-printer-cutoff ’(absolute -4 engineering)))

(lambda ()

(number->string (* 4e10 (atan 1 1)))))

⇒ "31.41593e9"

(parameterize ((param:flonum-printer-cutoff ’(absolute -5)))

(lambda ()

(number->string (* 4e10 (atan 1 1)))))

⇒ "31415900000."

[procedure]string->number string [radix]
Returns a number of the maximally precise representation expressed by the given
string. Radix must be an exact integer, either 2, 8, 10, or 16. If supplied, radix
is a default radix that may be overridden by an explicit radix prefix in string (e.g.
"#o177"). If radix is not supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then string->number returns #f.

(string->number "100") ⇒ 100

(string->number "100" 16) ⇒ 256

(string->number "1e2") ⇒ 100.0

(string->number "15##") ⇒ 1500.0

Note that a numeric representation using a decimal point or an exponent marker is
not recognized unless radix is 10.

4.7 Fixnum and Flonum Operations

This section describes numerical operations that are restricted forms of the operations
described above. These operations are useful because they compile very efficiently. However,
care should be exercised: if used improperly, these operations can return incorrect answers,
or even malformed objects that confuse the garbage collector.

Chapter 4: Numbers 75

4.7.1 Fixnum Operations

A fixnum is an exact integer that is small enough to fit in a machine word. In MIT/GNU
Scheme, fixnums are typically 24 or 26 bits, depending on the machine; it is reasonable to
assume that fixnums are at least 24 bits. Fixnums are signed; they are encoded using 2’s
complement.

All exact integers that are small enough to be encoded as fixnums are always encoded as
fixnums — in other words, any exact integer that is not a fixnum is too big to be encoded
as such. For this reason, small constants such as 0 or 1 are guaranteed to be fixnums.

[procedure]fix:fixnum? object
Returns #t if object is a fixnum; otherwise returns #f.

Here is an expression that determines the largest fixnum:

(let loop ((n 1))

(if (fix:fixnum? n)

(loop (* n 2))

(- n 1)))

A similar expression determines the smallest fixnum.

[procedure]fix:= fixnum fixnum
[procedure]fix:< fixnum fixnum
[procedure]fix:> fixnum fixnum
[procedure]fix:<= fixnum fixnum
[procedure]fix:>= fixnum fixnum

These are the standard order and equality predicates on fixnums. When compiled,
they do not check the types of their arguments.

[procedure]fix:zero? fixnum
[procedure]fix:positive? fixnum
[procedure]fix:negative? fixnum

These procedures compare their argument to zero. When compiled, they do not
check the type of their argument. The code produced by the following expressions is
identical:

(fix:zero? fixnum)

(fix:= fixnum 0)

Similarly, fix:positive? and fix:negative? produce code identical to equivalent
expressions using fix:> and fix:<.

[procedure]fix:+ fixnum fixnum
[procedure]fix:- fixnum fixnum
[procedure]fix:* fixnum fixnum
[procedure]fix:quotient fixnum fixnum
[procedure]fix:remainder fixnum fixnum
[procedure]fix:gcd fixnum fixnum
[procedure]fix:1+ fixnum
[procedure]fix:-1+ fixnum

These procedures are the standard arithmetic operations on fixnums. When compiled,
they do not check the types of their arguments. Furthermore, they do not check to

76 MIT/GNU Scheme 10.1.1

see if the result can be encoded as a fixnum. If the result is too large to be encoded
as a fixnum, a malformed object is returned, with potentially disastrous effect on the
garbage collector.

[procedure]fix:divide fixnum fixnum
This procedure is like integer-divide, except that its arguments and its results must
be fixnums. It should be used in conjunction with integer-divide-quotient and
integer-divide-remainder.

The following are bitwise-logical operations on fixnums.

[procedure]fix:not fixnum
This returns the bitwise-logical inverse of its argument. When compiled, it does not
check the type of its argument.

(fix:not 0) ⇒ -1

(fix:not -1) ⇒ 0

(fix:not 1) ⇒ -2

(fix:not -34) ⇒ 33

[procedure]fix:and fixnum fixnum
This returns the bitwise-logical “and” of its arguments. When compiled, it does not
check the types of its arguments.

(fix:and #x43 #x0f) ⇒ 3

(fix:and #x43 #xf0) ⇒ #x40

[procedure]fix:andc fixnum fixnum
Returns the bitwise-logical “and” of the first argument with the bitwise-logical inverse
of the second argument. When compiled, it does not check the types of its arguments.

(fix:andc #x43 #x0f) ⇒ #x40

(fix:andc #x43 #xf0) ⇒ 3

[procedure]fix:or fixnum fixnum
This returns the bitwise-logical “inclusive or” of its arguments. When compiled, it
does not check the types of its arguments.

(fix:or #x40 3) ⇒ #x43

(fix:or #x41 3) ⇒ #x43

[procedure]fix:xor fixnum fixnum
This returns the bitwise-logical “exclusive or” of its arguments. When compiled, it
does not check the types of its arguments.

(fix:xor #x40 3) ⇒ #x43

(fix:xor #x41 3) ⇒ #x42

[procedure]fix:lsh fixnum1 fixnum2
This procedure returns the result of logically shifting fixnum1 by fixnum2 bits. If
fixnum2 is positive, fixnum1 is shifted left; if negative, it is shifted right. When
compiled, it does not check the types of its arguments, nor the validity of its result.

Chapter 4: Numbers 77

(fix:lsh 1 10) ⇒ #x400

(fix:lsh #x432 -10) ⇒ 1

(fix:lsh -1 3) ⇒ -8

(fix:lsh -128 -4) ⇒ #x3FFFF8

4.7.2 Flonum Operations

A flonum is an inexact real number that is implemented as a floating-point number. In
MIT/GNU Scheme, all inexact real numbers are flonums. For this reason, constants such
as 0. and 2.3 are guaranteed to be flonums.

[procedure]flo:flonum? object
Returns #t if object is a flonum; otherwise returns #f.

[procedure]flo:= flonum1 flonum2
[procedure]flo:< flonum1 flonum2
[procedure]flo:> flonum1 flonum2

These procedures are the standard order and equality predicates on flonums. When
compiled, they do not check the types of their arguments.

[procedure]flo:zero? flonum
[procedure]flo:positive? flonum
[procedure]flo:negative? flonum

Each of these procedures compares its argument to zero. When compiled, they do
not check the type of their argument.

[procedure]flo:+ flonum1 flonum2
[procedure]flo:- flonum1 flonum2
[procedure]flo:* flonum1 flonum2
[procedure]flo:/ flonum1 flonum2

These procedures are the standard arithmetic operations on flonums. When compiled,
they do not check the types of their arguments.

[procedure]flo:finite? flonum
The IEEE floating-point number specification supports three special “numbers”: pos-
itive infinity (+inf), negative infinity (-inf), and not-a-number (NaN). This predicate
returns #f if flonum is one of these objects, and #t if it is any other floating-point
number.

[procedure]flo:negate flonum
This procedure returns the negation of its argument. When compiled, it does not
check the type of its argument. Equivalent to (flo:- 0. flonum).

[procedure]flo:abs flonum
[procedure]flo:exp flonum
[procedure]flo:log flonum
[procedure]flo:sin flonum
[procedure]flo:cos flonum
[procedure]flo:tan flonum
[procedure]flo:asin flonum

78 MIT/GNU Scheme 10.1.1

[procedure]flo:acos flonum
[procedure]flo:atan flonum
[procedure]flo:sqrt flonum
[procedure]flo:expt flonum1 flonum2
[procedure]flo:floor flonum
[procedure]flo:ceiling flonum
[procedure]flo:truncate flonum
[procedure]flo:round flonum
[procedure]flo:floor->exact flonum
[procedure]flo:ceiling->exact flonum
[procedure]flo:truncate->exact flonum
[procedure]flo:round->exact flonum

These procedures are flonum versions of the corresponding procedures. When com-
piled, they do not check the types of their arguments.

[procedure]flo:atan2 flonum1 flonum2
This is the flonum version of atan with two arguments. When compiled, it does not
check the types of its arguments.

4.8 Random Numbers

MIT/GNU Scheme provides a facility for generating pseudo-random numbers. The current
implementation is a “subtract-with-carry” random-number generator, based on the algo-
rithm from A New Class of Random Number Generators, George Marsaglia and Arif Zaman,
The Annals of Applied Probability, Vol. 1, No. 3, 1991. At the time it was implemented,
this was a good algorithm for general purposes, but the state of the art in random-number
generation is constantly changing. If necessary, the implementation will be updated to use
a new algorithm while retaining the same interface.

The interface described here is very similar to that of Common Lisp.

[procedure]random modulus [state]
Modulus must be a positive real number. random returns a pseudo-random number
between zero (inclusive) and modulus (exclusive). The exactness of the returned
number is the same as the exactness of modulus. Additionally, if modulus is an exact
integer, the returned number will be also. Usually, modulus is either an exact integer
or an inexact real; the current implementation has been tuned to make these two
cases fast.

If state is given and not #f, it must be a random-state object; otherwise, it defaults to
the default-random-source. This object is used to maintain the state of the pseudo-
random-number generator and is altered as a side effect of the random procedure.

(random 1.0) ⇒ .32744744667719056

(random 1.0) ⇒ .01668326768172354

(random 10) ⇒ 3

(random 10) ⇒ 8

(random 100) ⇒ 38

(random 100) ⇒ 63

(random 100/3) ⇒ 130501475769920525/6755399441055744

(random 100/3) ⇒ 170571694016427575/13510798882111488

79

[procedure]flo:random-unit state
State must be a random-state object. flo:random-unit returns a pseudo-random
number between zero inclusive and one exclusive; the returned number is always
a flonum and therefore an inexact real number. flo:random-unit is equivalent to
random with a modulus of 1.0, except that it is faster.

The next three definitions concern random-state objects. In addition to these definitions,
it is important to know that random-state objects are specifically designed so that they
can be saved to disk using the fasdump procedure, and later restored using the fasload

procedure. This allows a particular random-state object to be saved in order to replay a
particular pseudo-random sequence.

[variable]*random-state*
This variable is deprecated; pass an explicit state instead.

[procedure]make-random-state [state]
This procedure returns a new random-state object, suitable for use as as the state
argument to random. If state is not given or #f, make-random-state returns a copy
of default-random-source. If state is a random-state object, a copy of that object
is returned. If state is #t, then a new random-state object is returned that has been
“randomly” initialized by some means (such as by a time-of-day clock).

[procedure]random-state? object
Returns #t if object is a random-state object, otherwise returns #f.

81

5 Characters

Characters are objects that represent printed characters such as letters and digits.
MIT/GNU Scheme supports the full Unicode character repertoire.

Characters are written using the notation #\character or #\character-name or
#\xhex-scalar-value.

The following standard character names are supported:

#\alarm ; U+0007
#\backspace ; U+0008
#\delete ; U+007F
#\escape ; U+001B
#\newline ; the linefeed character, U+000A
#\null ; the null character, U+0000
#\return ; the return character, U+000D
#\space ; the preferred way to write a space, U+0020
#\tab ; the tab character, U+0009

Here are some additional examples:

#\a ; lowercase letter
#\A ; uppercase letter
#\(; left parenthesis
#\ ; the space character

Case is significant in #\character, and in #\character-name, but not in #\xhex-scalar-

value. If character in #\character is alphabetic, then any character immediately following
character cannot be one that can appear in an identifier. This rule resolves the ambiguous
case where, for example, the sequence of characters ‘#\space’ could be taken to be either
a representation of the space character or a representation of the character ‘#\s’ followed
by a representation of the symbol ‘pace’.

Characters written in the #\ notation are self-evaluating. That is, they do not have to
be quoted in programs.

Some of the procedures that operate on characters ignore the difference between upper
case and lower case. The procedures that ignore case have ‘-ci’ (for “case insensitive”)
embedded in their names.

MIT/GNU Scheme allows a character name to include one or more bucky bit prefixes to
indicate that the character includes one or more of the keyboard shift keys Control, Meta,
Super, or Hyper (note that the Control bucky bit prefix is not the same as the ASCII control
key). The bucky bit prefixes and their meanings are as follows (case is not significant):

Key Bucky bit prefix Bucky bit

--- ---------------- ---------

Meta M- or Meta- 1

Control C- or Control- 2

Super S- or Super- 4

Hyper H- or Hyper- 8

82 MIT/GNU Scheme 10.1.1

For example,

#\c-a ; Control-a
#\meta-b ; Meta-b
#\c-s-m-h-A ; Control-Meta-Super-Hyper-A

[procedure]char->name char
Returns a string corresponding to the printed representation of char. This is the
character, character-name, or xhex-scalar-value component of the external repre-
sentation, combined with the appropriate bucky bit prefixes.

(char->name #\a) ⇒ "a"

(char->name #\space) ⇒ "space"

(char->name #\c-a) ⇒ "C-a"

(char->name #\control-a) ⇒ "C-a"

[procedure]name->char string
Converts a string that names a character into the character specified. If string does
not name any character, name->char signals an error.

(name->char "a") ⇒ #\a

(name->char "space") ⇒ #\space

(name->char "SPACE") ⇒ #\space

(name->char "c-a") ⇒ #\C-a

(name->char "control-a") ⇒ #\C-a

[standard procedure]char? object
Returns #t if object is a character, otherwise returns #f.

[standard procedure]char=? char1 char2 char3 . . .
[standard procedure]char<? char1 char2 char3 . . .
[standard procedure]char>? char1 char2 char3 . . .
[standard procedure]char<=? char1 char2 char3 . . .
[standard procedure]char>=? char1 char2 char3 . . .

These procedures return #t if the results of passing their arguments to char->integer
are respectively equal, monotonically increasing, monotonically decreasing, monoton-
ically non-decreasing, or monotonically non-increasing.

These predicates are transitive.

[char library procedure]char-ci=? char1 char2 char3 . . .
[char library procedure]char-ci<? char1 char2 char3 . . .
[char library procedure]char-ci>? char1 char2 char3 . . .
[char library procedure]char-ci<=? char1 char2 char3 . . .
[char library procedure]char-ci>=? char1 char2 char3 . . .

These procedures are similar to char=? et cetera, but they treat upper case and lower
case letters as the same. For example, (char-ci=? #\A #\a) returns #t.

Specifically, these procedures behave as if char-foldcase were applied to their argu-
ments before they were compared.

[char library procedure]char-alphabetic? char
[char library procedure]char-numeric? char

Chapter 5: Characters 83

[char library procedure]char-whitespace? char
[char library procedure]char-upper-case? char
[char library procedure]char-lower-case? char

These procedures return #t if their arguments are alphabetic, numeric, whitespace,
upper case, or lower case characters respectively, otherwise they return #f.

Specifically, they return #t when applied to characters with the Unicode properties
Alphabetic, Numeric Decimal, White Space, Uppercase, or Lowercase respectively,
and #f when applied to any other Unicode characters. Note that many Unicode
characters are alphabetic but neither upper nor lower case.

[procedure]char-alphanumeric? char
Returns #t if char is either alphabetic or numeric, otherwise it returns #f.

[char library procedure]digit-value char
This procedure returns the numeric value (0 to 9) of its argument if it is a numeric
digit (that is, if char-numeric? returns #t), or #f on any other character.

(digit-value #\3) ⇒ 3

(digit-value #\x0664) ⇒ 4

(digit-value #\x0AE6) ⇒ 0

(digit-value #\x0EA6) ⇒ #f

[standard procedure]char->integer char
[standard procedure]integer->char n

Given a Unicode character, char->integer returns an exact integer between 0 and
#xD7FF or between #xE000 and #x10FFFF which is equal to the Unicode scalar value
of that character. Given a non-Unicode character, it returns an exact integer greater
than #x10FFFF.

Given an exact integer that is the value returned by a character when char->integer

is applied to it, integer->char returns that character.

Implementation note: MIT/GNU Scheme allows any Unicode code point, not just
scalar values.

Implementation note: If the argument to char->integer or integer->char is a
constant, the MIT/GNU Scheme compiler will constant-fold the call, replacing it
with the corresponding result. This is a very useful way to denote unusual character
constants or ASCII codes.

[char library procedure]char-upcase char
[char library procedure]char-downcase char
[char library procedure]char-foldcase char

The char-upcase procedure, given an argument that is the lowercase part of a Uni-
code casing pair, returns the uppercase member of the pair. Note that language-
sensitive casing pairs are not used. If the argument is not the lowercase member of
such a pair, it is returned.

The char-downcase procedure, given an argument that is the uppercase part of a
Unicode casing pair, returns the lowercase member of the pair. Note that language-
sensitive casing pairs are not used. If the argument is not the uppercase member of
such a pair, it is returned.

84 MIT/GNU Scheme 10.1.1

The char-foldcase procedure applies the Unicode simple case-folding algorithm to
its argument and returns the result. Note that language-sensitive folding is not used.
See UAX #44 (part of the Unicode Standard) for details.

Note that many Unicode lowercase characters do not have uppercase equivalents.

[procedure]char->digit char [radix]
If char is a character representing a digit in the given radix, returns the corresponding
integer value. If radix is specified (which must be an exact integer between 2 and 36
inclusive), the conversion is done in that base, otherwise it is done in base 10. If char
doesn’t represent a digit in base radix, char->digit returns #f.

Note that this procedure is insensitive to the alphabetic case of char.

(char->digit #\8) ⇒ 8

(char->digit #\e 16) ⇒ 14

(char->digit #\e) ⇒ #f

[procedure]digit->char digit [radix]
Returns a character that represents digit in the radix given by radix. The radix
argument, if given, must be an exact integer between 2 and 36 (inclusive); it defaults
to 10. The digit argument must be an exact non-negative integer strictly less than
radix.

(digit->char 8) ⇒ #\8

(digit->char 14 16) ⇒ #\E

5.1 Character implementation

An MIT/GNU Scheme character consists of a code part and a bucky bits part. The code
part is a Unicode code point, while the bucky bits are an additional set of bits representing
shift keys available on some keyboards.

There are 4 bucky bits, named control, meta, super, and hyper. On GNU/Linux systems
running a graphical desktop, the control bit corresponds to the CTRL key; the meta bit
corresponds to the ALT key; and the super bit corresponds to the “windows” key. On
macOS, these are the CONTROL, OPTION, and COMMAND keys respectively.

Characters with bucky bits are not used much outside of graphical user interfaces (e.g.
Edwin). They cannot be stored in strings or character sets, and aren’t read or written by
textual I/O ports.

[procedure]make-char code bucky-bits
Builds a character from code and bucky-bits. The value of code must be a Unicode
code point; the value of bucky-bits must be an exact non-negative integer strictly less
than 16. If 0 is specified for bucky-bits, make-char produces an ordinary character;
otherwise, the appropriate bits are set as follows:

1 meta

2 control

4 super

8 hyper

http://www.unicode.org/reports/tr44/

Chapter 5: Characters 85

For example,

(make-char 97 0) ⇒ #\a

(make-char 97 1) ⇒ #\M-a

(make-char 97 2) ⇒ #\C-a

(make-char 97 3) ⇒ #\C-M-a

[procedure]char-code char
Returns the Unicode code point of char. Note that if char has no bucky bits set, then
this is the same value returned by char->integer.

For example,

(char-code #\a) ⇒ 97

(char-code #\c-a) ⇒ 97

[procedure]char-bits char
Returns the exact integer representation of char’s bucky bits. For example,

(char-bits #\a) ⇒ 0

(char-bits #\m-a) ⇒ 1

(char-bits #\c-a) ⇒ 2

(char-bits #\c-m-a) ⇒ 3

[constant]char-code-limit
This constant is the strict upper limit on a character’s code value. It is #x110000

unless some future version of Unicode increases the range of code points.

[constant]char-bits-limit
This constant is the strict upper limit on a character’s bucky-bits value. It is currently
#x10 and unlikely to change in the future.

[procedure]bitless-char? object
Returns #t if object is a character with no bucky bits set, otherwise it returns #f .

[procedure]char-predicate char
Returns a procedure of one argument that returns #t if its argument is a character
char=? to char, otherwise it returns #f.

[procedure]char-ci-predicate char
Returns a procedure of one argument that returns #t if its argument is a character
char-ci=? to char, otherwise it returns #f.

5.2 Unicode

MIT/GNU Scheme implements the full Unicode character repertoire, defining predicates for
Unicode characters and their associated integer values. A Unicode code point is an exact
non-negative integer strictly less than #x110000. A Unicode scalar value is a Unicode code
point that doesn’t fall between #xD800 inclusive and #xE000 exclusive; in other words, any
Unicode code point except for the surrogate code points.

[procedure]unicode-code-point? object
Returns #t if object is a Unicode code point, otherwise it returns #f.

86 MIT/GNU Scheme 10.1.1

[procedure]unicode-scalar-value? object
Returns #t if object is a Unicode scalar value, otherwise it returns #f.

[procedure]unicode-char? object
Returns #t if object is any “bitless” character corresponding to a Unicode code point,
except for those with general category other:surrogate or other:not-assigned.

[procedure]char-general-category char
[procedure]code-point-general-category code-point

Returns the Unicode general category of char (or code-point) as a descriptive symbol:

Category Symbol
Lu letter:uppercase

Ll letter:lowercase

Lt letter:titlecase

Lm letter:modifier

Lo letter:other

Mn mark:nonspacing

Mc mark:spacing-combining

Me mark:enclosing

Nd number:decimal-digit

Nl number:letter

No number:other

Pc punctuation:connector

Pd punctuation:dash

Ps punctuation:open

Pe punctuation:close

Pi punctuation:initial-quote

Pf punctuation:final-quote

Po punctuation:other

Sm symbol:math

Sc symbol:currency

Sk symbol:modifier

So symbol:other

Zs separator:space

Zl separator:line

Zp separator:paragraph

Cc other:control

Cf other:format

Cs other:surrogate

Co other:private-use

Cn other:not-assigned

5.3 Character Sets

MIT/GNU Scheme’s character-set abstraction is used to represent groups of characters, such
as the letters or digits. A character set may contain any “bitless” character. Alternatively,
a character set can be treated as a set of code points.

Chapter 5: Characters 87

[procedure]char-set? object
Returns #t if object is a character set, otherwise it returns #f.

[procedure]char-in-set? char char-set
Returns #t if char is in char-set, otherwise it returns #f.

[procedure]code-point-in-set? code-point char-set
Returns #t if code-point is in char-set, otherwise it returns #f.

[procedure]char-set-predicate char-set
Returns a procedure of one argument that returns #t if its argument is a character
in char-set, otherwise it returns #f.

[procedure]compute-char-set predicate
Calls predicate once on each Unicode code point, and returns a character set contain-
ing exactly the code points for which predicate returns a true value.

The next procedures represent a character set as a code-point list, which is a list of
code-point range elements. A code-point range is either a Unicode code point, or a pair
(start . end) that specifies a contiguous range of code points. Both start and end must
be exact nonnegative integers less than or equal to #x110000, and start must be less than
or equal to end. The range specifies all of the code points greater than or equal to start
and strictly less than end.

[procedure]char-set element . . .
[procedure]char-set* elements

Returns a new character set consisting of the characters specified by elements. The
procedure char-set takes these elements as multiple arguments, while char-set*

takes them as a single list-valued argument; in all other respects these procedures are
identical.

An element can take several forms, each of which specifies one or more characters
to include in the resulting character set: a (bitless) character includes itself; a string
includes all of the characters it contains; a character set includes its members; or a
code-point range includes the corresponding characters.

In addition, an element may be a symbol from the following table, which represents
the characters as shown:

Name Unicode character specification
alphabetic Alphabetic = True
alphanumeric Alphabetic = True | Numeric Type = Decimal
cased Cased = True
lower-case Lowercase = True
numeric Numeric Type = Decimal
unicode General Category != (Cs | Cn)
upper-case Uppercase = True
whitespace White Space = True

[procedure]char-set->code-points char-set
Returns a code-point list specifying the contents of char-set. The returned list consists
of numerically sorted, disjoint, and non-abutting code-point ranges.

88 MIT/GNU Scheme 10.1.1

[procedure]char-set=? char-set-1 char-set-2
Returns #t if char-set-1 and char-set-2 contain exactly the same characters, otherwise
it returns #f.

[procedure]char-set-invert char-set
Returns a character set that’s the inverse of char-set. That is, the returned character
set contains exactly those characters that aren’t in char-set.

[procedure]char-set-union char-set . . .
[procedure]char-set-intersection char-set . . .
[procedure]char-set-difference char-set-1 char-set . . .

These procedures compute the respective set union, set intersection, and set difference
of their arguments.

[procedure]char-set-union* char-sets
[procedure]char-set-intersection* char-sets

These procedures correspond to char-set-union and char-set-intersection but
take a single argument that’s a list of character sets rather than multiple character-set
arguments.

[constant]char-set:alphabetic
[constant]char-set:numeric
[constant]char-set:whitespace
[constant]char-set:upper-case
[constant]char-set:lower-case
[constant]char-set:alphanumeric

These constants are the character sets corresponding to char-alphabetic?,
char-numeric?, char-whitespace?, char-upper-case?, char-lower-case?, and
char-alphanumeric? respectively.

[procedure]8-bit-char-set? char-set
Returns #t if char-set contains only 8-bit code points (i.e.. ISO 8859-1 characters),
otherwise it returns #f.

89

6 Strings

Strings are sequences of characters. Strings are written as sequences of characters enclosed
within quotation marks ("). Within a string literal, various escape sequences represent
characters other than themselves. Escape sequences always start with a backslash (\):

\a : alarm, U+0007
\b : backspace, U+0008
\t : character tabulation, U+0009
\n : linefeed, U+000A
\r : return, U+000D
\" : double quote, U+0022
\\ : backslash, U+005C
\| : vertical line, U+007C
\intraline-whitespace* line-ending intraline-whitespace*

: nothing
\xhex-scalar-value;

: specified character (note the terminating semi-colon).

The result is unspecified if any other character in a string occurs after a backslash.

Except for a line ending, any character outside of an escape sequence stands for itself
in the string literal. A line ending which is preceded by \intraline-whitespace expands to
nothing (along with any trailing intraline whitespace), and can be used to indent strings for
improved legibility. Any other line ending has the same effect as inserting a \n character
into the string.

Examples:

"The word \"recursion\" has many meanings."

"Another example:\ntwo lines of text"

"Here’s text \

containing just one line"

"\x03B1; is named GREEK SMALL LETTER ALPHA."

The length of a string is the number of characters that it contains. This number is an
exact, non-negative integer that is fixed when the string is created. The valid indexes of
a string are the exact non-negative integers less than the length of the string. The first
character of a string has index 0, the second has index 1, and so on.

Some of the procedures that operate on strings ignore the difference between upper and
lower case. The names of the versions that ignore case end with ‘-ci’ (for “case insensitive”).

Implementations may forbid certain characters from appearing in strings. However,
with the exception of #\null, ASCII characters must not be forbidden. For example, an
implementation might support the entire Unicode repertoire, but only allow characters
U+0001 to U+00FF (the Latin-1 repertoire without #\null) in strings.

Implementation note: MIT/GNU Scheme allows any “bitless” character to be stored in
a string. In effect this means any character with a Unicode code point, including surrogates.

It is an error to pass such a forbidden character to make-string, string, string-set!,
or string-fill!, as part of the list passed to list->string, or as part of the vector passed
to vector->string, or in UTF-8 encoded form within a bytevector passed to utf8->string.

90 MIT/GNU Scheme 10.1.1

It is also an error for a procedure passed to string-map to return a forbidden character, or
for read-string to attempt to read one.

MIT/GNU Scheme supports both mutable and immutable strings. Procedures that mu-
tate strings, in particular string-set! and string-fill!, will signal an error if given an
immutable string. Nearly all procedures that return strings return immutable strings; no-
table exceptions are make-string and string-copy, which always return mutable strings,
and string-builder which gives the programmer the ability to choose mutable or im-
mutable results.

[standard procedure]string? obj
Returns #t if obj is a string, otherwise returns #f.

[standard procedure]make-string k [char]
The make-string procedure returns a newly allocated mutable string of length k. If
char is given, then all the characters of the string are initialized to char, otherwise
the contents of the string are unspecified.

[extended standard procedure]string object . . .
[procedure]string* objects

Returns an immutable string whose characters are the concatenation of the characters
from the given objects. Each object is converted to characters as if passed to the
display procedure.

This is an MIT/GNU Scheme extension to the standard string that accepts only
characters as arguments.

The procedure string* is identical to string but takes a single argument that’s a
list of objects, rather than multiple object arguments.

[standard procedure]string-length string
Returns the number of characters in the given string.

[standard procedure]string-ref string k
It is an error if k is not a valid index of string.

The string-ref procedure returns character k of string using zero-origin indexing.
There is no requirement for this procedure to execute in constant time.

[standard procedure]string-set! string k char
It is an error if string is not a mutable string or if k is not a valid index of string.

The string-set! procedure stores char in element k of string. There is no require-
ment for this procedure to execute in constant time.

(define (f) (make-string 3 #*))

(define (g) "***")

(string-set! (f) 0 #\?) ⇒ unspecified
(string-set! (g) 0 #\?) ⇒ error
(string-set! (symbol->string ’immutable) 0 #\?) ⇒ error

[standard procedure]string=? string1 string2 string . . .
Returns #t if all the strings are the same length and contain exactly the same char-
acters in the same positions, otherwise returns #f.

Chapter 6: Strings 91

[char library procedure]string-ci=? string1 string2 string . . .
Returns #t if, after case-folding, all the strings are the same length and contain
the same characters in the same positions, otherwise returns #f. Specifically, these
procedures behave as if string-foldcase were applied to their arguments before
comparing them.

[standard procedure]string<? string1 string2 string . . .
[char library procedure]string-ci<? string1 string2 string . . .

[standard procedure]string>? string1 string2 string . . .
[char library procedure]string-ci>? string1 string2 string . . .

[standard procedure]string<=? string1 string2 string . . .
[char library procedure]string-ci<=? string1 string2 string . . .

[standard procedure]string>=? string1 string2 string . . .
[char library procedure]string-ci>=? string1 string2 string . . .

These procedures return #t if their arguments are (respectively): monotonically in-
creasing, monotonically decreasing, monotonically non-decreasing, or monotonically
non-increasing.

These predicates are required to be transitive.

These procedures compare strings in an implementation-defined way. One approach
is to make them the lexicographic extensions to strings of the corresponding order-
ings on characters. In that case, string<? would be the lexicographic ordering on
strings induced by the ordering char<? on characters, and if the two strings differ
in length but are the same up to the length of the shorter string, the shorter string
would be considered to be lexicographically less than the longer string. However, it is
also permitted to use the natural ordering imposed by the implementation’s internal
representation of strings, or a more complex locale-specific ordering.

In all cases, a pair of strings must satisfy exactly one of string<?, string=?, and
string>?, and must satisfy string<=? if and only if they do not satisfy string>?

and string>=? if and only if they do not satisfy string<?.

The ‘-ci’ procedures behave as if they applied string-foldcase to their arguments
before invoking the corresponding procedures without ‘-ci’.

[procedure]string-compare string1 string2 if-eq if-lt if-gt
[procedure]string-compare-ci string1 string2 if-eq if-lt if-gt

If-eq, if-lt, and if-gt are procedures of no arguments (thunks). The two strings are
compared; if they are equal, if-eq is applied, if string1 is less than string2, if-lt is
applied, else if string1 is greater than string2, if-gt is applied. The value of the
procedure is the value of the thunk that is applied.

string-compare distinguishes uppercase and lowercase letters;
string-compare-ci does not.

(define (cheer) (display "Hooray!"))

(define (boo) (display "Boo-hiss!"))

(string-compare "a" "b" cheer (lambda() ’ignore) boo)

a Hooray!

⇒ unspecified

92 MIT/GNU Scheme 10.1.1

[char library procedure]string-upcase string
[char library procedure]string-downcase string

[procedure]string-titlecase string
[char library procedure]string-foldcase string

These procedures apply the Unicode full string uppercasing, lowercasing, titlecasing,
and case-folding algorithms to their arguments and return the result. In certain cases,
the result differs in length from the argument. If the result is equal to the argument in
the sense of string=?, the argument may be returned. Note that language-sensitive
mappings and foldings are not used.

The Unicode Standard prescribes special treatment of the Greek letter Σ, whose nor-
mal lower-case form is σ but which becomes ς at the end of a word. See UAX#44 (part
of the Unicode Standard) for details. However, implementations of string-downcase
are not required to provide this behavior, and may choose to change Σ to σ in all
cases.

[procedure]string-upper-case? string
[procedure]string-lower-case? string

These procedures return #t if all the letters in the string are lower case or upper
case, otherwise they return #f. The string must contain at least one letter or the
procedures return #f.

(map string-upper-case? ’("" "A" "art" "Art" "ART"))

⇒ (#f #t #f #f #t)

[standard procedure]substring string [start [end]]
Returns an immutable copy of the part of the given string between start and end.

[procedure]string-slice string [start [end]]
Returns a slice of string, restricted to the range of characters specified by start and
end. The returned slice will be mutable if string is mutable, or immutable if string
is immutable.

A slice is a kind of string that provides a view into another string. The slice behaves
like any other string, but changes to a mutable slice are reflected in the original string
and vice versa.

(define foo (string-copy "abcde"))

foo ⇒ "abcde"

(define bar (string-slice foo 1 4))

bar ⇒ "bcd"

(string-set! foo 2 #\z)

foo ⇒ "abzde"

bar ⇒ "bzd"

(string-set! bar 1 #\y)

bar ⇒ "byd"

foo ⇒ "abyde"

http://www.unicode.org/reports/tr44/

Chapter 6: Strings 93

[standard procedure]string-append string . . .
[procedure]string-append* strings

Returns an immutable string whose characters are the concatenation of the characters
in the given strings.

The non-standard procedure string-append* is identical to string-append but
takes a single argument that’s a list of strings, rather than multiple string arguments.

[standard procedure]string->list string [start [end]]
[standard procedure]list->string list

It is an error if any element of list is not a character.

The string->list procedure returns a newly allocated list of the characters of string
between start and end. list->string returns an immutable string formed from the
elements in the list list. In both procedures, order is preserved. string->list and
list->string are inverses so far as equal? is concerned.

[standard procedure]string-copy string [start [end]]
Returns a newly allocated mutable copy of the part of the given string between start
and end.

[standard procedure]string-copy! to at from [start [end]]
It is an error if to is not a mutable string or if at is less than zero or greater than
the length of to. It is also an error if (- (string-length to) at) is less than (- end

start).

Copies the characters of string from between start and end to string to, starting at at.
The order in which characters are copied is unspecified, except that if the source and
destination overlap, copying takes place as if the source is first copied into a temporary
string and then into the destination. This can be achieved without allocating storage
by making sure to copy in the correct direction in such circumstances.

(define a "12345")

(define b (string-copy "abcde"))

(string-copy! b 1 a 0 2) ⇒ 3

b ⇒ "a12de"%

Implementation note: in MIT/GNU Scheme string-copy! returns the value (+ at

(- end start)).

[standard procedure]string-fill! string fill [start [end]]
It is an error if string is not a mutable string or if fill is not a character.

The string-fill! procedure stores fill in the elements of string between start and
end.

The next two procedures treat a given string as a sequence of grapheme clusters, a
concept defined by the Unicode standard in UAX #29:

It is important to recognize that what the user thinks of as a “character”—a
basic unit of a writing system for a language—may not be just a single Unicode
code point. Instead, that basic unit may be made up of multiple Unicode
code points. To avoid ambiguity with the computer use of the term character,
this is called a user-perceived character. For example, G + acute-accent is a

http://www.unicode.org/reports/tr29/tr29-29.html

94 MIT/GNU Scheme 10.1.1

user-perceived character: users think of it as a single character, yet is actually
represented by two Unicode code points. These user-perceived characters are
approximated by what is called a grapheme cluster, which can be determined
programmatically.

[procedure]grapheme-cluster-length string
This procedure returns the number of grapheme clusters in string.

For ASCII strings, this is identical to string-length.

[procedure]grapheme-cluster-slice string start end
This procedure slices string at the grapheme-cluster boundaries specified by the start
and end indices. These indices are grapheme-cluster indices, not normal string indices.

For ASCII strings, this is identical to string-slice.

[procedure]string-word-breaks string
This procedure returns a list of word break indices for string, ordered from smallest
index to largest. Word breaks are defined by the Unicode standard in UAX #29, and
generally coincide with what we think of as the boundaries of words in written text.

MIT/GNU Scheme supports the Unicode canonical normalization forms NFC (Normal-
ization Form C) and NFD (Normalization Form D). The reason for these forms is that there
can be multiple different Unicode sequences for a given text; these sequences are semanti-
cally identical and should be treated equivalently for all purposes. If two such sequences
are normalized to the same form, the resulting normalized sequences will be identical.

By default, most procedures that return strings return them in NFC. Notable excep-
tions are list->string, vector->string, and the utfX->string procedures, which do no
normalization, and of course string->nfd.

Generally speaking, NFC is preferred for most purposes, as it is the minimal-length
sequence for the variants. Consult the Unicode standard for the details and for information
about why one normalization form is preferable for a specific purpose.

[procedure]string-in-nfc? string
[procedure]string-in-nfd? string

These procedures return #t if string is in Unicode Normalization Form C or D re-
spectively. Otherwise they return #f.

Note that if string consists only of code points strictly less than #xC0, then
string-in-nfd? returns #t. If string consists only of code points strictly less than
#x300, then string-in-nfc? returns #t. Consequently both of these procedures
will return #t for an ASCII string argument.

[procedure]string->nfc string
[procedure]string->nfd string

The procedures convert string into Unicode Normalization Form C or D respectively.
If string is already in the correct form, they return string itself, or an immutable copy
if string is mutable.

[standard procedure]string-map proc string string . . .
It is an error if proc does not accept as many arguments as there are strings and
return a single character.

http://www.unicode.org/reports/tr29/tr29-29.html

Chapter 6: Strings 95

The string-map procedure applies proc element-wise to the elements of the strings
and returns an immutable string of the results, in order. If more than one string
is given and not all strings have the same length, string-map terminates when the
shortest string runs out. The dynamic order in which proc is applied to the elements
of the strings is unspecified. If multiple returns occur from string-map, the values
returned by earlier returns are not mutated.

(string-map char-foldcase "AbdEgH") ⇒ "abdegh"

(string-map

(lambda (c)

(integer->char (+ 1 (char->integer c))))

"HAL") ⇒ "IBM"

(string-map

(lambda (c k)

((if (eqv? k #\u) char-upcase char-downcase) c))

"studlycaps xxx"

"ululululul") ⇒ "StUdLyCaPs"

[standard procedure]string-for-each proc string string . . .
It is an error if proc does not accept as many arguments as there are strings.

The arguments to string-for-each are like the arguments to string-map, but
string-for-each calls proc for its side effects rather than for its values. Unlike
string-map, string-for-each is guaranteed to call proc on the elements of the lists
in order from the first element(s) to the last, and the value returned by string-for-

each is unspecified. If more than one string is given and not all strings have the same
length, string-for-each terminates when the shortest string runs out. It is an error
for proc to mutate any of the strings.

(let ((v ’()))

(string-for-each

(lambda (c) (set! v (cons (char->integer c) v)))

"abcde")

v) ⇒ (101 100 99 98 97)

[procedure]string-count proc string string . . .
It is an error if proc does not accept as many arguments as there are strings.

The string-count procedure applies proc element-wise to the elements of the strings
and returns a count of the number of true values it returns. If more than one string
is given and not all strings have the same length, string-count terminates when the
shortest string runs out. The dynamic order in which proc is applied to the elements
of the strings is unspecified.

[procedure]string-any proc string string . . .
It is an error if proc does not accept as many arguments as there are strings.

The string-any procedure applies proc element-wise to the elements of the strings
and returns #t if it returns a true value. If proc doesn’t return a true value,
string-any returns #f.

96 MIT/GNU Scheme 10.1.1

If more than one string is given and not all strings have the same length, string-any
terminates when the shortest string runs out. The dynamic order in which proc is
applied to the elements of the strings is unspecified.

[procedure]string-every proc string string . . .
It is an error if proc does not accept as many arguments as there are strings.

The string-every procedure applies proc element-wise to the elements of the strings
and returns #f if it returns a false value. If proc doesn’t return a false value,
string-every returns #t.

If more than one string is given and not all strings have the same length,
string-every terminates when the shortest string runs out. The dynamic order in
which proc is applied to the elements of the strings is unspecified.

[procedure]string-null? string
Returns #t if string has zero length; otherwise returns #f.

(string-null? "") ⇒ #t

(string-null? "Hi") ⇒ #f

[procedure]string-hash string [modulus]
[procedure]string-hash-ci string [modulus]

These procedures return an exact non-negative integer that can be used for storing
the specified string in a hash table. Equal strings (in the sense of string=? and
string-ci=? respectively) return equal (=) hash codes, and non-equal but similar
strings are usually mapped to distinct hash codes.

If the optional argument modulus is specified, it must be an exact positive integer,
and the result of the hash computation is restricted to be less than that value. This
is equivalent to calling modulo on the result, but may be faster.

[procedure]string-head string end
Equivalent to (substring string 0 end).

[procedure]string-tail string start
Equivalent to (substring string start).

[procedure]string-builder [buffer-length]
This procedure returns a string builder that can be used to incrementally collect
characters and later convert that collection to a string. This is similar to a string
output port, but is less general and significantly faster.

The optional buffer-length argument, if given, must be an exact positive integer. It
controls the size of the internal buffers that are used to accumulate characters. Larger
values make the builder somewhat faster but use more space. The default value of
this argument is 16.

The returned string builder is a procedure that accepts zero or one arguments as
follows:

• Given a bitless character argument, the string builder appends that character to
the string being built and returns an unspecified value.

Chapter 6: Strings 97

• Given a string argument, the string builder appends that string to the string
being built and returns an unspecified value.

• Given no arguments, or one of the “result” arguments (see below), the string
builder returns a copy of the string being built. Note that this does not affect
the string being built, so immediately calling the builder with no arguments a
second time returns a new copy of the same string.

• Given the argument empty?, the string builder returns #t if the string being built
is empty and #f otherwise.

• Given the argument count, the string builder returns the size of the string being
built.

• Given the argument reset!, the string builder discards the string being built
and returns to the state it was in when initially created.

The “result” arguments control the form of the returned string. The arguments
immutable and mutable are straightforward, specifying the mutability of the returned
string. For these arguments, the returned string contains exactly the same characters,
in the same order, as were appended to the builder.

However, calling with the argument nfc, or with no arguments, returns an immutable
string in Unicode Normalization Form C, exactly as if string->nfc were called on
one of the other two result strings.

[procedure]string-joiner infix prefix suffix
[procedure]string-joiner* infix prefix suffix

This procedure’s arguments are keyword arguments; that is, each argument is a sym-
bol of the same name followed by its value. The order of the arguments doesn’t
matter, but each argument may appear only once.

These procedures return a joiner procedure that takes multiple strings and joins them
together into an immutable string. The joiner returned by string-joiner accepts
these strings as multiple string arguments, while string-joiner* accepts the strings
as a single list-valued argument.

The joiner produces a result by adding prefix before, suffix after, and infix between
each input string, then concatenating everything together into a single string. Each
of the prefix, suffix, and infix arguments is optional and defaults to an empty string,
so normally at least one is specified.

Some examples:

((string-joiner) "a" "b" "c")

⇒ "abc"

((string-joiner ’infix " ") "a" "b" "c")

⇒ "a b c"

((string-joiner ’infix ", ") "a" "b" "c")

⇒ "a, b, c"

((string-joiner* ’infix ", " ’prefix "<" ’suffix ">")

’("a" "b" "c"))

98 MIT/GNU Scheme 10.1.1

⇒ "<a>, , <c>"

[procedure]string-splitter delimiter allow-runs? copy?
This procedure’s arguments are keyword arguments; that is, each argument is a sym-
bol of the same name followed by its value. The order of the arguments doesn’t
matter, but each argument may appear only once.

This procedure returns a splitter procedure that splits a given string into parts,
returning a list of the parts. This is done by identifying delimiter characters and
breaking the string at those delimiters. The splitting process is controlled by the
arguments:

• delimiter is either a character, a character set, or more generally a procedure that
accepts a single character argument and returns a boolean value. The splitter
uses this to identify delimiters in the string. The default value of this argument
is char-whitespace?.

• allow-runs? is a boolean that controls what happens when two or more adjacent
delimiters are found. If allow-runs? is #t, then all of the adjacent delimiters are
treated as if they were a single delimiter, and the string is split at the beginning
and end of the delimiters. If allow-runs? is #f, then adjacent delimiters are
treated as if they were separate with an empty string between them. The default
value of this argument is #t.

• copy? is a boolean: if it is #t, then the returned strings are immutable copies,
but if it is #f the returned strings are slices of the original string. The default
value of this argument is #f.

Some examples:

((string-splitter) "a b c")

⇒ ("a" "b" "c")

((string-splitter) "a\tb\tc")

⇒ ("a" "b" "c")

((string-splitter ’delimiter #\space) "a\tb\tc")

⇒ ("a\tb\tc")

((string-splitter) " a b c ")

⇒ ("a" "b" "c")

((string-splitter ’allow-runs? #f) " a b c ")

⇒ ("" "a" "" "b" "" "c" "")

[procedure]string-padder where fill-with clip?
This procedure’s arguments are keyword arguments; that is, each argument is a sym-
bol of the same name followed by its value. The order of the arguments doesn’t
matter, but each argument may appear only once.

This procedure returns a padder procedure that takes a string and a grapheme-cluster
length as its arguments and returns a new string that has been padded to that length.
The padder adds grapheme clusters to the string until it has the specified length. If

Chapter 6: Strings 99

the string’s grapheme-cluster length is greater than the given length, the string may,
depending on the arguments, be reduced to the specified length.

The padding process is controlled by the arguments:

• where is a symbol: either leading or trailing, which directs the padder to
add/remove leading or trailing grapheme clusters. The default value of this
argument is leading.

• fill-with is a string that contains exactly one grapheme cluster, which is used as
the padding to increase the size of the string. The default value of this argument
is " " (a single space character).

• clip? is a boolean that controls what happens if the given string has a longer
grapheme-cluster length than the given length. If clip? is #t, grapheme clusters
are removed (by slicing) from the string until it is the correct length; if it is #f
then the string is returned unchanged. The grapheme clusters are removed from
the beginning of the string if where is leading, otherwise from the end of the
string. The default value of this argument is #t.

Some examples:

((string-padder) "abc def" 10)

⇒ " abc def"

((string-padder ’where ’trailing) "abc def" 10)

⇒ "abc def "

((string-padder ’fill-with "X") "abc def" 10)

⇒ "XXXabc def"

((string-padder) "abc def" 5)

⇒ "c def"

((string-padder ’where ’trailing) "abc def" 5)

⇒ "abc d"

((string-padder ’clip? #f) "abc def" 5)

⇒ "abc def"

[obsolete procedure]string-pad-left string k [char]
[obsolete procedure]string-pad-right string k [char]

These procedures are deprecated and should be replaced by use of string-padder
which is more flexible.

These procedures return an immutable string created by padding string out to length
k, using char. If char is not given, it defaults to #\space. If k is less than the length
of string, the resulting string is a truncated form of string. string-pad-left adds
padding characters or truncates from the beginning of the string (lowest indices),
while string-pad-right does so at the end of the string (highest indices).

100 MIT/GNU Scheme 10.1.1

(string-pad-left "hello" 4) ⇒ "ello"

(string-pad-left "hello" 8) ⇒ " hello"

(string-pad-left "hello" 8 #*) ⇒ "***hello"

(string-pad-right "hello" 4) ⇒ "hell"

(string-pad-right "hello" 8) ⇒ "hello "

[procedure]string-trimmer where to-trim copy?
This procedure’s arguments are keyword arguments; that is, each argument is a sym-
bol of the same name followed by its value. The order of the arguments doesn’t
matter, but each argument may appear only once.

This procedure returns a trimmer procedure that takes a string as its argument and
trims that string, returning the trimmed result. The trimming process is controlled
by the arguments:

• where is a symbol: either leading, trailing, or both, which directs the trimmer
to trim leading characters, trailing characters, or both. The default value of this
argument is both.

• to-trim is either a character, a character set, or more generally a procedure that
accepts a single character argument and returns a boolean value. The trimmer
uses this to identify characters to remove. The default value of this argument is
char-whitespace?.

• copy? is a boolean: if #t, the trimmer returns an immutable copy of the trimmed
string, if #f it returns a slice. The default value of this argument is #f.

Some examples:

((string-trimmer ’where ’leading) " ABC DEF ")

⇒ "ABC DEF "

((string-trimmer ’where ’trailing) " ABC DEF ")

⇒ " ABC DEF"

((string-trimmer ’where ’both) " ABC DEF ")

⇒ "ABC DEF"

((string-trimmer) " ABC DEF ")

⇒ "ABC DEF"

((string-trimmer ’to-trim char-numeric? ’where ’leading)

"21 East 21st Street #3")

⇒ " East 21st Street #3"

((string-trimmer ’to-trim char-numeric? ’where ’trailing)

"21 East 21st Street #3")

⇒ "21 East 21st Street #"

((string-trimmer ’to-trim char-numeric?)

"21 East 21st Street #3")

⇒ " East 21st Street #"

Chapter 6: Strings 101

[obsolete procedure]string-trim string [char-set]
[obsolete procedure]string-trim-left string [char-set]
[obsolete procedure]string-trim-right string [char-set]

These procedures are deprecated and should be replaced by use of string-trimmer
which is more flexible.

Returns an immutable string created by removing all characters that are not in
char-set from: (string-trim) both ends of string ; (string-trim-left) the be-
ginning of string ; or (string-trim-right) the end of string. Char-set defaults to
char-set:not-whitespace.

(string-trim " in the end ") ⇒ "in the end"

(string-trim " ") ⇒ ""

(string-trim "100th" char-set:numeric) ⇒ "100"

(string-trim-left "-.-+-=-" (char-set #\+))

⇒ "+-=-"

(string-trim "but (+ x y) is" (char-set #\(#\)))

⇒ "(+ x y)"

[procedure]string-replace string char1 char2
Returns an immutable string containing the same characters as string except that all
instances of char1 have been replaced by char2.

6.1 Searching and Matching Strings

This section describes procedures for searching a string, either for a character or a substring,
and matching two strings to one another.

[procedure]string-search-forward pattern string [start [end]]
The arguments pattern and string must satisfy string-in-nfc?.

Searches string for the leftmost occurrence of the substring pattern. If successful,
the index of the first character of the matched substring is returned; otherwise, #f is
returned.

(string-search-forward "rat" "pirate")

⇒ 2

(string-search-forward "rat" "pirate rating")

⇒ 2

(string-search-forward "rat" "pirate rating" 4 13)

⇒ 7

(string-search-forward "rat" "pirate rating" 9 13)

⇒ #f

[procedure]string-search-backward pattern string [start [end]]
The arguments pattern and string must satisfy string-in-nfc?.

Searches string for the rightmost occurrence of the substring pattern. If successful,
the index to the right of the last character of the matched substring is returned;
otherwise, #f is returned.

102 MIT/GNU Scheme 10.1.1

(string-search-backward "rat" "pirate")

⇒ 5

(string-search-backward "rat" "pirate rating")

⇒ 10

(string-search-backward "rat" "pirate rating" 1 8)

⇒ 5

(string-search-backward "rat" "pirate rating" 9 13)

⇒ #f

[procedure]string-search-all pattern string [start [end]]
The arguments pattern and string must satisfy string-in-nfc?.

Searches string to find all occurrences of the substring pattern. Returns a list of the
occurrences; each element of the list is an index pointing to the first character of an
occurrence.

(string-search-all "rat" "pirate")

⇒ (2)

(string-search-all "rat" "pirate rating")

⇒ (2 7)

(string-search-all "rat" "pirate rating" 4 13)

⇒ (7)

(string-search-all "rat" "pirate rating" 9 13)

⇒ ()

[procedure]substring? pattern string
Searches string to see if it contains the substring pattern. Returns #t if pattern is a
substring of string, otherwise returns #f.

(substring? "rat" "pirate") ⇒ #t

(substring? "rat" "outrage") ⇒ #f

(substring? "" any-string) ⇒ #t

(if (substring? "moon" text)

(process-lunar text)

’no-moon)

[procedure]string-find-first-index proc string string . . .
[procedure]string-find-last-index proc string string . . .

Each string must satisfy string-in-nfc?, and proc must accept as many arguments
as there are strings.

These procedures apply proc element-wise to the elements of the strings and return
the first or last index for which proc returns a true value. If there is no such index,
then #f is returned.

If more than one string is given and not all strings have the same length, then only
the indexes of the shortest string are tested.

[procedure]string-find-next-char string char [start [end]]
[procedure]string-find-next-char-ci string char [start [end]]
[procedure]string-find-next-char-in-set string char-set [start [end]]

The argument string must satisfy string-in-nfc?.

Chapter 6: Strings 103

These procedures search string for a matching character, starting from start and
moving forwards to end. If there is a matching character, the procedures stop the
search and return the index of that character. If there is no matching character, the
procedures return #f.

The procedures differ only in how they match characters: string-find-next-char

matches a character that is char=? to char; string-find-next-char-ci matches a
character that is char-ci=? to char; and string-find-next-char-in-set matches
a character that’s a member of char-set.

(string-find-next-char "Adam" #\A) ⇒ 0

(string-find-next-char "Adam" #\A 1 4) ⇒ #f

(string-find-next-char-ci "Adam" #\A 1 4) ⇒ 2

(string-find-next-char-in-set my-string char-set:alphabetic)

⇒ start position of the first word in my-string

; Can be used as a predicate:
(if (string-find-next-char-in-set my-string

(char-set #\(#\)))

’contains-parentheses

’no-parentheses)

[procedure]string-find-previous-char string char [start [end]]
[procedure]string-find-previous-char-ci string char [start [end]]
[procedure]string-find-previous-char-in-set string char-set [start [end]]

The argument string must satisfy string-in-nfc?.

These procedures search string for a matching character, starting from end and mov-
ing backwards to start. If there is a matching character, the procedures stop the
search and return the index of that character. If there is no matching character, the
procedures return #f.

The procedures differ only in how they match characters: string-find-previous-

char matches a character that is char=? to char; string-find-previous-char-ci
matches a character that is char-ci=? to char; and string-find-previous-char-

in-set matches a character that’s a member of char-set.

[procedure]string-match-forward string1 string2
The arguments string1 and string2 must satisfy string-in-nfc?.

Compares the two strings, starting from the beginning, and returns the number of
characters that are the same. If the two strings start differently, returns 0.

(string-match-forward "mirror" "micro") ⇒ 2 ; matches "mi"
(string-match-forward "a" "b") ⇒ 0 ; no match

[procedure]string-match-backward string1 string2
The arguments string1 and string2 must satisfy string-in-nfc?.

Compares the two strings, starting from the end and matching toward the front, re-
turning the number of characters that are the same. If the two strings end differently,
returns 0.

(string-match-backward "bulbous" "fractious")

⇒ 3 ; matches "ous"

104 MIT/GNU Scheme 10.1.1

[procedure]string-prefix? string1 string2
[procedure]string-prefix-ci? string1 string2

These procedures return #t if the first string forms the prefix of the second; otherwise
returns #f. The -ci procedures don’t distinguish uppercase and lowercase letters.

(string-prefix? "abc" "abcdef") ⇒ #t

(string-prefix? "" any-string) ⇒ #t

[procedure]string-suffix? string1 string2
[procedure]string-suffix-ci? string1 string2

These procedures return #t if the first string forms the suffix of the second; otherwise
returns #f. The -ci procedures don’t distinguish uppercase and lowercase letters.

(string-suffix? "ous" "bulbous") ⇒ #t

(string-suffix? "" any-string) ⇒ #t

6.2 Regular Expressions

MIT/GNU Scheme provides support for matching and searching strings against regular
expressions. This is considerably more flexible than ordinary string matching and searching,
but potentially much slower. On the other hand it is less powerful than the mechanism
described in Section 14.14 [Parser Language], page 219.

Traditional regular expressions are defined with string patterns in which characters like
‘[’ and ‘*’ have special meanings. Unfortunately, the syntax of these patterns is not only
baroque but also comes in many different and mutually-incompatible varieties. As a con-
sequence we have chosen to specify regular expressions using an s-expression syntax, which
we call a regular s-expression, abbreviated as regsexp.

Previous releases of MIT/GNU Scheme provided a regular-expression implementation
nearly identical to that of GNU Emacs version 18. This implementation supported only
8-bit strings, which made it unsuitable for use with Unicode strings. This implementation
still exists but is deprecated and will be removed in a future release.

6.2.1 Regular S-Expressions

A regular s-expression is either a character or a string, which matches itself, or one of the
following forms.

Examples in this section use the following definitions for brevity:

(define (try-match pattern string)

(regsexp-match-string (compile-regsexp pattern) string))

(define (try-search pattern string)

(regsexp-search-string-forward (compile-regsexp pattern) string))

These forms match one or more characters literally:

[regsexp]char-ci char
Matches char without considering case.

[regsexp]string-ci string
Matches string without considering case.

Chapter 6: Strings 105

[regsexp]any-char
Matches one character other than #\newline.

(try-match ’(any-char) "") ⇒ #f

(try-match ’(any-char) "a") ⇒ (0 1)

(try-match ’(any-char) "\n") ⇒ #f

(try-search ’(any-char) "") ⇒ #f

(try-search ’(any-char) "ab") ⇒ (0 1)

(try-search ’(any-char) "\na") ⇒ (1 2)

[regsexp]char-in datum . . .
[regsexp]char-not-in datum . . .

Matches one character in (not in) the character set specified by (char-set datum

...).

(try-match ’(seq "a" (char-in "ab") "c") "abc") ⇒ (0 3)

(try-match ’(seq "a" (char-not-in "ab") "c") "abc") ⇒ #f

(try-match ’(seq "a" (char-not-in "ab") "c") "adc") ⇒ (0 3)

(try-match ’(seq "a" (+ (char-in numeric)) "c") "a019c") ⇒ (0 5)

These forms match no characters, but only at specific locations in the input string:

[regsexp]line-start
[regsexp]line-end

Matches no characters at the start (end) of a line.

(try-match ’(seq (line-start)

(* (any-char))

(line-end))

"abc") ⇒ (0 3)

(try-match ’(seq (line-start)

(* (any-char))

(line-end))

"ab\nc") ⇒ (0 2)

(try-search ’(seq (line-start)

(* (char-in alphabetic))

(line-end))

"1abc") ⇒ #f

(try-search ’(seq (line-start)

(* (char-in alphabetic))

(line-end))

"1\nabc") ⇒ (2 5)

[regsexp]string-start
[regsexp]string-end

Matches no characters at the start (end) of the string.

(try-match ’(seq (string-start)

(* (any-char))

(string-end))

"abc") ⇒ (0 3)

106 MIT/GNU Scheme 10.1.1

(try-match ’(seq (string-start)

(* (any-char))

(string-end))

"ab\nc") ⇒ #f

(try-search ’(seq (string-start)

(* (char-in alphabetic))

(string-end))

"1abc") ⇒ #f

(try-search ’(seq (string-start)

(* (char-in alphabetic))

(string-end))

"1\nabc") ⇒ #f

These forms match repetitions of a given regsexp. Most of them come in two forms,
one of which is greedy and the other shy. The greedy form matches as many repetitions
as it can, then uses failure backtracking to reduce the number of repetitions one at a time.
The shy form matches the minimum number of repetitions, then uses failure backtracking
to increase the number of repetitions one at a time. The shy form is similar to the greedy
form except that a ? is added at the end of the form’s keyword.

[regsexp]? regsexp
[regsexp]?? regsexp

Matches regsexp zero or one time.

(try-search ’(seq (char-in alphabetic)

(? (char-in numeric)))

"a") ⇒ (0 1)

(try-search ’(seq (char-in alphabetic)

(?? (char-in numeric)))

"a") ⇒ (0 1)

(try-search ’(seq (char-in alphabetic)

(? (char-in numeric)))

"a1") ⇒ (0 2)

(try-search ’(seq (char-in alphabetic)

(?? (char-in numeric)))

"a1") ⇒ (0 1)

(try-search ’(seq (char-in alphabetic)

(? (char-in numeric)))

"1a2") ⇒ (1 3)

(try-search ’(seq (char-in alphabetic)

(?? (char-in numeric)))

"1a2") ⇒ (1 2)

[regsexp]* regsexp
[regsexp]*? regsexp

Matches regsexp zero or more times.

Chapter 6: Strings 107

(try-match ’(seq (char-in alphabetic)

(* (char-in numeric))

(any-char))

"aa") ⇒ (0 2)

(try-match ’(seq (char-in alphabetic)

(*? (char-in numeric))

(any-char))

"aa") ⇒ (0 2)

(try-match ’(seq (char-in alphabetic)

(* (char-in numeric))

(any-char))

"a123a") ⇒ (0 5)

(try-match ’(seq (char-in alphabetic)

(*? (char-in numeric))

(any-char))

"a123a") ⇒ (0 2)

[regsexp]+ regsexp
[regsexp]+? regsexp

Matches regsexp one or more times.

(try-match ’(seq (char-in alphabetic)

(+ (char-in numeric))

(any-char))

"aa") ⇒ #f

(try-match ’(seq (char-in alphabetic)

(+? (char-in numeric))

(any-char))

"aa") ⇒ #f

(try-match ’(seq (char-in alphabetic)

(+ (char-in numeric))

(any-char))

"a123a") ⇒ (0 5)

(try-match ’(seq (char-in alphabetic)

(+? (char-in numeric))

(any-char))

"a123a") ⇒ (0 3)

[regsexp]** n m regsexp
[regsexp]**? n m regsexp

The n argument must be an exact nonnegative integer. The m argument must be
either an exact integer greater than or equal to n, or else #f.

Matches regsexp at least n times and at most m times; if m is #f then there is no
upper limit.

(try-match ’(seq (char-in alphabetic)

(** 0 2 (char-in numeric))

(any-char))

"aa") ⇒ (0 2)

108 MIT/GNU Scheme 10.1.1

(try-match ’(seq (char-in alphabetic)

(**? 0 2 (char-in numeric))

(any-char))

"aa") ⇒ (0 2)

(try-match ’(seq (char-in alphabetic)

(** 0 2 (char-in numeric))

(any-char))

"a123a") ⇒ (0 4)

(try-match ’(seq (char-in alphabetic)

(**? 0 2 (char-in numeric))

(any-char))

"a123a") ⇒ (0 2)

[regsexp]** n regsexp
This is an abbreviation for (** n n regsexp). This matcher is neither greedy nor shy
since it matches a fixed number of repetitions.

These forms implement alternatives and sequencing:

[regsexp]alt regsexp . . .
Matches one of the regsexp arguments, trying each in order from left to right.

(try-match ’(alt #\a (char-in numeric)) "a") ⇒ (0 1)

(try-match ’(alt #\a (char-in numeric)) "b") ⇒ #f

(try-match ’(alt #\a (char-in numeric)) "1") ⇒ (0 1)

[regsexp]seq regsexp . . .
Matches the first regsexp, then continues the match with the next regsexp, and so on
until all of the arguments are matched.

(try-match ’(seq #\a #\b) "a") ⇒ #f

(try-match ’(seq #\a #\b) "aa") ⇒ #f

(try-match ’(seq #\a #\b) "ab") ⇒ (0 2)

These forms implement named registers, which store matched segments of the input
string:

[regsexp]group key regsexp
The key argument must be a fixnum, a character, or a symbol.

Matches regsexp. If the match succeeds, the matched segment is stored in the register
named key.

(try-match ’(seq (group a (any-char))

(group b (any-char))

(any-char))

"radar") ⇒ (0 3 (a . "r") (b . "a"))

[regsexp]group-ref key
The key argument must be a fixnum, a character, or a symbol.

Chapter 6: Strings 109

Matches the characters stored in the register named key. It is an error if that register
has not been initialized with a corresponding group expression.

(try-match ’(seq (group a (any-char))

(group b (any-char))

(any-char)

(group-ref b)

(group-ref a))

"radar") ⇒ (0 5 (a . "r") (b . "a"))

6.2.2 Regsexp Procedures

The regular s-expression implementation has two parts, like many other regular-expression
implementations: a compiler that translates the pattern into an efficient form, and one or
more procedures that use that pattern to match or search inputs.

[procedure]compile-regsexp regsexp
Compiles regsexp by translating it into a procedure that implements the specified
matcher.

The match and search procedures each return a list when they are successful, and #f

when they fail. The returned list is of the form (s e register ...), where s is the index
at which the match starts, e is the index at which the match ends, and each register is a
pair (key . contents) where key is the register’s name and contents is the contents of that
register as a string.

In order to get reliable results, the string arguments to these procedures must be in
Unicode Normalization Form C. The string implementation keeps most strings in this form
by default; in other cases the caller must convert the string using string->nfc.

[procedure]regsexp-match-string crse string [start [end]]
The crse argument must be a value returned by compile-regsexp. The string argu-
ment must satisfy string-in-nfc?.

Matches string against crse and returns the result.

[procedure]regsexp-search-string-forward crse string [start [end]]
The crse argument must be a value returned by compile-regsexp. The string argu-
ment must satisfy string-in-nfc?.

Searches string from left to right for a match against crse and returns the result.

111

7 Lists

A pair (sometimes called a dotted pair) is a data structure with two fields called the car
and cdr fields (for historical reasons). Pairs are created by the procedure cons. The car and
cdr fields are accessed by the procedures car and cdr. The car and cdr fields are assigned
by the procedures set-car! and set-cdr!.

Pairs are used primarily to represent lists. A list can be defined recursively as either
the empty list or a pair whose cdr is a list. More precisely, the set of lists is defined as the
smallest set X such that

• The empty list is in X.

• If list is in X, then any pair whose cdr field contains list is also in X.

The objects in the car fields of successive pairs of a list are the elements of the list. For
example, a two-element list is a pair whose car is the first element and whose cdr is a pair
whose car is the second element and whose cdr is the empty list. The length of a list is the
number of elements, which is the same as the number of pairs. The empty list is a special
object of its own type (it is not a pair); it has no elements and its length is zero.1

The most general notation (external representation) for Scheme pairs is the “dotted”
notation (c1 . c2) where c1 is the value of the car field and c2 is the value of the cdr field.
For example, (4 . 5) is a pair whose car is 4 and whose cdr is 5. Note that (4 . 5) is the
external representation of a pair, not an expression that evaluates to a pair.

A more streamlined notation can be used for lists: the elements of the list are simply
enclosed in parentheses and separated by spaces. The empty list is written (). For example,
the following are equivalent notations for a list of symbols:

(a b c d e)

(a . (b . (c . (d . (e . ())))))

Whether a given pair is a list depends upon what is stored in the cdr field. When the
set-cdr! procedure is used, an object can be a list one moment and not the next:

(define x (list ’a ’b ’c))

(define y x)

y ⇒ (a b c)

(list? y) ⇒ #t

(set-cdr! x 4) ⇒ unspecified
x ⇒ (a . 4)

(eqv? x y) ⇒ #t

y ⇒ (a . 4)

(list? y) ⇒ #f

(set-cdr! x x) ⇒ unspecified
(list? y) ⇒ #f

A chain of pairs that doesn’t end in the empty list is called an improper list. Note that
an improper list is not a list. The list and dotted notations can be combined to represent
improper lists, as the following equivalent notations show:

(a b c . d)

(a . (b . (c . d)))

1 The above definitions imply that all lists have finite length and are terminated by the empty list.

112 MIT/GNU Scheme 10.1.1

Within literal expressions and representations of objects read by the read procedure, the
forms ’datum, ‘datum, ,datum, and ,@datum denote two-element lists whose first elements
are the symbols quote, quasiquote, unquote, and unquote-splicing, respectively. The
second element in each case is datum. This convention is supported so that arbitrary Scheme
programs may be represented as lists. Among other things, this permits the use of the read
procedure to parse Scheme programs.

7.1 Pairs

This section describes the simple operations that are available for constructing and manip-
ulating arbitrary graphs constructed from pairs.

[procedure]pair? object
Returns #t if object is a pair; otherwise returns #f.

(pair? ’(a . b)) ⇒ #t

(pair? ’(a b c)) ⇒ #t

(pair? ’()) ⇒ #f

(pair? ’#(a b)) ⇒ #f

[procedure]cons obj1 obj2
Returns a newly allocated pair whose car is obj1 and whose cdr is obj2. The pair
is guaranteed to be different (in the sense of eqv?) from every previously existing
object.

(cons ’a ’()) ⇒ (a)

(cons ’(a) ’(b c d)) ⇒ ((a) b c d)

(cons "a" ’(b c)) ⇒ ("a" b c)

(cons ’a 3) ⇒ (a . 3)

(cons ’(a b) ’c) ⇒ ((a b) . c)

[procedure]xcons obj1 obj2
(SRFI 1) Returns a newly allocated pair whose car is obj2 and whose cdr is obj1.

(xcons ’(b c) ’a) ⇒ (a b c)

[procedure]car pair
Returns the contents of the car field of pair. Note that it is an error to take the car

of the empty list.

(car ’(a b c)) ⇒ a

(car ’((a) b c d)) ⇒ (a)

(car ’(1 . 2)) ⇒ 1

(car ’()) error Illegal datum

[procedure]cdr pair
Returns the contents of the cdr field of pair. Note that it is an error to take the cdr
of the empty list.

(cdr ’((a) b c d)) ⇒ (b c d)

(cdr ’(1 . 2)) ⇒ 2

(cdr ’()) error Illegal datum

Chapter 7: Lists 113

[procedure]car+cdr pair
(SRFI 1) The fundamental pair deconstructor:

(lambda (p) (values (car p) (cdr p)))

(receive (a b) (car+cdr (cons 1 2))

(write-line a)

(write-line b))

a 1

a 2

[procedure]set-car! pair object
Stores object in the car field of pair. The value returned by set-car! is unspecified.

(define (f) (list ’not-a-constant-list))

(define (g) ’(constant-list))

(set-car! (f) 3) ⇒ unspecified
(set-car! (g) 3) error Illegal datum

[procedure]set-cdr! pair object
Stores object in the cdr field of pair. The value returned by set-cdr! is unspecified.

[procedure]caar pair
[procedure]cadr pair
[procedure]cdar pair
[procedure]cddr pair
[procedure]caaar pair
[procedure]caadr pair
[procedure]cadar pair
[procedure]caddr pair
[procedure]cdaar pair
[procedure]cdadr pair
[procedure]cddar pair
[procedure]cdddr pair
[procedure]caaaar pair
[procedure]caaadr pair
[procedure]caadar pair
[procedure]caaddr pair
[procedure]cadaar pair
[procedure]cadadr pair
[procedure]caddar pair
[procedure]cadddr pair
[procedure]cdaaar pair
[procedure]cdaadr pair
[procedure]cdadar pair
[procedure]cdaddr pair
[procedure]cddaar pair
[procedure]cddadr pair
[procedure]cdddar pair

114 MIT/GNU Scheme 10.1.1

[procedure]cddddr pair
These procedures are compositions of car and cdr; for example, caddr could be
defined by

(define caddr (lambda (x) (car (cdr (cdr x)))))

[procedure]general-car-cdr object path
This procedure is a generalization of car and cdr. Path encodes a particular sequence
of car and cdr operations, which general-car-cdr executes on object. Path is an
exact non-negative integer that encodes the operations in a bitwise fashion: a zero
bit represents a cdr operation, and a one bit represents a car. The bits are executed
LSB to MSB, and the most significant one bit, rather than being interpreted as an
operation, signals the end of the sequence.2

For example, the following are equivalent:

(general-car-cdr object #b1011)

(cdr (car (car object)))

Here is a partial table of path/operation equivalents:

#b10 cdr

#b11 car

#b100 cddr

#b101 cdar

#b110 cadr

#b111 caar

#b1000 cdddr

[procedure]tree-copy tree
(SRFI 1) This copies an arbitrary tree constructed from pairs, copying both the car
and cdr elements of every pair. This could have been defined by

(define (tree-copy tree)

(let loop ((tree tree))

(if (pair? tree)

(cons (loop (car tree)) (loop (cdr tree)))

tree)))

7.2 Construction of Lists

[procedure]list object . . .
Returns a list of its arguments.

(list ’a (+ 3 4) ’c) ⇒ (a 7 c)

(list) ⇒ ()

These expressions are equivalent:

(list obj1 obj2 ... objN)

(cons obj1 (cons obj2 ... (cons objN ’()) ...))

2 Note that path is restricted to a machine-dependent range, usually the size of a machine word. On many
machines, this means that the maximum length of path will be 30 operations (32 bits, less the sign bit
and the “end-of-sequence” bit).

Chapter 7: Lists 115

[procedure]make-list k [element]
(SRFI 1) This procedure returns a newly allocated list of length k, whose elements
are all element. If element is not supplied, it defaults to the empty list.

(make-list 4 ’c) ⇒ (c c c c)

[procedure]cons* object object . . .
(SRFI 1) cons* is similar to list, except that cons* conses together the last two
arguments rather than consing the last argument with the empty list. If the last
argument is not a list the result is an improper list. If the last argument is a list,
the result is a list consisting of the initial arguments and all of the items in the final
argument. If there is only one argument, the result is the argument.

(cons* ’a ’b ’c) ⇒ (a b . c)

(cons* ’a ’b ’(c d)) ⇒ (a b c d)

(cons* ’a) ⇒ a

These expressions are equivalent:

(cons* obj1 obj2 ... objN-1 objN)

(cons obj1 (cons obj2 ... (cons objN-1 objN) ...))

[procedure]list-tabulate k init-proc
[procedure]make-initialized-list k init-proc

Returns a k-element list. Element i of the list, where 0 <= i < k, is produced by
(init-proc i). No guarantee is made about the dynamic order in which init-proc is
applied to these indices.

(list-tabulate 4 values) => (0 1 2 3)

list-tabulate is defined by SRFI 1.

[procedure]list-copy list
(SRFI 1) Returns a newly allocated copy of list. This copies each of the pairs com-
prising list. This could have been defined by

(define (list-copy list)

(if (null? list)

’()

(cons (car list)

(list-copy (cdr list)))))

[procedure]iota count [start [step]]
(SRFI 1) Returns a list containing the elements

(start start+step ... start+(count-1)*step)

Count must be an exact non-negative integer, while start and step can be any num-
bers. The start and step parameters default to 0 and 1, respectively.

(iota 5) ⇒ (0 1 2 3 4)

(iota 5 0 -0.1) ⇒ (0 -0.1 -0.2 -0.3 -0.4)

[procedure]vector->list vector
[procedure]subvector->list vector start end

vector->list returns a newly allocated list of the elements of vector.
subvector->list returns a newly allocated list of the elements of the given subvector.
The inverse of vector->list is list->vector.

http://srfi.schemers.org/srfi-1/srfi-1.html

116 MIT/GNU Scheme 10.1.1

(vector->list ’#(dah dah didah)) ⇒ (dah dah didah)

7.3 Selecting List Components

[procedure]list? object
Returns #t if object is a list, otherwise returns #f. By definition, all lists have finite
length and are terminated by the empty list. This procedure returns an answer even
for circular structures.

Any object satisfying this predicate will also satisfy exactly one of pair? or null?.

(list? ’(a b c)) ⇒ #t

(list? ’()) ⇒ #t

(list? ’(a . b)) ⇒ #f

(let ((x (list ’a)))

(set-cdr! x x)

(list? x)) ⇒ #f

[procedure]circular-list? object
(SRFI 1) Returns #t if object is a circular list, otherwise returns #f.

(circular-list? (list ’a ’b ’c)) ⇒ #f

(circular-list? (cons* ’a ’b ’c)) ⇒ #f

(circular-list? (circular-list ’a ’b ’c)) ⇒ #t

[procedure]dotted-list? object
(SRFI 1) Returns #t if object is an improper list, otherwise returns #f.

(dotted-list? (list ’a ’b ’c)) ⇒ #f

(dotted-list? (cons* ’a ’b ’c)) ⇒ #t

(dotted-list? (circular-list ’a ’b ’c)) ⇒ #f

[procedure]length list
Returns the length of list. Signals an error if list isn’t a proper list.

(length ’(a b c)) ⇒ 3

(length ’(a (b) (c d e))) ⇒ 3

(length ’()) ⇒ 0

(length (circular-list ’a ’b ’c)) error

[procedure]length+ clist
(SRFI 1) Returns the length of clist, if it is a proper list. Returns #f if clist is a
circular list. Otherwise signals an error.

(length+ (list ’a ’b ’c)) ⇒ 3

(length+ (cons* ’a ’b ’c)) error

(length+ (circular-list ’a ’b ’c)) ⇒ #f

[procedure]null? object
Returns #t if object is the empty list; otherwise returns #f.

(null? ’(a . b)) ⇒ #f

(null? ’(a b c)) ⇒ #f

(null? ’()) ⇒ #t

Chapter 7: Lists 117

[procedure]list-ref list k
Returns the kth element of list, using zero-origin indexing. The valid indexes of a list
are the exact non-negative integers less than the length of the list. The first element
of a list has index 0, the second has index 1, and so on.

(list-ref ’(a b c d) 2) ⇒ c

(list-ref ’(a b c d)

(exact (round 1.8)))

⇒ c

(list-ref list k) is equivalent to (car (list-tail list k)).

[procedure]first list
[procedure]second list
[procedure]third list
[procedure]fourth list
[procedure]fifth list
[procedure]sixth list
[procedure]seventh list
[procedure]eighth list
[procedure]ninth list
[procedure]tenth list

Returns the specified element of list. It is an error if list is not long enough to contain
the specified element (for example, if the argument to seventh is a list that contains
only six elements).

7.4 Cutting and Pasting Lists

[procedure]sublist list start end
Start and end must be exact integers satisfying

0 <= start <= end <= (length list)

sublist returns a newly allocated list formed from the elements of list beginning at
index start (inclusive) and ending at end (exclusive).

[procedure]list-head list k
Returns a newly allocated list consisting of the first k elements of list. K must not
be greater than the length of list.

We could have defined list-head this way:

(define (list-head list k)

(sublist list 0 k))

[procedure]list-tail list k
Returns the sublist of list obtained by omitting the first k elements. The result, if
it is not the empty list, shares structure with list. K must not be greater than the
length of list.

[procedure]append list . . .
Returns a list consisting of the elements of the first list followed by the elements of
the other lists.

118 MIT/GNU Scheme 10.1.1

(append ’(x) ’(y)) ⇒ (x y)

(append ’(a) ’(b c d)) ⇒ (a b c d)

(append ’(a (b)) ’((c))) ⇒ (a (b) (c))

(append) ⇒ ()

The resulting list is always newly allocated, except that it shares structure with the
last list argument. The last argument may actually be any object; an improper list
results if the last argument is not a proper list.

(append ’(a b) ’(c . d)) ⇒ (a b c . d)

(append ’() ’a) ⇒ a

[procedure]append! list . . .
Returns a list that is the argument lists concatenated together. The arguments are
changed rather than copied. (Compare this with append, which copies arguments
rather than destroying them.) For example:

(define x ’(a b c))

(define y ’(d e f))

(define z ’(g h))

(append! x y z) ⇒ (a b c d e f g h)

x ⇒ (a b c d e f g h)

y ⇒ (d e f g h)

z ⇒ (g h)

[procedure]last-pair list
Returns the last pair in list, which may be an improper list. last-pair could have
been defined this way:

(define last-pair

(lambda (x)

(if (pair? (cdr x))

(last-pair (cdr x))

x)))

[procedure]except-last-pair list
[procedure]except-last-pair! list

These procedures remove the last pair from list. List may be an improper list, except
that it must consist of at least one pair. except-last-pair returns a newly allocated
copy of list that omits the last pair. except-last-pair! destructively removes the
last pair from list and returns list. If the cdr of list is not a pair, the empty list is
returned by either procedure.

7.5 Filtering Lists

[procedure]filter predicate list
(SRFI 1) Returns a newly allocated copy of list containing only the elements satisfying
predicate. Predicate must be a procedure of one argument.

(filter odd? ’(1 2 3 4 5)) ⇒ (1 3 5)

The non-standard procedure keep-matching-items (and its alias list-transform-
positive) are the same except that its arguments are reversed.

Chapter 7: Lists 119

[procedure]remove predicate list
(SRFI 1) Like filter, except that the returned list contains only those elements not
satisfying predicate.

(remove odd? ’(1 2 3 4 5)) ⇒ (2 4)

The non-standard procedure delete-matching-items (and its alias
list-transform-negative) are the same except that its arguments are
reversed.

[procedure]partition predicate list
(SRFI 1) Partitions the elements of list with predicate, and returns two values: the list
of in-elements and the list of out-elements. The list is not disordered—elements occur
in the result lists in the same order as they occur in the argument list. The dynamic
order in which the various applications of predicate are made is not specified. One
of the returned lists may share a common tail with the argument list.

(partition symbol? ’(one 2 3 four five 6)) =>

(one four five)

(2 3 6)

[procedure]filter! predicate list
[procedure]remove! predicate list
[procedure]partition! predicate list

(SRFI 1) Linear-update variants of filter, remove and partition. These procedures
are allowed, but not required, to alter the cons cells in the argument list to construct
the result lists.

The non-standard procedures keep-matching-items! and delete-matching-

items! bear a similar relationship to keep-matching-items and delete-matching-

items, respectively.

[procedure]delq element list
[procedure]delv element list
[procedure]delete element list

Returns a newly allocated copy of list with all entries equal to element removed. delq
uses eq? to compare element with the entries in list, delv uses eqv?, and delete uses
equal?.

[procedure]delq! element list
[procedure]delv! element list
[procedure]delete! element list

Returns a list consisting of the top-level elements of list with all entries equal to
element removed. These procedures are like delq, delv, and delete except that
they destructively modify list. delq! uses eq? to compare element with the entries
in list, delv! uses eqv?, and delete! uses equal?. Because the result may not be
eq? to list, it is desirable to do something like (set! x (delete! x)).

120 MIT/GNU Scheme 10.1.1

(define x ’(a b c b))

(delete ’b x) ⇒ (a c)

x ⇒ (a b c b)

(define x ’(a b c b))

(delete! ’b x) ⇒ (a c)

x ⇒ (a c)

;; Returns correct result:
(delete! ’a x) ⇒ (c)

;; Didn’t modify what x points to:
x ⇒ (a c)

[procedure]delete-member-procedure deletor predicate
Returns a deletion procedure similar to delv or delete!. Deletor should be one of
the procedures list-deletor or list-deletor!. Predicate must be an equivalence
predicate. The returned procedure accepts exactly two arguments: first, an object to
be deleted, and second, a list of objects from which it is to be deleted. If deletor is
list-deletor, the procedure returns a newly allocated copy of the given list in which
all entries equal to the given object have been removed. If deletor is list-deletor!,
the procedure returns a list consisting of the top-level elements of the given list with
all entries equal to the given object removed; the given list is destructively modified
to produce the result. In either case predicate is used to compare the given object to
the elements of the given list.

Here are some examples that demonstrate how delete-member-procedure could have
been used to implement delv and delete!:

(define delv

(delete-member-procedure list-deletor eqv?))

(define delete!

(delete-member-procedure list-deletor! equal?))

[procedure]list-deletor predicate
[procedure]list-deletor! predicate

These procedures each return a procedure that deletes elements from lists. Predicate
must be a procedure of one argument. The returned procedure accepts exactly one
argument, which must be a proper list, and applies predicate to each of the elements
of the argument, deleting those for which it is true.

The procedure returned by list-deletor deletes elements non-destructively, by re-
turning a newly allocated copy of the argument with the appropriate elements re-
moved. The procedure returned by list-deletor! performs a destructive deletion.

7.6 Searching Lists

[procedure]find predicate list
(SRFI 1) Returns the first element in list for which predicate is true; returns #f if it
doesn’t find such an element. Predicate must be a procedure of one argument.

(find even? ’(3 1 4 1 5 9)) => 4

Chapter 7: Lists 121

Note that find has an ambiguity in its lookup semantics—if find returns #f, you
cannot tell (in general) if it found a #f element that satisfied predicate, or if it did not
find any element at all. In many situations, this ambiguity cannot arise—either the
list being searched is known not to contain any #f elements, or the list is guaranteed
to have an element satisfying predicate. However, in cases where this ambiguity can
arise, you should use find-tail instead of find—find-tail has no such ambiguity:

(cond ((find-tail pred lis)

=> (lambda (pair) ...)) ; Handle (CAR PAIR)

(else ...)) ; Search failed.

The non-standard find-matching-item procedure (and its alias list-search-

positive) works identically except that its argument order is reversed.
list-search-negative is similar to list-search-positive but the sense of the
predicate is reversed.

[procedure]find-tail predicate list
(SRFI 1) Returns the first pair of list whose car satisfies predicate; returns #f if there’s
no such pair. find-tail can be viewed as a general-predicate variant of memv.

[procedure]memq object list
[procedure]memv object list
[procedure]member object list

These procedures return the first pair of list whose car is object; the returned pair
is always one from which list is composed. If object does not occur in list, #f (n.b.:
not the empty list) is returned. memq uses eq? to compare object with the elements
of list, while memv uses eqv? and member uses equal?.3

(memq ’a ’(a b c)) ⇒ (a b c)

(memq ’b ’(a b c)) ⇒ (b c)

(memq ’a ’(b c d)) ⇒ #f

(memq (list ’a) ’(b (a) c)) ⇒ #f

(member (list ’a) ’(b (a) c)) ⇒ ((a) c)

(memq 101 ’(100 101 102)) ⇒ unspecified
(memv 101 ’(100 101 102)) ⇒ (101 102)

[procedure]member-procedure predicate
Returns a procedure similar to memq, except that predicate, which must be an equiv-
alence predicate, is used instead of eq?. This could be used to define memv as follows:

(define memv (member-procedure eqv?))

7.7 Mapping of Lists

[procedure]map procedure list list . . .
Procedure must be a procedure taking as many arguments as there are lists. If more
than one list is given, then they must all be the same length. map applies procedure
element-wise to the elements of the lists and returns a list of the results, in order from

3 Although they are often used as predicates, memq, memv, and member do not have question marks in their
names because they return useful values rather than just #t or #f.

122 MIT/GNU Scheme 10.1.1

left to right. The dynamic order in which procedure is applied to the elements of the
lists is unspecified; use for-each to sequence side effects.

(map cadr ’((a b) (d e) (g h))) ⇒ (b e h)

(map (lambda (n) (expt n n)) ’(1 2 3 4)) ⇒ (1 4 27 256)

(map + ’(1 2 3) ’(4 5 6)) ⇒ (5 7 9)

(let ((count 0))

(map (lambda (ignored)

(set! count (+ count 1))

count)

’(a b c))) ⇒ unspecified

[procedure]map* initial-value procedure list1 list2 . . .
Similar to map, except that the resulting list is terminated by initial-value rather than
the empty list. The following are equivalent:

(map procedure list list ...)

(map* ’() procedure list list ...)

[procedure]append-map procedure list list . . .
[procedure]append-map* initial-value procedure list list . . .

Similar to map and map*, respectively, except that the results of applying procedure
to the elements of lists are concatenated together by append rather than by cons.
The following are equivalent, except that the former is more efficient:

(append-map procedure list list ...)

(apply append (map procedure list list ...))

[procedure]append-map! procedure list list . . .
[procedure]append-map*! initial-value procedure list list . . .

Similar to map and map*, respectively, except that the results of applying procedure
to the elements of lists are concatenated together by append! rather than by cons.
The following are equivalent, except that the former is more efficient:

(append-map! procedure list list ...)

(apply append! (map procedure list list ...))

[procedure]for-each procedure list list . . .
The arguments to for-each are like the arguments to map, but for-each calls proce-
dure for its side effects rather than for its values. Unlike map, for-each is guaranteed
to call procedure on the elements of the lists in order from the first element to the
last, and the value returned by for-each is unspecified.

(let ((v (make-vector 5)))

(for-each (lambda (i)

(vector-set! v i (* i i)))

’(0 1 2 3 4))

v) ⇒ #(0 1 4 9 16)

Chapter 7: Lists 123

7.8 Reduction of Lists

[procedure]reduce-left procedure initial list
Combines all the elements of list using the binary operation procedure. For example,
using + one can add up all the elements:

(reduce-left + 0 list-of-numbers)

The argument initial is used only if list is empty; in this case initial is the result of
the call to reduce-left. If list has a single argument, it is returned. Otherwise, the
arguments are reduced in a left-associative fashion. For example:

(reduce-left + 0 ’(1 2 3 4)) ⇒ 10

(reduce-left + 0 ’(1 2)) ⇒ 3

(reduce-left + 0 ’(1)) ⇒ 1

(reduce-left + 0 ’()) ⇒ 0

(reduce-left + 0 ’(foo)) ⇒ foo

(reduce-left list ’() ’(1 2 3 4)) ⇒ (((1 2) 3) 4)

[procedure]reduce-right procedure initial list
Like reduce-left except that it is right-associative.

(reduce-right list ’() ’(1 2 3 4)) ⇒ (1 (2 (3 4)))

[procedure]fold-right procedure initial list
Combines all of the elements of list using the binary operation procedure. Unlike
reduce-left and reduce-right, initial is always used:

(fold-right + 0 ’(1 2 3 4)) ⇒ 10

(fold-right + 0 ’(foo)) error Illegal datum

(fold-right list ’() ’(1 2 3 4)) ⇒ (1 (2 (3 (4 ()))))

Fold-right has interesting properties because it establishes a homomorphism be-
tween (cons, ()) and (procedure, initial). It can be thought of as replacing the
pairs in the spine of the list with procedure and replacing the () at the end with
initial. Many of the classical list-processing procedures can be expressed in terms of
fold-right, at least for the simple versions that take a fixed number of arguments:

(define (copy-list list)

(fold-right cons ’() list))

(define (append list1 list2)

(fold-right cons list2 list1))

(define (map p list)

(fold-right (lambda (x r) (cons (p x) r)) ’() list))

(define (reverse items)

(fold-right (lambda (x r) (append r (list x))) ’() items))

[procedure]fold-left procedure initial list
Combines all the elements of list using the binary operation procedure. Elements are
combined starting with initial and then the elements of list from left to right. Whereas

124 MIT/GNU Scheme 10.1.1

fold-right is recursive in nature, capturing the essence of cdr-ing down a list and
then computing a result, fold-left is iterative in nature, combining the elements as
the list is traversed.

(fold-left list ’() ’(1 2 3 4)) ⇒ ((((() 1) 2) 3) 4)

(define (length list)

(fold-left (lambda (sum element) (+ sum 1)) 0 list))

(define (reverse items)

(fold-left (lambda (x y) (cons y x)) () items))

[procedure]any predicate list list . . .
(SRFI 1) Applies predicate across the lists, returning true if predicate returns true on
any application.

If there are n list arguments list1 . . . listn, then predicate must be a procedure taking
n arguments and returning a boolean result.

any applies predicate to the first elements of the list parameters. If this application
returns a true value, any immediately returns that value. Otherwise, it iterates,
applying predicate to the second elements of the list parameters, then the third, and
so forth. The iteration stops when a true value is produced or one of the lists runs
out of values; in the latter case, any returns #f. The application of predicate to the
last element of the lists is a tail call.

Note the difference between find and any—find returns the element that satisfied
the predicate; any returns the true value that the predicate produced.

Like every, any’s name does not end with a question mark—this is to indicate that
it does not return a simple boolean (#t or #f), but a general value.

(any integer? ’(a 3 b 2.7)) => #t

(any integer? ’(a 3.1 b 2.7)) => #f

(any < ’(3 1 4 1 5)

’(2 7 1 8 2)) => #t

The non-standard procedure there-exists? is similar, except that it takes a single
list and a predicate argument, in that order.

[procedure]every predicate list list . . .
(SRFI 1) Applies predicate across the lists, returning true if predicate returns true on
every application.

If there are n list arguments list1 . . . listn, then predicate must be a procedure taking
n arguments and returning a boolean result.

every applies predicate to the first elements of the list parameters. If this application
returns false, every immediately returns false. Otherwise, it iterates, applying pred-
icate to the second elements of the list parameters, then the third, and so forth. The
iteration stops when a false value is produced or one of the lists runs out of values.
In the latter case, every returns the true value produced by its final application of
predicate. The application of predicate to the last element of the lists is a tail call.

If one of the lists has no elements, every simply returns #t.

Chapter 7: Lists 125

Like any, every’s name does not end with a question mark—this is to indicate that
it does not return a simple boolean (#t or #f), but a general value.

The non-standard procedure for-all? is similar, except that it takes a single list and
a predicate argument, in that order.

7.9 Miscellaneous List Operations

[procedure]circular-list object . . .
[procedure]make-circular-list k [element]

These procedures are like list and make-list, respectively, except that the returned
lists are circular. circular-list could have been defined like this:

(define (circular-list . objects)

(append! objects objects))

circular-list is compatible with SRFI 1, but extended so that it can be called with
no arguments.

[procedure]reverse list
Returns a newly allocated list consisting of the top-level elements of list in reverse
order.

(reverse ’(a b c)) ⇒ (c b a)

(reverse ’(a (b c) d (e (f)))) ⇒ ((e (f)) d (b c) a)

[procedure]reverse! list
Returns a list consisting of the top-level elements of list in reverse order. reverse!

is like reverse, except that it destructively modifies list. Because the result may not
be eqv? to list, it is desirable to do something like (set! x (reverse! x)).

[procedure]sort sequence procedure
[procedure]merge-sort sequence procedure
[procedure]quick-sort sequence procedure

Sequence must be either a list or a vector. Procedure must be a procedure of two
arguments that defines a total ordering on the elements of sequence. In other words,
if x and y are two distinct elements of sequence, then it must be the case that

(and (procedure x y)

(procedure y x))

⇒ #f

If sequence is a list (vector), sort returns a newly allocated list (vector) whose ele-
ments are those of sequence, except that they are rearranged to be sorted in the order
defined by procedure. So, for example, if the elements of sequence are numbers, and
procedure is <, then the resulting elements are sorted in monotonically nondecreasing
order. Likewise, if procedure is >, the resulting elements are sorted in monotonically
nonincreasing order. To be precise, if x and y are any two adjacent elements in the
result, where x precedes y, it is the case that

(procedure y x)

⇒ #f

Two sorting algorithms are implemented: merge-sort and quick-sort. The proce-
dure sort is an alias for merge-sort.

http://srfi.schemers.org/srfi-1/srfi-1.html

126 MIT/GNU Scheme 10.1.1

See also the definition of sort!.

127

8 Vectors

Vectors are heterogenous structures whose elements are indexed by exact non-negative
integers. A vector typically occupies less space than a list of the same length, and the
average time required to access a randomly chosen element is typically less for the vector
than for the list.

The length of a vector is the number of elements that it contains. This number is an
exact non-negative integer that is fixed when the vector is created. The valid indexes of
a vector are the exact non-negative integers less than the length of the vector. The first
element in a vector is indexed by zero, and the last element is indexed by one less than the
length of the vector.

Vectors are written using the notation #(object ...). For example, a vector of length
3 containing the number zero in element 0, the list (2 2 2 2) in element 1, and the string
"Anna" in element 2 can be written as

#(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector, not an expression evaluating to a
vector. Like list constants, vector constants must be quoted:

’#(0 (2 2 2 2) "Anna") ⇒ #(0 (2 2 2 2) "Anna")

A number of the vector procedures operate on subvectors. A subvector is a segment of a
vector that is specified by two exact non-negative integers, start and end. Start is the index
of the first element that is included in the subvector, and end is one greater than the index
of the last element that is included in the subvector. Thus if start and end are the same,
they refer to a null subvector, and if start is zero and end is the length of the vector, they
refer to the entire vector. The valid indexes of a subvector are the exact integers between
start inclusive and end exclusive.

8.1 Construction of Vectors

[procedure]make-vector k [object]
Returns a newly allocated vector of k elements. If object is specified, make-vector
initializes each element of the vector to object. Otherwise the initial elements of the
result are unspecified.

[procedure]vector object . . .
Returns a newly allocated vector whose elements are the given arguments. vector is
analogous to list.

(vector ’a ’b ’c) ⇒ #(a b c)

[procedure]vector-copy vector
Returns a newly allocated vector that is a copy of vector.

[procedure]list->vector list
Returns a newly allocated vector initialized to the elements of list. The inverse of
list->vector is vector->list.

(list->vector ’(dididit dah)) ⇒ #(dididit dah)

128 MIT/GNU Scheme 10.1.1

[standard procedure]string->vector string [start [end]]
[standard procedure]vector->string vector [start [end]]

It is an error if any element of vector is not a character.

The vector->string procedure returns a newly allocated string of the objects con-
tained in the elements of vector between start and end. The string->vector pro-
cedure returns a newly created vector initialized to the elements of the string string
between start and end.

In both procedures, order is preserved.

(string->vector "ABC") ⇒ #(#\A #\B #\C)

(vector->string #(#\1 #\2 #\3) ⇒ "123"

[procedure]make-initialized-vector k initialization
Similar to make-vector, except that the elements of the result are determined by
calling the procedure initialization on the indices. For example:

(make-initialized-vector 5 (lambda (x) (* x x)))

⇒ #(0 1 4 9 16)

[procedure]vector-grow vector k
K must be greater than or equal to the length of vector. Returns a newly allocated
vector of length k. The first (vector-length vector) elements of the result are
initialized from the corresponding elements of vector. The remaining elements of the
result are unspecified.

[procedure]vector-map procedure vector
Procedure must be a procedure of one argument. vector-map applies procedure
element-wise to the elements of vector and returns a newly allocated vector of the
results, in order from left to right. The dynamic order in which procedure is applied
to the elements of vector is unspecified.

(vector-map cadr ’#((a b) (d e) (g h))) ⇒ #(b e h)

(vector-map (lambda (n) (expt n n)) ’#(1 2 3 4))

⇒ #(1 4 27 256)

(vector-map + ’#(5 7 9)) ⇒ #(5 7 9)

8.2 Selecting Vector Components

[procedure]vector? object
Returns #t if object is a vector; otherwise returns #f.

[procedure]vector-length vector
Returns the number of elements in vector.

[procedure]vector-ref vector k
Returns the contents of element k of vector. K must be a valid index of vector.

(vector-ref ’#(1 1 2 3 5 8 13 21) 5) ⇒ 8

Chapter 8: Vectors 129

[procedure]vector-set! vector k object
Stores object in element k of vector and returns an unspecified value. K must be a
valid index of vector.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))

(vector-set! vec 1 ’("Sue" "Sue"))

vec)

⇒ #(0 ("Sue" "Sue") "Anna")

[procedure]vector-first vector
[procedure]vector-second vector
[procedure]vector-third vector
[procedure]vector-fourth vector
[procedure]vector-fifth vector
[procedure]vector-sixth vector
[procedure]vector-seventh vector
[procedure]vector-eighth vector

These procedures access the first several elements of vector in the obvious way. It is
an error if the implicit index of one of these procedurs is not a valid index of vector.

[procedure]vector-binary-search vector key<? unwrap-key key
Searches vector for an element with a key matching key, returning the element if one
is found or #f if none. The search operation takes time proportional to the logarithm
of the length of vector. Unwrap-key must be a procedure that maps each element of
vector to a key. Key<? must be a procedure that implements a total ordering on the
keys of the elements.

(define (translate number)

(vector-binary-search ’#((1 . i)

(2 . ii)

(3 . iii)

(6 . vi))

< car number))

(translate 2) ⇒ (2 . ii)

(translate 4) ⇒ #F

8.3 Cutting Vectors

[procedure]subvector vector start end
Returns a newly allocated vector that contains the elements of vector between index
start (inclusive) and end (exclusive).

[procedure]vector-head vector end
Equivalent to

(subvector vector 0 end)

[procedure]vector-tail vector start
Equivalent to

(subvector vector start (vector-length vector))

130 MIT/GNU Scheme 10.1.1

8.4 Modifying Vectors

[procedure]vector-fill! vector object
[procedure]subvector-fill! vector start end object

Stores object in every element of the vector (subvector) and returns an unspecified
value.

[procedure]subvector-move-left! vector1 start1 end1 vector2 start2
[procedure]subvector-move-right! vector1 start1 end1 vector2 start2

Destructively copies the elements of vector1, starting with index start1 (inclusive)
and ending with end1 (exclusive), into vector2 starting at index start2 (inclusive).
Vector1, start1, and end1 must specify a valid subvector, and start2 must be a valid
index for vector2. The length of the source subvector must not exceed the length of
vector2 minus the index start2.

The elements are copied as follows (note that this is only important when vector1
and vector2 are eqv?):

subvector-move-left!

The copy starts at the left end and moves toward the right (from smaller
indices to larger). Thus if vector1 and vector2 are the same, this proce-
dure moves the elements toward the left inside the vector.

subvector-move-right!

The copy starts at the right end and moves toward the left (from larger
indices to smaller). Thus if vector1 and vector2 are the same, this pro-
cedure moves the elements toward the right inside the vector.

[procedure]sort! vector procedure
[procedure]merge-sort! vector procedure
[procedure]quick-sort! vector procedure

Procedure must be a procedure of two arguments that defines a total ordering on the
elements of vector. The elements of vector are rearranged so that they are sorted in
the order defined by procedure. The elements are rearranged in place, that is, vector
is destructively modified so that its elements are in the new order.

sort! returns vector as its value.

Two sorting algorithms are implemented: merge-sort! and quick-sort!. The pro-
cedure sort! is an alias for merge-sort!.

See also the definition of sort.

131

9 Bit Strings

A bit string is a sequence of bits. Bit strings can be used to represent sets or to manipulate
binary data. The elements of a bit string are numbered from zero up to the number of bits
in the string less one, in right to left order, (the rightmost bit is numbered zero). When you
convert from a bit string to an integer, the zero-th bit is associated with the zero-th power
of two, the first bit is associated with the first power, and so on.

Bit strings are encoded very densely in memory. Each bit occupies exactly one bit of
storage, and the overhead for the entire bit string is bounded by a small constant. However,
accessing a bit in a bit string is slow compared to accessing an element of a vector or
character string. If performance is of overriding concern, it is better to use character strings
to store sets of boolean values even though they occupy more space.

The length of a bit string is the number of bits that it contains. This number is an exact
non-negative integer that is fixed when the bit string is created. The valid indexes of a bit
string are the exact non-negative integers less than the length of the bit string.

Bit strings may contain zero or more bits. They are not limited by the length of a
machine word. In the printed representation of a bit string, the contents of the bit string
are preceded by ‘#*’. The contents are printed starting with the most significant bit (highest
index).

Note that the external representation of bit strings uses a bit ordering that is the reverse
of the representation for bit strings in Common Lisp. It is likely that MIT/GNU Scheme’s
representation will be changed in the future, to be compatible with Common Lisp. For the
time being this representation should be considered a convenience for viewing bit strings
rather than a means of entering them as data.

#*11111

#*1010

#*00000000

#*

All of the bit-string procedures are MIT/GNU Scheme extensions.

9.1 Construction of Bit Strings

[procedure]make-bit-string k initialization
Returns a newly allocated bit string of length k. If initialization is #f, the bit string
is filled with 0 bits; otherwise, the bit string is filled with 1 bits.

(make-bit-string 7 #f) ⇒ #*0000000

[procedure]bit-string-allocate k
Returns a newly allocated bit string of length k, but does not initialize it.

[procedure]bit-string-copy bit-string
Returns a newly allocated copy of bit-string.

132 MIT/GNU Scheme 10.1.1

9.2 Selecting Bit String Components

[procedure]bit-string? object
Returns #t if object is a bit string; otherwise returns #f.

[procedure]bit-string-length bit-string
Returns the length of bit-string.

[procedure]bit-string-ref bit-string k
Returns #t if the kth bit is 1; otherwise returns #f. K must be a valid index of
bit-string.

[procedure]bit-string-set! bit-string k
Sets the kth bit in bit-string to 1 and returns an unspecified value. K must be a valid
index of bit-string.

[procedure]bit-string-clear! bit-string k
Sets the kth bit in bit-string to 0 and returns an unspecified value. K must be a valid
index of bit-string.

[procedure]bit-substring-find-next-set-bit bit-string start end
Returns the index of the first occurrence of a set bit in the substring of bit-string
from start (inclusive) to end (exclusive). If none of the bits in the substring are set
#f is returned. The index returned is relative to the whole bit string, not substring.

The following procedure uses bit-substring-find-next-set-bit to find all the set
bits and display their indexes:

(define (scan-bitstring bs)

(let ((end (bit-string-length bs)))

(let loop ((start 0))

(let ((next

(bit-substring-find-next-set-bit bs start end)))

(if next

(begin

(write-line next)

(if (< next end)

(loop (+ next 1)))))))))

9.3 Cutting and Pasting Bit Strings

[procedure]bit-string-append bit-string-1 bit-string-2
Appends the two bit string arguments, returning a newly allocated bit string as its
result. In the result, the bits copied from bit-string-1 are less significant (smaller
indices) than those copied from bit-string-2.

[procedure]bit-substring bit-string start end
Returns a newly allocated bit string whose bits are copied from bit-string, starting
at index start (inclusive) and ending at end (exclusive).

Chapter 9: Bit Strings 133

9.4 Bitwise Operations on Bit Strings

[procedure]bit-string-zero? bit-string
Returns #t if bit-string contains only 0 bits; otherwise returns #f.

[procedure]bit-string=? bit-string-1 bit-string-2
Compares the two bit string arguments and returns #t if they are the same length
and contain the same bits; otherwise returns #f.

[procedure]bit-string-not bit-string
Returns a newly allocated bit string that is the bitwise-logical negation of bit-string.

[procedure]bit-string-movec! target-bit-string bit-string
The destructive version of bit-string-not. The arguments target-bit-string and
bit-string must be bit strings of the same length. The bitwise-logical negation of
bit-string is computed and the result placed in target-bit-string. The value of this
procedure is unspecified.

[procedure]bit-string-and bit-string-1 bit-string-2
Returns a newly allocated bit string that is the bitwise-logical “and” of the arguments.
The arguments must be bit strings of identical length.

[procedure]bit-string-andc bit-string-1 bit-string-2
Returns a newly allocated bit string that is the bitwise-logical “and” of bit-string-1
with the bitwise-logical negation of bit-string-2. The arguments must be bit strings
of identical length.

[procedure]bit-string-or bit-string-1 bit-string-2
Returns a newly allocated bit string that is the bitwise-logical “inclusive or” of the
arguments. The arguments must be bit strings of identical length.

[procedure]bit-string-xor bit-string-1 bit-string-2
Returns a newly allocated bit string that is the bitwise-logical “exclusive or” of the
arguments. The arguments must be bit strings of identical length.

[procedure]bit-string-and! target-bit-string bit-string
[procedure]bit-string-or! target-bit-string bit-string
[procedure]bit-string-xor! target-bit-string bit-string
[procedure]bit-string-andc! target-bit-string bit-string

These are destructive versions of the above operations. The arguments target-bit-
string and bit-string must be bit strings of the same length. Each of these procedures
performs the corresponding bitwise-logical operation on its arguments, places the
result into target-bit-string, and returns an unspecified result.

9.5 Modification of Bit Strings

[procedure]bit-string-fill! bit-string initialization
Fills bit-string with zeroes if initialization is #f; otherwise fills bit-string with ones.
Returns an unspecified value.

134 MIT/GNU Scheme 10.1.1

[procedure]bit-string-move! target-bit-string bit-string
Moves the contents of bit-string into target-bit-string. Both arguments must be bit
strings of the same length. The results of the operation are undefined if the arguments
are the same bit string.

[procedure]bit-substring-move-right! bit-string-1 start1 end1 bit-string-2
start2

Destructively copies the bits of bit-string-1, starting at index start1 (inclusive) and
ending at end1 (exclusive), into bit-string-2 starting at index start2 (inclusive).
Start1 and end1 must be valid substring indices for bit-string-1, and start2 must
be a valid index for bit-string-2. The length of the source substring must not exceed
the length of bit-string-2 minus the index start2.

The bits are copied starting from the MSB and working towards the LSB; the direction
of copying only matters when bit-string-1 and bit-string-2 are eqv?.

9.6 Integer Conversions of Bit Strings

[procedure]unsigned-integer->bit-string length integer
Both length and integer must be exact non-negative integers. Converts integer
into a newly allocated bit string of length bits. Signals an error of type
condition-type:bad-range-argument if integer is too large to be represented in
length bits.

[procedure]signed-integer->bit-string length integer
Length must be an exact non-negative integer, and integer may be any exact integer.
Converts integer into a newly allocated bit string of length bits, using two’s comple-
ment encoding for negative numbers. Signals an error of type condition-type:bad-
range-argument if integer is too large to be represented in length bits.

[procedure]bit-string->unsigned-integer bit-string
[procedure]bit-string->signed-integer bit-string

Converts bit-string into an exact integer. bit-string->signed-integer regards
bit-string as a two’s complement representation of a signed integer, and produces
an integer of like sign and absolute value. bit-string->unsigned-integer regards
bit-string as an unsigned quantity and converts to an integer accordingly.

135

10 Miscellaneous Datatypes

10.1 Booleans

The boolean objects are true and false. The boolean constant true is written as ‘#t’, and
the boolean constant false is written as ‘#f’.

The primary use for boolean objects is in the conditional expressions if, cond, and, and
or; the behavior of these expressions is determined by whether objects are true or false.
These expressions count only #f as false. They count everything else, including #t, pairs,
symbols, numbers, strings, vectors, and procedures as true (but see Section 1.2.5 [True and
False], page 8).

Programmers accustomed to other dialects of Lisp should note that Scheme distinguishes
#f and the empty list from the symbol nil. Similarly, #t is distinguished from the symbol
t. In fact, the boolean objects (and the empty list) are not symbols at all.

Boolean constants evaluate to themselves, so you don’t need to quote them.

#t ⇒ #t

#f ⇒ #f

’#f ⇒ #f

t error Unbound variable

[variable]false
[variable]true

These variables are bound to the objects #f and #t respectively. The compiler, given
the usual-integrations declaration, replaces references to these variables with their
respective values.

Note that the symbol true is not equivalent to #t, and the symbol false is not
equivalent to #f.

[standard procedure]boolean? object
Returns #t if object is either #t or #f; otherwise returns #f.

(boolean? #f) ⇒ #t

(boolean? 0) ⇒ #f

[standard procedure]not object
[procedure]false? object

These procedures return #t if object is false; otherwise they return #f. In other
words they invert boolean values. These two procedures have identical semantics;
their names are different to give different connotations to the test.

(not #t) ⇒ #f

(not 3) ⇒ #f

(not (list 3)) ⇒ #f

(not #f) ⇒ #t

[extended standard procedure]procedure boolean=? boolean1 boolean2
boolean3 . . .

This predicate is true iff the boolean args are either all true or all false.

136 MIT/GNU Scheme 10.1.1

Implementation note: The standard requires this procedure’s arguments to satisfy
boolean?, but MIT/GNU Scheme allows any object to be an argument.

[procedure]boolean/and object . . .
This procedure returns #t if none of its arguments are #f. Otherwise it returns #f.

[procedure]boolean/or object . . .
This procedure returns #f if all of its arguments are #f. Otherwise it returns #t.

10.2 Symbols

MIT/GNU Scheme provides two types of symbols: interned and uninterned. Interned
symbols are far more common than uninterned symbols, and there are more ways to create
them. Interned symbols have an external representation that is recognized by the procedure
read; uninterned symbols do not.1

Interned symbols have an extremely useful property: any two interned symbols whose
names are the same, in the sense of string=?, are the same object (i.e. they are eq? to one
another). The term interned refers to the process of interning by which this is accomplished.
Uninterned symbols do not share this property.

The names of interned symbols are not distinguished by their alphabetic case. Because
of this, MIT/GNU Scheme converts all alphabetic characters in the name of an interned
symbol to a specific case (lower case) when the symbol is created. When the name of an
interned symbol is referenced (using symbol->string) or written (using write) it appears
in this case. It is a bad idea to depend on the name being lower case. In fact, it is preferable
to take this one step further: don’t depend on the name of a symbol being in a uniform
case.

The rules for writing an interned symbol are the same as the rules for writing an identifier
(see Section 1.3.3 [Identifiers], page 10). Any interned symbol that has been returned as
part of a literal expression, or read using the read procedure and subsequently written out
using the write procedure, will read back in as the identical symbol (in the sense of eq?).

Usually it is also true that reading in an interned symbol that was previously writ-
ten out produces the same symbol. An exception are symbols created by the procedures
string->symbol and intern; they can create symbols for which this write/read invari-
ance may not hold because the symbols’ names contain special characters or letters in the
non-standard case.2

1 In older dialects of Lisp, uninterned symbols were fairly important. This was true because symbols were
complicated data structures: in addition to having value cells (and sometimes, function cells), these
structures contained property lists. Because of this, uninterned symbols were often used merely for
their property lists — sometimes an uninterned symbol used this way was referred to as a disembodied
property list. In MIT/GNU Scheme, symbols do not have property lists, or any other components besides
their names. There is a different data structure similar to disembodied property lists: one-dimensional
tables (see Section 11.2 [1D Tables], page 151). For these reasons, uninterned symbols are not very useful
in MIT/GNU Scheme. In fact, their primary purpose is to simplify the generation of unique variable
names in programs that generate Scheme code.

2 MIT/GNU Scheme reserves a specific set of interned symbols for its own use. If you use these reserved
symbols it is possible that you could break specific pieces of software that depend on them. The reserved
symbols all have names beginning with the characters ‘#[’ and ending with the character ‘]’; thus none
of these symbols can be read by the procedure read and hence are not likely to be used by accident. For
example, (intern "#[unnamed-procedure]") produces a reserved symbol.

Chapter 10: Miscellaneous Datatypes 137

The external representation for uninterned symbols is special, to distinguish them from
interned symbols and prevent them from being recognized by the read procedure:

(string->uninterned-symbol "foo")

⇒ #[uninterned-symbol 30 foo]

In this section, the procedures that return symbols as values will either always return
interned symbols, or always return uninterned symbols. The procedures that accept sym-
bols as arguments will always accept either interned or uninterned symbols, and do not
distinguish the two.

[procedure]symbol? object
Returns #t if object is a symbol, otherwise returns #f.

(symbol? ’foo) ⇒ #t

(symbol? (car ’(a b))) ⇒ #t

(symbol? "bar") ⇒ #f

[procedure]symbol->string symbol
Returns the name of symbol as a string. If symbol was returned by string->symbol,
the value of this procedure will be identical (in the sense of string=?) to the string
that was passed to string->symbol. It is an error to apply mutation procedures such
as string-set! to strings returned by this procedure.

(symbol->string ’flying-fish) ⇒ "flying-fish"

(symbol->string ’Martin) ⇒ "martin"

(symbol->string (string->symbol "Malvina"))

⇒ "Malvina"

Note that two distinct uninterned symbols can have the same name.

[procedure]intern string
Returns the interned symbol whose name is string. Converts string to the standard
alphabetic case before generating the symbol. This is the preferred way to create
interned symbols, as it guarantees the following independent of which case the imple-
mentation uses for symbols’ names:

(eq? ’bitBlt (intern "bitBlt")) ⇒ #t

The user should take care that string obeys the rules for identifiers (see Section 1.3.3
[Identifiers], page 10), otherwise the resulting symbol cannot be read as itself.

[procedure]intern-soft string
Returns the interned symbol whose name is string. Converts string to the standard
alphabetic case before generating the symbol. If no such interned symbol exists,
returns #f.

This is exactly like intern, except that it will not create an interned symbol, but
only returns symbols that already exist.

[procedure]string->symbol string
Returns the interned symbol whose name is string. Although you can use this proce-
dure to create symbols with names containing special characters or lowercase letters,

138 MIT/GNU Scheme 10.1.1

it’s usually a bad idea to create such symbols because they cannot be read as them-
selves. See symbol->string.

(eq? ’mISSISSIppi ’mississippi) ⇒ #t

(string->symbol "mISSISSIppi")

⇒ the symbol with the name "mISSISSIppi"

(eq? ’bitBlt (string->symbol "bitBlt")) ⇒ #f

(eq? ’JollyWog

(string->symbol

(symbol->string ’JollyWog))) ⇒ #t

(string=? "K. Harper, M.D."

(symbol->string

(string->symbol

"K. Harper, M.D."))) ⇒ #t

[procedure]string->uninterned-symbol string
Returns a newly allocated uninterned symbol whose name is string. It is unimportant
what case or characters are used in string.

Note: this is the fastest way to make a symbol.

[procedure]generate-uninterned-symbol [object]
Returns a newly allocated uninterned symbol that is guaranteed to be different from
any other object. The symbol’s name consists of a prefix string followed by the (exact
non-negative integer) value of an internal counter. The counter is initially zero, and
is incremented after each call to this procedure.

The optional argument object is used to control how the symbol is generated. It may
take one of the following values:

• If object is omitted or #f, the prefix is "G".

• If object is an exact non-negative integer, the internal counter is set to that
integer prior to generating the result.

• If object is a string, it is used as the prefix.

• If object is a symbol, its name is used as the prefix.

(generate-uninterned-symbol)

⇒ #[uninterned-symbol 31 G0]

(generate-uninterned-symbol)

⇒ #[uninterned-symbol 32 G1]

(generate-uninterned-symbol ’this)

⇒ #[uninterned-symbol 33 this2]

(generate-uninterned-symbol)

⇒ #[uninterned-symbol 34 G3]

(generate-uninterned-symbol 100)

⇒ #[uninterned-symbol 35 G100]

(generate-uninterned-symbol)

⇒ #[uninterned-symbol 36 G101]

[procedure]symbol-append symbol . . .
Returns the interned symbol whose name is formed by concatenating the names of
the given symbols. This procedure preserves the case of the names of its arguments,

Chapter 10: Miscellaneous Datatypes 139

so if one or more of the arguments’ names has non-standard case, the result will also
have non-standard case.

(symbol-append ’foo- ’bar) ⇒ foo-bar

;; the arguments may be uninterned:
(symbol-append ’foo- (string->uninterned-symbol "baz"))

⇒ foo-baz

;; the result has the same case as the arguments:
(symbol-append ’foo- (string->symbol "BAZ")) ⇒ foo-BAZ

[procedure]symbol-hash symbol
Returns a hash number for symbol, which is computed by calling string-hash on
symbol’s name. The hash number is an exact non-negative integer.

[procedure]symbol-hash-mod symbol modulus
Modulus must be an exact positive integer. Equivalent to

(modulo (symbol-hash symbol) modulus)

This procedure is provided for convenience in constructing hash tables. However, it is
normally preferable to use make-strong-eq-hash-table to build hash tables keyed
by symbols, because eq? hash tables are much faster.

[procedure]symbol<? symbol1 symbol2
This procedure computes a total order on symbols. It is equivalent to

(string<? (symbol->string symbol1)

(symbol->string symbol2))

10.3 Parameters

Parameters are objects that can be bound to new values for the duration of a dynamic
extent. See Section 2.3 [Dynamic Binding], page 18.

[procedure]make-parameter init [converter]
[procedure]make-unsettable-parameter init [converter]

Returns a newly allocated parameter object, which is a procedure that accepts zero
arguments and returns the value associated with the parameter object. Initially
this value is the value of (converter init), or of init if the conversion procedure
converter is not specified. The associated value can be temporarily changed using the
parameterize special form (see [parameterize], page 18).

The make-parameter procedure is standardized by SRFI 39 and by R7RS, while
make-unsettable-parameter is an MIT/GNU Scheme extension.

[procedure]make-settable-parameter init [converter]
This procedure is like make-parameter, except that the returned parameter object
may also be assigned by passing it an argument. Note that an assignment to a settable
parameter affects only the extent of its current binding.

make-settable-parameter is an MIT/GNU Scheme extension.

http://srfi.schemers.org/srfi-39/srfi-39.html
http://r7rs.org/

140 MIT/GNU Scheme 10.1.1

[procedure]parameterize* bindings thunk
Bindings should be an alist associating parameter objects with new values. Returns
the value of thunk while the parameters are dynamically bound to the values.

Note that the parameterize special form expands into a call to this procedure.
parameterize* is an MIT/GNU Scheme extension.

10.3.1 Cells

A cell object is very similar to a parameter but is not implemented in multi-processing
worlds and thus is deprecated. Parameters should be used instead.

[procedure]cell? object
Returns #t if object is a cell; otherwise returns #f.

[procedure]make-cell object
Returns a newly allocated cell whose contents is object.

[procedure]cell-contents cell
Returns the current contents of cell.

[procedure]set-cell-contents! cell object
Alters the contents of cell to be object. Returns an unspecified value.

[procedure]bind-cell-contents! cell object thunk
Alters the contents of cell to be object, calls thunk with no arguments, then re-
stores the original contents of cell and returns the value returned by thunk. This is
completely equivalent to dynamic binding of a variable, including the behavior when
continuations are used (see Section 2.3 [Dynamic Binding], page 18).

10.4 Records

MIT/GNU Scheme provides a record abstraction, which is a simple and flexible mecha-
nism for building structures with named components. Records can be defined and accessed
using the procedures defined in this section. A less flexible but more concise way to ma-
nipulate records is to use the define-structure special form (see Section 2.10 [Structure
Definitions], page 29).

[procedure]make-record-type type-name field-names
Returns a record-type descriptor, a value representing a new data type, disjoint from
all others. The type-name argument must be a string, but is only used for debugging
purposes (such as the printed representation of a record of the new type). The field-
names argument is a list of symbols naming the fields of a record of the new type.
It is an error if the list contains any duplicates. It is unspecified how record-type
descriptors are represented.

[procedure]record-constructor record-type [field-names]
Returns a procedure for constructing new members of the type represented by record-
type. The returned procedure accepts exactly as many arguments as there are symbols
in the given list, field-names; these are used, in order, as the initial values of those
fields in a new record, which is returned by the constructor procedure. The values

Chapter 10: Miscellaneous Datatypes 141

of any fields not named in the list of field-names are unspecified. The field-names
argument defaults to the list of field-names in the call to make-record-type that
created the type represented by record-type; if the field-names argument is provided,
it is an error if it contains any duplicates or any symbols not in the default list.

[procedure]record-keyword-constructor record-type
Returns a procedure for constructing new members of the type represented by record-
type. The returned procedure accepts arguments in a keyword list, which is an
alternating sequence of names and values. In other words, the number of arguments
must be a multiple of two, and every other argument, starting with the first argument,
must be a symbol that is one of the field names for record-type.

The returned procedure may be called with a keyword list that contains multiple
instances of the same keyword. In this case, the leftmost instance is used and the
other instances are ignored. This allows keyword lists to be accumulated using cons

or cons*, and new bindings added to the front of the list override old bindings at the
end.

[procedure]record-predicate record-type
Returns a procedure for testing membership in the type represented by record-type.
The returned procedure accepts exactly one argument and returns #t if the argument
is a member of the indicated record type; it returns #f otherwise.

[procedure]record-accessor record-type field-name
Returns a procedure for reading the value of a particular field of a member of the type
represented by record-type. The returned procedure accepts exactly one argument
which must be a record of the appropriate type; it returns the current value of the
field named by the symbol field-name in that record. The symbol field-name must
be a member of the list of field names in the call to make-record-type that created
the type represented by record-type.

[procedure]record-modifier record-type field-name
Returns a procedure for writing the value of a particular field of a member of the type
represented by record-type. The returned procedure accepts exactly two arguments:
first, a record of the appropriate type, and second, an arbitrary Scheme value; it
modifies the field named by the symbol field-name in that record to contain the given
value. The returned value of the modifier procedure is unspecified. The symbol field-
name must be a member of the list of field names in the call to make-record-type

that created the type represented by record-type.

[procedure]record? object
Returns #t if object is a record of any type and #f otherwise. Note that record?

may be true of any Scheme value; of course, if it returns #t for some particular value,
then record-type-descriptor is applicable to that value and returns an appropriate
descriptor.

[procedure]record-type-descriptor record
Returns the record-type descriptor representing the type of record. That is, for ex-
ample, if the returned descriptor were passed to record-predicate, the resulting
predicate would return #t when passed record. Note that it is not necessarily the

142 MIT/GNU Scheme 10.1.1

case that the returned descriptor is the one that was passed to record-constructor

in the call that created the constructor procedure that created record.

[procedure]record-type? object
Returns #t if object is a record-type descriptor; otherwise returns #f.

[procedure]record-type-name record-type
Returns the type name associated with the type represented by record-type. The
returned value is eqv? to the type-name argument given in the call to make-record-

type that created the type represented by record-type.

[procedure]record-type-field-names record-type
Returns a list of the symbols naming the fields in members of the type represented
by record-type. The returned value is equal? to the field-names argument given in
the call to make-record-type that created the type represented by record-type.3

10.5 Promises

[special form]delay expression
The delay construct is used together with the procedure force to implement lazy
evaluation or call by need. (delay expression) returns an object called a promise
which at some point in the future may be asked (by the force procedure) to evaluate
expression and deliver the resulting value.

[procedure]force promise
Forces the value of promise. If no value has been computed for the promise, then a
value is computed and returned. The value of the promise is cached (or “memoized”)
so that if it is forced a second time, the previously computed value is returned without
any recomputation.

(force (delay (+ 1 2))) ⇒ 3

(let ((p (delay (+ 1 2))))

(list (force p) (force p))) ⇒ (3 3)

(define head car)

(define tail

(lambda (stream)

(force (cdr stream))))

(define a-stream

(letrec ((next

(lambda (n)

(cons n (delay (next (+ n 1)))))))

(next 0)))

(head (tail (tail a-stream))) ⇒ 2

3 In MIT/GNU Scheme, the returned list is always newly allocated.

Chapter 10: Miscellaneous Datatypes 143

[procedure]promise? object
Returns #t if object is a promise; otherwise returns #f.

[procedure]promise-forced? promise
Returns #t if promise has been forced and its value cached; otherwise returns #f.

[procedure]promise-value promise
If promise has been forced and its value cached, this procedure returns the cached
value. Otherwise, an error is signalled.

force and delay are mainly intended for programs written in functional style. The
following examples should not be considered to illustrate good programming style, but they
illustrate the property that the value of a promise is computed at most once.

(define count 0)

(define p

(delay

(begin

(set! count (+ count 1))

(* x 3))))

(define x 5)

count ⇒ 0

p ⇒ #[promise 54]

(force p) ⇒ 15

p ⇒ #[promise 54]

count ⇒ 1

(force p) ⇒ 15

count ⇒ 1

Here is a possible implementation of delay and force. We define the expression

(delay expression)

to have the same meaning as the procedure call

(make-promise (lambda () expression))

where make-promise is defined as follows:

(define make-promise

(lambda (proc)

(let ((already-run? #f)

(result #f))

(lambda ()

(cond ((not already-run?)

(set! result (proc))

(set! already-run? #t)))

result))))

Promises are implemented here as procedures of no arguments, and force simply calls
its argument.

144 MIT/GNU Scheme 10.1.1

(define force

(lambda (promise)

(promise)))

Various extensions to this semantics of delay and force are supported in some imple-
mentations (none of these are currently supported in MIT/GNU Scheme):

• Calling force on an object that is not a promise may simply return the object.

• It may be the case that there is no means by which a promise can be operationally
distinguished from its forced value. That is, expressions like the following may evaluate
to either #t or #f, depending on the implementation:

(eqv? (delay 1) 1) ⇒ unspecified
(pair? (delay (cons 1 2))) ⇒ unspecified

• Some implementations will implement “implicit forcing”, where the value of a promise
is forced by primitive procedures like car and +:

(+ (delay (* 3 7)) 13) ⇒ 34

10.6 Streams

In addition to promises, MIT/GNU Scheme supports a higher-level abstraction called
streams. Streams are similar to lists, except that the tail of a stream is not computed
until it is referred to. This allows streams to be used to represent infinitely long lists.

[procedure]stream object . . .
Returns a newly allocated stream whose elements are the arguments. Note that the
expression (stream) returns the empty stream, or end-of-stream marker.

[procedure]list->stream list
Returns a newly allocated stream whose elements are the elements of list. Equivalent
to (apply stream list).

[procedure]stream->list stream
Returns a newly allocated list whose elements are the elements of stream. If stream
has infinite length this procedure will not terminate. This could have been defined
by

(define (stream->list stream)

(if (stream-null? stream)

’()

(cons (stream-car stream)

(stream->list (stream-cdr stream)))))

[special form]cons-stream object expression
Returns a newly allocated stream pair. Equivalent to (cons object (delay

expression)).

[procedure]stream-pair? object
Returns #t if object is a pair whose cdr contains a promise. Otherwise returns #f.
This could have been defined by

(define (stream-pair? object)

(and (pair? object)

(promise? (cdr object))))

Chapter 10: Miscellaneous Datatypes 145

[procedure]stream-car stream
[procedure]stream-first stream

Returns the first element in stream. stream-car is equivalent to car. stream-first
is a synonym for stream-car.

[procedure]stream-cdr stream
[procedure]stream-rest stream

Returns the first tail of stream. Equivalent to (force (cdr stream)). stream-rest
is a synonym for stream-cdr.

[procedure]stream-null? stream
Returns #t if stream is the end-of-stream marker; otherwise returns #f. This is
equivalent to null?, but should be used whenever testing for the end of a stream.

[procedure]stream-length stream
Returns the number of elements in stream. If stream has an infinite number of
elements this procedure will not terminate. Note that this procedure forces all of the
promises that comprise stream.

[procedure]stream-ref stream k
Returns the element of stream that is indexed by k; that is, the kth element. K must
be an exact non-negative integer strictly less than the length of stream.

[procedure]stream-head stream k
Returns the first k elements of stream as a list. K must be an exact non-negative
integer strictly less than the length of stream.

[procedure]stream-tail stream k
Returns the tail of stream that is indexed by k; that is, the kth tail. This is equivalent
to performing stream-cdr k times. K must be an exact non-negative integer strictly
less than the length of stream.

[procedure]stream-map procedure stream stream . . .
Returns a newly allocated stream, each element being the result of invoking procedure
with the corresponding elements of the streams as its arguments.

10.7 Weak References

Weak references are a mechanism for building data structures that point at objects without
protecting them from garbage collection. An example of such a data structure might be an
entry in a lookup table that should be removed if the rest of the program does not reference
its key. Such an entry must still point at its key to carry out comparisons, but should not
in itself prevent its key from being garbage collected.

A weak reference is a reference that points at an object without preventing it from being
garbage collected. The term strong reference is used to distinguish normal references from
weak ones. If there is no path of strong references to some object, the garbage collector
will reclaim that object and mark any weak references to it to indicate that it has been
reclaimed.

146 MIT/GNU Scheme 10.1.1

If there is a path of strong references from an object A to an object B, A is said to hold
B strongly. If there is a path of references from an object A to an object B, but every such
path traverses at least one weak reference, A is said to hold B weakly.

MIT Scheme provides two mechanisms for using weak references. Weak pairs are like
normal pairs, except that their car slot is a weak reference (but the cdr is still strong).
The heavier-weight ephemerons additionally arrange that the ephemeron does not count as
holding the object in its key field strongly even if the object in its datum field does.

Warning: Working with weak references is subtle and requires careful analysis; most
programs should avoid working with them directly. The most common use cases for weak
references ought to be served by hash tables (see Section 11.4 [Hash Tables], page 153),
which can employ various flavors of weak entry types, 1d tables (see Section 11.2 [1D
Tables], page 151), which hold their keys weakly, and the association table (see Section 11.3
[The Association Table], page 152), which also holds its keys weakly.

10.7.1 Weak Pairs

The car of a weak pair holds its pointer weakly, while the cdr holds its pointer strongly. If
the object in the car of a weak pair is not held strongly by any other data structure, it will
be garbage-collected.

Note: weak pairs can be defeated by cross references among their slots. Consider a weak
pair P holding an object A in its car and an object D in its cdr. P points to A weakly and
to D strongly. If D holds A strongly, however, then P ends up holding A strongly after
all. If avoiding this is worth a heavier-weight structure, See Section 10.7.2 [Ephemerons],
page 147.

Note: weak pairs are not pairs; that is, they do not satisfy the predicate pair?.

[procedure]weak-pair? object
Returns #t if object is a weak pair; otherwise returns #f.

[procedure]weak-cons car cdr
Allocates and returns a new weak pair, with components car and cdr. The car
component is held weakly.

[procedure]weak-pair/car? weak-pair
This predicate returns #f if the car of weak-pair has been garbage-collected; otherwise
returns #t. In other words, it is true if weak-pair has a valid car component.

[procedure]weak-car weak-pair
Returns the car component of weak-pair. If the car component has been garbage-
collected, this operation returns #f, but it can also return #f if that is the value that
was stored in the car.

Normally, weak-pair/car? is used to determine if weak-car would return a valid value.
An obvious way of doing this would be:

(if (weak-pair/car? x)

(weak-car x)

...)

Chapter 10: Miscellaneous Datatypes 147

However, since a garbage collection could occur between the call to weak-pair/car? and
weak-car, this would not always work correctly. Instead, the following should be used,
which always works:

(or (weak-car x)

(and (not (weak-pair/car? x))

...))

The reason that the latter expression works is that weak-car returns #f in just two
instances: when the car component is #f, and when the car component has been garbage-
collected. In the former case, if a garbage collection happens between the two calls, it won’t
matter, because #f will never be garbage-collected. And in the latter case, it also won’t
matter, because the car component no longer exists and cannot be affected by the garbage
collector.

[procedure]weak-set-car! weak-pair object
Sets the car component of weak-pair to object and returns an unspecified result.

[procedure]weak-cdr weak-pair
Returns the cdr component of weak-pair.

[procedure]weak-set-cdr! weak-pair object
Sets the cdr component of weak-pair to object and returns an unspecified result.

10.7.2 Ephemerons

An ephemeron is an object with two weakly referenced components called its key and
datum. The garbage collector drops an ephemeron’s references to both key and datum,
rendering the ephemeron broken, if and only if the garbage collector can prove that there
are no strong references to the key. In other words, an ephemeron is broken when nobody
else cares about its key. In particular, the datum holding a reference to the key will not in
itself prevent the ephemeron from becoming broken; in contrast, See Section 10.7.1 [Weak
Pairs], page 146. Once broken, ephemerons never cease to be broken; setting the key or
datum of a broken ephemeron with set-ephemeron-key! or set-ephemeron-datum! has
no effect. Note that an ephemeron’s reference to its datum may be dropped even if the
datum is still reachable; all that matters is whether the key is reachable.

Ephemerons are considerably heavier-weight than weak pairs, because garbage-collecting
ephemerons is more complicated than garbage-collecting weak pairs. Each ephemeron needs
five words of storage, rather than the two words needed by a weak pair. However, while
the garbage collector spends more time on ephemerons than on other objects, the amount
of time it spends on ephemerons scales linearly with the number of live ephemerons, which
is how its running time scales with the total number of live objects anyway.

[procedure]ephemeron? object
Returns #t if object is a ephemeron; otherwise returns #f.

[procedure]make-ephemeron key datum
Allocates and returns a new ephemeron, with components key and datum.

[procedure]ephemeron-broken? ephemeron
Returns #t if the garbage collector has dropped ephemeron’s references to its key and
datum; otherwise returns #f.

148 MIT/GNU Scheme 10.1.1

[procedure]ephemeron-key ephemeron
[procedure]ephemeron-datum ephemeron

These return the key or datum component, respectively, of ephemeron. If ephemeron
has been broken, these operations return #f, but they can also return #f if that is
the value that was stored in the key or value component.

[procedure]set-ephemeron-key! ephemeron object
[procedure]set-ephemeron-datum! ephemeron object

These set the key or datum component, respectively, of ephemeron to object and
return an unspecified result. If ephemeron is broken, neither of these operations has
any effect.

Like weak-pair/car?, ephemeron-broken? must be used with care. If
(ephemeron-broken? ephemeron) yields false, it guarantees only that prior evaluations
of (ephemeron-key ephemeron) or (ephemeron-datum ephemeron) yielded the key or
datum that was stored in the ephemeron, but it makes no guarantees about subsequent
calls to ephemeron-key or ephemeron-datum: the garbage collector may run and break
the ephemeron immediately after ephemeron-broken? returns. Thus, the correct idiom to
fetch an ephemeron’s key and datum and use them if the ephemeron is not broken is

(let ((key (ephemeron-key ephemeron))

(datum (ephemeron-datum ephemeron)))

(if (ephemeron-broken? ephemeron)

... broken case ...

... code using key and datum ...))

10.7.3 Reference barriers

The garbage collector may break an ephemeron if it can prove that the key is not strongly
reachable. To ensure that it does not do so before a certain point in a program, the program
can invoke a reference barrier on the key by calling the reference-barrier procedure,
which guarantees that even if the program does not use the key, it will be considered
strongly reachable until after reference-barrier returns.

[procedure]reference-barrier object
Guarantee that object is strongly reachable until after reference-barrier returns.

149

11 Associations

MIT/GNU Scheme provides several mechanisms for associating objects with one another.
Each of these mechanisms creates a link between one or more objects, called keys, and some
other object, called a datum. Beyond this common idea, however, each of the mechanisms
has various different properties that make it appropriate in different situations:

• Association lists are one of Lisp’s oldest association mechanisms. Because they are
made from ordinary pairs, they are easy to build and manipulate, and very flexible in
use. However, the average lookup time for an association list is linear in the number
of associations.

• 1D tables have a very simple interface, making them easy to use, and offer the feature
that they do not prevent their keys from being reclaimed by the garbage collector. Like
association lists, their average lookup time is linear in the number of associations; but
1D tables aren’t as flexible.

• The association table is MIT/GNU Scheme’s equivalent to the property lists of Lisp.
It has the advantages that the keys may be any type of object and that it does not
prevent the keys from being reclaimed by the garbage collector. However, two linear-
time lookups must be performed, one for each key, whereas for traditional property
lists only one lookup is required for both keys.

• Hash tables are a powerful mechanism with constant-time access to large amounts of
data. Hash tables are not as flexible as association lists, but because their access times
are independent of the number of associations in the table, for most applications they
are the mechanism of choice.

• Balanced binary trees are another association mechanism that is useful for applications
in which the keys are ordered. Binary trees have access times that are proportional to
the logarithm of the number of associations in the tree. While they aren’t as fast as
hash tables, they offer the advantage that the contents of the tree can be converted to
a sorted alist in linear time. Additionally, two trees can be compared for equality in
worst-case linear time.

• Red-Black trees are a kind of balanced binary tree. The implementation supports
destructive insertion and deletion operations with a good constant factor.

• Weight-Balanced trees are a kind of balanced binary tree. The implementation provides
non-destructive operations. There is a comprehensive set of operations, including: a
constant-time size operation; many high-level operations such as the set operations
union, intersection and difference; and indexing of elements by position.

11.1 Association Lists

An association list, or alist, is a data structure used very frequently in Scheme. An alist is
a list of pairs, each of which is called an association. The car of an association is called the
key.

An advantage of the alist representation is that an alist can be incrementally augmented
simply by adding new entries to the front. Moreover, because the searching procedures
assv et al. search the alist in order, new entries can “shadow” old entries. If an alist is

150 MIT/GNU Scheme 10.1.1

viewed as a mapping from keys to data, then the mapping can be not only augmented but
also altered in a non-destructive manner by adding new entries to the front of the alist.1

[procedure]alist? object
Returns #t if object is an association list (including the empty list); otherwise returns
#f. Any object satisfying this predicate also satisfies list?.

[procedure]assq object alist
[procedure]assv object alist
[procedure]assoc object alist

These procedures find the first pair in alist whose car field is object, and return that
pair; the returned pair is always an element of alist, not one of the pairs from which
alist is composed. If no pair in alist has object as its car, #f (n.b.: not the empty
list) is returned. assq uses eq? to compare object with the car fields of the pairs in
alist, while assv uses eqv? and assoc uses equal?.2

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) ⇒ (a 1)

(assq ’b e) ⇒ (b 2)

(assq ’d e) ⇒ #f

(assq (list ’a) ’(((a)) ((b)) ((c)))) ⇒ #f

(assoc (list ’a) ’(((a)) ((b)) ((c)))) ⇒ ((a))

(assq 5 ’((2 3) (5 7) (11 13))) ⇒ unspecified
(assv 5 ’((2 3) (5 7) (11 13))) ⇒ (5 7)

[procedure]association-procedure predicate selector
Returns an association procedure that is similar to assv, except that selector (a pro-
cedure of one argument) is used to select the key from the association, and predicate
(an equivalence predicate) is used to compare the key to the given item. This can be
used to make association lists whose elements are, say, vectors instead of pairs (also
see Section 7.6 [Searching Lists], page 120).

For example, here is how assv could be implemented:

(define assv (association-procedure eqv? car))

Another example is a “reverse association” procedure:

(define rassv (association-procedure eqv? cdr))

[procedure]del-assq object alist
[procedure]del-assv object alist
[procedure]del-assoc object alist

These procedures return a newly allocated copy of alist in which all associations with
keys equal to object have been removed. Note that while the returned copy is a newly
allocated list, the association pairs that are the elements of the list are shared with
alist, not copied. del-assq uses eq? to compare object with the keys, while del-assv
uses eqv? and del-assoc uses equal?.

1 This introduction is taken from Common Lisp, The Language, second edition, p. 431.
2 Although they are often used as predicates, assq, assv, and assoc do not have question marks in their

names because they return useful values rather than just #t or #f.

Chapter 11: Associations 151

(define a

’((butcher . "231 e22nd St.")

(baker . "515 w23rd St.")

(hardware . "988 Lexington Ave.")))

(del-assq ’baker a)

⇒
((butcher . "231 e22nd St.")

(hardware . "988 Lexington Ave."))

[procedure]del-assq! object alist
[procedure]del-assv! object alist
[procedure]del-assoc! object alist

These procedures remove from alist all associations with keys equal to object. They
return the resulting list. del-assq! uses eq? to compare object with the keys,
while del-assv! uses eqv? and del-assoc! uses equal?. These procedures are like
del-assq, del-assv, and del-assoc, respectively, except that they destructively
modify alist.

[procedure]delete-association-procedure deletor predicate selector
This returns a deletion procedure similar to del-assv or del-assq!. The predicate
and selector arguments are the same as those for association-procedure, while the
deletor argument should be either the procedure list-deletor (for non-destructive
deletions), or the procedure list-deletor! (for destructive deletions).

For example, here is a possible implementation of del-assv:

(define del-assv

(delete-association-procedure list-deletor eqv? car))

[procedure]alist-copy alist
Returns a newly allocated copy of alist. This is similar to list-copy except that the
“association” pairs, i.e. the elements of the list alist, are also copied. alist-copy

could have been implemented like this:

(define (alist-copy alist)

(if (null? alist)

’()

(cons (cons (car (car alist)) (cdr (car alist)))

(alist-copy (cdr alist)))))

11.2 1D Tables

1D tables (“one-dimensional” tables) are similar to association lists. In a 1D table, unlike
an association list, the keys of the table are held weakly : if a key is garbage-collected, its
associated value in the table is removed. 1D tables compare their keys for equality using
eq?.

1D tables can often be used as a higher-performance alternative to the two-dimensional
association table (see Section 11.3 [The Association Table], page 152). If one of the keys
being associated is a compound object such as a vector, a 1D table can be stored in one

152 MIT/GNU Scheme 10.1.1

of the vector’s slots. Under these circumstances, accessing items in a 1D table will be
comparable in performance to using a property list in a conventional Lisp.

[procedure]make-1d-table
Returns a newly allocated empty 1D table.

[procedure]1d-table? object
Returns #t if object is a 1D table, otherwise returns #f. Any object that satisfies this
predicate also satisfies list?.

[procedure]1d-table/put! 1d-table key datum
Creates an association between key and datum in 1d-table. Returns an unspecified
value.

[procedure]1d-table/remove! 1d-table key
Removes any association for key in 1d-table and returns an unspecified value.

[procedure]1d-table/get 1d-table key default
Returns the datum associated with key in 1d-table. If there is no association for key,
default is returned.

[procedure]1d-table/lookup 1d-table key if-found if-not-found
If-found must be a procedure of one argument, and if-not-found must be a proce-
dure of no arguments. If 1d-table contains an association for key, if-found is invoked
on the datum of the association. Otherwise, if-not-found is invoked with no argu-
ments. In either case, the result of the invoked procedure is returned as the result of
1d-table/lookup.

[procedure]1d-table/alist 1d-table
Returns a newly allocated association list that contains the same information as 1d-
table.

11.3 The Association Table

MIT/GNU Scheme provides a generalization of the property-list mechanism found in most
other implementations of Lisp: a global two-dimensional association table. This table
is indexed by two keys, called x-key and y-key in the following procedure descriptions.
These keys and the datum associated with them can be arbitrary objects. eq? is used to
discriminate keys.

Think of the association table as a matrix: a single datum can be accessed using both
keys, a column using x-key only, and a row using y-key only.

[procedure]2d-put! x-key y-key datum
Makes an entry in the association table that associates datum with x-key and y-key.
Returns an unspecified result.

[procedure]2d-remove! x-key y-key
If the association table has an entry for x-key and y-key, it is removed. Returns an
unspecified result.

Chapter 11: Associations 153

[procedure]2d-get x-key y-key
Returns the datum associated with x-key and y-key. Returns #f if no such association
exists.

[procedure]2d-get-alist-x x-key
Returns an association list of all entries in the association table that are associated
with x-key. The result is a list of (y-key . datum) pairs. Returns the empty list if
no entries for x-key exist.

(2d-put! ’foo ’bar 5)

(2d-put! ’foo ’baz 6)

(2d-get-alist-x ’foo) ⇒ ((baz . 6) (bar . 5))

[procedure]2d-get-alist-y y-key
Returns an association list of all entries in the association table that are associated
with y-key. The result is a list of (x-key . datum) pairs. Returns the empty list if
no entries for y-key exist.

(2d-put! ’bar ’foo 5)

(2d-put! ’baz ’foo 6)

(2d-get-alist-y ’foo) ⇒ ((baz . 6) (bar . 5))

11.4 Hash Tables

Hash tables are a fast, powerful mechanism for storing large numbers of associations.
MIT/GNU Scheme’s hash tables feature automatic resizing, customizable growth parame-
ters, customizable hash procedures, and many options for weak references to keys or data.

The average times for the insertion, deletion, and lookup operations on a hash table are
bounded by a constant. The space required by the table is proportional to the number of as-
sociations in the table; the constant of proportionality is described below (see Section 11.4.3
[Resizing of Hash Tables], page 161).

The hash table interface described below is a superset of SRFI 69: “Basic hash tables”.
The reason for supporting the extra functionality is that SRFI 69 fails to specify certain
optimization-enabling exceptions to its semantics, forcing a correct implementation to pay
the non-negligible performance cost of completely safe behavior.3 The MIT/GNU Scheme
native hash table interface, in contrast, specifies the minor exceptions it needs, and is
therefore implemented more efficiently.

We do not describe the SRFI 69-compliant interface here, as that would be redundant
with the SRFI document.

11.4.1 Construction of Hash Tables

The next few procedures are hash-table constructors. All hash table constructors are pro-
cedures that accept one optional argument, initial-size, and return a newly allocated hash

3 SRFI 69 does not give hash functions the flexibility to return new hash values after a garbage collection,
which prevents a system whose garbage collector may relocate objects from hashing based on the ad-
dresses of objects in memory (see Section 11.4.4 [Address Hashing], page 163). SRFI 69 also does not
specify circumstances when procedures passed as arguments to hash table operations may not themselves
modify the hash table, which requires defensive copying and defensive repetitions of lookups.

http://srfi.schemers.org/srfi-69/srfi-69.html

154 MIT/GNU Scheme 10.1.1

table. If initial-size is given, it must be an exact non-negative integer or #f. The meaning
of initial-size is discussed below (see Section 11.4.3 [Resizing of Hash Tables], page 161).

Hash tables are normally characterized by two things: the equivalence predicate that is
used to compare keys, and how the table allows its keys and data to be reclaimed by the
garbage collector. If a table prevents its keys and data from being reclaimed by the garbage
collector, it is said to hold its keys and data strongly ; other arrangements are possible, where
a table may hold keys or data weakly or ephemerally (see Section 10.7 [Weak References],
page 145).

[procedure]make-strong-eq-hash-table [initial-size]
[obsolete procedure]make-symbol-hash-table [initial-size]

Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eq?. The keys and data are held strongly. These are the
fastest of the standard hash tables.

[procedure]make-key-weak-eq-hash-table [initial-size]
[obsolete procedure]make-weak-eq-hash-table [initial-size]
[obsolete procedure]make-eq-hash-table [initial-size]

Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eq?. The keys are held weakly and the data are held
strongly. Note that if a datum holds a key strongly, the table will effectively hold
that key strongly.

[procedure]make-datum-weak-eq-hash-table [initial-size]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eq?. The keys are held strongly and the data are held
weakly. Note that if a key holds a datum strongly, the table will effectively hold that
datum strongly.

[procedure]make-key-ephemeral-eq-hash-table [initial-size]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eq?. The keys are held weakly, even if some of the data
should hold some of the keys strongly.

[procedure]make-strong-eqv-hash-table [initial-size]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eqv?. The keys and data are held strongly. These hash
tables are a little slower than those made by make-strong-eq-hash-table.

[procedure]make-key-weak-eqv-hash-table [initial-size]
[obsolete procedure]make-weak-eqv-hash-table [initial-size]
[obsolete procedure]make-eqv-hash-table [initial-size]
[obsolete procedure]make-object-hash-table [initial-size]

Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eqv?. The keys are held weakly, except that booleans,
characters, numbers, and interned symbols are held strongly. The data are held
strongly. Note that if a datum holds a key strongly, the table will effectively hold
that key strongly.

Chapter 11: Associations 155

[procedure]make-datum-weak-eqv-hash-table [initial-size]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eqv?. The keys are held strongly and the data are held
weakly. Note that if a key holds a datum strongly, the table will effectively hold that
datum strongly.

[procedure]make-key-ephemeral-eqv-hash-table [initial-size]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eqv?. The keys are held weakly, except that booleans,
characters, numbers, and interned symbols are held strongly. The keys are effectively
held weakly even if some of the data should hold some of the keys strongly.

[procedure]make-equal-hash-table [initial-size]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with equal?. The keys and data are held strongly. These hash
tables are quite a bit slower than those made by make-strong-eq-hash-table.

[procedure]make-string-hash-table [initial-size]
Returns a newly allocated hash table that accepts character strings as keys, and
compares them with string=?. The keys and data are held strongly.

All of the above are highly optimized table implementations. Next are some general
constructors that allow for more flexible table definitions.

[procedure]make-hash-table [key=? [hash-function [arg . . .]]]
[procedure]alist->hash-table alist [key=? [hash-function [arg . . .]]]

These are the SRFI 69 constructors. The key=? argument specifies how keys are
compared and defaults to equal?. The hash-function argument specifies the hash
function to use. If hash-function is not specified, it defaults to a standard value
that depends on key=? ; an error is signaled if there’s no standard value. The arg
arguments are allowed but are implementation dependent; do not provide them.

The procedure alist->hash-table creates a new hash table, as with make-hash-

table, and then fills it with the contents of alist.

The remaining constructors use hash-table types to encapsulate the hashing parameters.

[procedure]make-hash-table* type [initial-size]
Constructs a new hash table using the hashing parameters in type.

[procedure]hash-table-constructor type
Returns a procedure that, when called, constructs a new hash table using the hashing
parameters in type. The returned procedure accepts an optional initial-size.

This is equivalent to

(lambda (#!optional initial-size)

(make-hash-table* type initial-size))

The next two procedures are used to create hash-table types. The procedures are equiv-
alent in power; they differ only in how the types are described.

156 MIT/GNU Scheme 10.1.1

[procedure]make-hash-table-type hash-function key=? rehash-after-gc?
entry-type

This procedure accepts four arguments and returns a hash-table type, which can
be used to make hash tables of that type. The key=? argument is an equivalence
predicate for the keys of the hash table. The hash-function argument is a procedure
that computes a hash number. Specifically, hash-function accepts two arguments, a
key and an exact positive integer (the modulus), and returns an exact non-negative
integer that is less than the modulus.

The argument rehash-after-gc?, if true, says that the values returned by hash-function
might change after a garbage collection. If so, the hash-table implementation arranges
for the table to be rehashed when necessary. (See Section 11.4.4 [Address Hashing],
page 163, for information about hash procedures that have this property.) Other-
wise, it is assumed that hash-function always returns the same value for the same
arguments.

The argument entry-type determines the strength with which the hash table will hold
its keys and values. It must be one of the entry-type variables described below, which
all start with hash-table-entry-type:.

[procedure]make-hash-table-type* key=? hash-function rehash-after-gc?
entry-type

This procedure’s arguments, except for key=?, are keyword arguments; that is, each
argument is a symbol of the same name followed by its value. Aside from how they are
passed, the arguments have the same meaning as those for make-hash-table-type.
Note that all of the keyword arguments are optional, while key=? is required.

The argument entry-type specifies the name of an entry type. It must be a symbol
corresponding to one of the entry-type variables described below. The name of an
entry type is the symbol composed of the suffix of the corresponding variable; for
example the type hash-table-entry-type:key-weak has the name key-weak.

The default values for the keyword arguments are as follows. The arguments hash-
function and rehash-after-gc? default to standard values that depend on key=? ; an
error is signaled if key=? has no standard values. The argument entry-type defaults
to strong.

[variable]hash-table-entry-type:strong
The entry type for hash tables that hold both keys and data strongly.

[variable]hash-table-entry-type:key-weak
An entry type for hash tables that hold keys weakly and data strongly. An entry
of this type is a weak pair (see Section 10.7.1 [Weak Pairs], page 146) whose weak
(car) slot holds the key of the entry and whose strong (cdr) slot holds the datum of
the entry. If a key of such a hash table is garbage collected, the corresponding entry
will be removed. Note that if some datum holds some key strongly, the table will
effectively hold that key strongly.

[variable]hash-table-entry-type:datum-weak
An entry type for hash tables that hold keys strongly and data weakly. An entry of
this type is a weak pair (see Section 10.7.1 [Weak Pairs], page 146) whose weak (car)

Chapter 11: Associations 157

slot holds the datum of the entry and whose strong (cdr) slot holds the key of the
entry. If a datum of such a hash table is garbage collected, all corresponding entries
will be removed. Note that if some key holds some datum strongly, the table will
effectively hold that datum strongly.

[variable]hash-table-entry-type:key&datum-weak
[obsolete variable]hash-table-entry-type:key/datum-weak

The entry type for hash tables that hold both keys and data weakly. An entry of this
type is a weak list, holding both the key and the datum in the weak (car) slot of weak
pairs (see Section 10.7.1 [Weak Pairs], page 146). If either a key or datum of such a
hash table is garbage collected, all corresponding entries will be removed.

[variable]hash-table-entry-type:key-ephemeral
An entry type for hash tables that hold data ephemerally, keyed by the keys. An
entry of this type is an ephemeron (see Section 10.7.2 [Ephemerons], page 147) whose
key is the key of the entry and whose datum is the datum of the entry. If a key of such
a hash table is garbage collected, the corresponding entry will be removed. Note that
the table holds all its keys weakly even if some data should hold some keys strongly.

[variable]hash-table-entry-type:datum-ephemeral
An entry type for hash tables that hold keys ephemerally, keyed by the data. An
entry of this type is an ephemeron (see Section 10.7.2 [Ephemerons], page 147) whose
key is the datum of the entry and whose datum is the key of the entry. If a datum
of such a hash table is garbage collected, all corresponding entries will be removed.
Note that the table holds all its data weakly even if some keys should hold some data
strongly.

[variable]hash-table-entry-type:key&datum-ephemeral
The entry type for hash tables that hold both keys and data ephemerally keyed on each
other. An entry of this type is a pair of ephemerons (see Section 10.7.2 [Ephemerons],
page 147), one holding the datum keyed by the key and the other holding the key
keyed by the datum. If both the key and the datum of any entry of such a hash table
are garbage collected, the entry will be removed. The table holds all its keys and data
weakly itself, but will prevent any key or datum from being garbage collected if there
are strong references to its datum or key, respectively.

Some examples showing how some standard hash-table constructors could have been
defined:

158 MIT/GNU Scheme 10.1.1

(define make-weak-eq-hash-table

(hash-table-constructor

(make-hash-table-type eq-hash-mod eq? #t

hash-table-entry-type:key-weak)))

(define make-equal-hash-table

(hash-table-constructor

(make-hash-table-type equal-hash-mod equal? #t

hash-table-entry-type:strong)))

(define make-string-hash-table

(hash-table-constructor

(make-hash-table-type string-hash-mod string=? #f

hash-table-entry-type:strong)))

The following procedures are provided only for backward compatibility. They should be
considered deprecated and should not be used in new programs.

[obsolete procedure]hash-table/constructor hash-function key=?
rehash-after-gc? entry-type

This procedure is deprecated. Instead use the equivalent

(hash-table-constructor

(make-hash-table-type hash-function key=? rehash-after-gc?

entry-type))

[obsolete procedure]strong-hash-table/constructor hash-function key=?
[rehash-after-gc?]

Like hash-table/constructor but always uses hash-table-entry-type:strong. If
rehash-after-gc? is omitted, it defaults to #f.

[obsolete procedure]weak-hash-table/constructor hash-function key=?
[rehash-after-gc?]

Like hash-table/constructor but always uses hash-table-entry-type:key-weak.
If rehash-after-gc? is omitted, it defaults to #f.

11.4.2 Basic Hash Table Operations

The procedures described in this section are the basic operations on hash tables. They
provide the functionality most often needed by programmers. Subsequent sections describe
other operations that provide additional functionality needed by some applications.

[procedure]hash-table? object
Returns #t if object is a hash table, otherwise returns #f.

[procedure]hash-table-set! hash-table key datum
[obsolete procedure]hash-table/put! hash-table key datum

Associates datum with key in hash-table and returns an unspecified result.

The average time required by this operation is bounded by a constant.

Chapter 11: Associations 159

[procedure]hash-table-ref hash-table key [get-default]
Returns the datum associated with key in hash-table. If there is no association for
key, and get-default is provided, it is called with no arguments and the value it yields
is returned; if get-default is not provided, an error is signaled.

The average time required by this operation is bounded by a constant.

[procedure]hash-table-ref/default hash-table key default
[obsolete procedure]hash-table/get hash-table key default

Equivalent to

(hash-table-ref hash-table key (lambda () default))

[procedure]hash-table-delete! hash-table key
[obsolete procedure]hash-table/remove! hash-table key

If hash-table has an association for key, removes it. Returns an unspecified result.

The average time required by this operation is bounded by a constant.

[procedure]hash-table-clear! hash-table
[obsolete procedure]hash-table/clear! hash-table

Removes all associations in hash-table and returns an unspecified result.

The average and worst-case times required by this operation are bounded by a con-
stant.

[procedure]hash-table-size hash-table
[obsolete procedure]hash-table/count hash-table

Returns the number of associations in hash-table as an exact non-negative integer. If
hash-table does not hold its keys and data strongly, this is a conservative upper bound
that may count some associations whose keys or data have recently been reclaimed
by the garbage collector.

The average and worst-case times required by this operation are bounded by a con-
stant.

[procedure]hash-table->alist hash-table
Returns the contents of hash-table as a newly allocated alist. Each element of the
alist is a pair (key . datum) where key is one of the keys of hash-table, and datum
is its associated datum.

The average and worst-case times required by this operation are linear in the number
of associations in the table.

[procedure]hash-table-keys hash-table
[obsolete procedure]hash-table/key-list hash-table

Returns a newly allocated list of the keys in hash-table.

The average and worst-case times required by this operation are linear in the number
of associations in the table.

[procedure]hash-table-values hash-table
[obsolete procedure]hash-table/datum-list hash-table

Returns a newly allocated list of the datums in hash-table. Each element of the list
corresponds to one of the associations in hash-table; if the table contains multiple
associations with the same datum, so will this list.

160 MIT/GNU Scheme 10.1.1

The average and worst-case times required by this operation are linear in the number
of associations in the table.

[procedure]hash-table-walk hash-table procedure
[obsolete procedure]hash-table/for-each hash-table procedure

Procedure must be a procedure of two arguments. Invokes procedure once for each
association in hash-table, passing the association’s key and datum as arguments,
in that order. Returns an unspecified result. Procedure must not modify hash-
table, with one exception: it is permitted to call hash-table-delete! to remove the
association being processed.

The following procedure is useful when there is no sensible default value for hash-table-
ref and the caller must choose between different actions depending on whether there is a
datum associated with the key.

[procedure]hash-table/lookup hash-table key if-found if-not-found
If-found must be a procedure of one argument, and if-not-found must be a procedure
of no arguments. If hash-table contains an association for key, if-found is invoked on
the datum of the association. Otherwise, if-not-found is invoked with no arguments.
In either case, the result yielded by the invoked procedure is returned as the result
of hash-table/lookup (hash-table/lookup reduces into the invoked procedure, i.e.
calls it tail-recursively).

The average time required by this operation is bounded by a constant.

[procedure]hash-table-update! hash-table key procedure [get-default]
Procedure must be a procedure of one argument and get-default, if supplied, must be
a procedure of zero arguments. Applies procedure to the datum associated with key
in hash-table or to the value of calling get-default if there is no association for key,
associates the result with key, and returns an unspecified value. If get-default is not
supplied and there’s no association for key, an error is signaled.

The average time required by this operation is bounded by a constant.

[procedure]hash-table-update!/default hash-table key procedure default
[obsolete procedure]hash-table/modify! hash-table key default procedure

Equivalent to

(hash-table-update! hash-table key procedure (lambda () default))

[procedure]hash-table-intern! hash-table key get-default
[obsolete procedure]hash-table/intern! hash-table key get-default

Get-default must be a procedure of zero arguments. Ensures that hash-table has an
association for key and returns the associated datum. If hash-table did not have a
datum associated with key, get-default is called and its value is used to create a new
association for key.

The average time required by this operation is bounded by a constant.

The following procedure is sometimes useful in conjunction with weak and ephemeral
hash tables. Normally it is not needed, because such hash tables clean themselves automat-
ically as they are used.

Chapter 11: Associations 161

[procedure]hash-table-clean! hash-table
[obsolete procedure]hash-table/clean! hash-table

If hash-table is a type of hash table that holds its keys or data weakly or ephemerally,
this procedure recovers any space that was being used to record associations for
objects that have been reclaimed by the garbage collector. Otherwise, this procedure
does nothing. In either case, it returns an unspecified result.

11.4.3 Resizing of Hash Tables

Normally, hash tables automatically resize themselves according to need. Because of this,
the programmer need not be concerned with management of the table’s size. However,
some limited control over the table’s size is provided, which will be discussed below. This
discussion involves two concepts, usable size and physical size, which we will now define.

The usable size of a hash table is the number of associations that the table can hold at
a given time. If the number of associations in the table exceeds the usable size, the table
will automatically grow, increasing the usable size to a new value that is sufficient to hold
the associations.

The physical size is an abstract measure of a hash table that specifies how much space
is allocated to hold the associations of the table. The physical size is always greater than
or equal to the usable size. The physical size is not interesting in itself; it is interesting
only for its effect on the performance of the hash table. While the average performance
of a hash-table lookup is bounded by a constant, the worst-case performance is not. For
a table containing a given number of associations, increasing the physical size of the table
decreases the probability that worse-than-average performance will occur.

The physical size of a hash table is statistically related to the number of associations.
However, it is possible to place bounds on the physical size, and from this to estimate the
amount of space used by the table:

(define (hash-table-space-bounds count rehash-size rehash-threshold)

(let ((tf (/ 1 rehash-threshold)))

(values (if (exact-integer? rehash-size)

(- (* count (+ 4 tf))

(* tf (+ rehash-size rehash-size)))

(* count (+ 4 (/ tf (* rehash-size rehash-size)))))

(* count (+ 4 tf)))))

What this formula shows is that, for a “normal” rehash size (that is, not an exact integer),
the amount of space used by the hash table is proportional to the number of associations
in the table. The constant of proportionality varies statistically, with the low bound being

(+ 4 (/ (/ 1 rehash-threshold) (* rehash-size rehash-size)))

and the high bound being

(+ 4 (/ 1 rehash-threshold))

which, for the default values of these parameters, are 4.25 and 5, respectively. Reducing
the rehash size will tighten these bounds, but increases the amount of time spent resizing,
so you can see that the rehash size gives some control over the time-space tradeoff of the
table.

The programmer can control the size of a hash table by means of three parameters:

• Each table’s initial-size may be specified when the table is created.

162 MIT/GNU Scheme 10.1.1

• Each table has a rehash size that specifies how the size of the table is changed when it
is necessary to grow or shrink the table.

• Each table has a rehash threshold that specifies the relationship of the table’s physical
size to its usable size.

If the programmer knows that the table will initially contain a specific number of items,
initial-size can be given when the table is created. If initial-size is an exact non-negative
integer, it specifies the initial usable size of the hash table; the table will not change size
until the number of items in the table exceeds initial-size, after which automatic resizing is
enabled and initial-size no longer has any effect. Otherwise, if initial-size is not given or
is #f, the table is initialized to an unspecified size and automatic resizing is immediately
enabled.

The rehash size specifies how much to increase the usable size of the hash table when it
becomes full. It is either an exact positive integer, or a real number greater than one. If it
is an integer, the new size is the sum of the old size and the rehash size. Otherwise, it is a
real number, and the new size is the product of the old size and the rehash size. Increasing
the rehash size decreases the average cost of an insertion, but increases the average amount
of space used by the table. The rehash size of a table may be altered dynamically by the
application in order to optimize the resizing of the table; for example, if the table will
grow quickly for a known period and afterwards will not change size, performance might be
improved by using a large rehash size during the growth phase and a small one during the
static phase. The default rehash size of a newly constructed hash table is 2.0.

Warning: The use of an exact positive integer for a rehash size is almost always unde-
sirable; this option is provided solely for compatibility with the Common Lisp hash-table
mechanism. The reason for this has to do with the time penalty for resizing the hash table.
The time needed to resize a hash table is proportional to the number of associations in
the table. This resizing cost is amortized across the insertions required to fill the table
to the point where it needs to grow again. If the table grows by an amount proportional
to the number of associations, then the cost of resizing and the increase in size are both
proportional to the number of associations, so the amortized cost of an insertion operation
is still bounded by a constant. However, if the table grows by a constant amount, this is
not true: the amortized cost of an insertion is not bounded by a constant. Thus, using a
constant rehash size means that the average cost of an insertion increases proportionally to
the number of associations in the hash table.

The rehash threshold is a real number, between zero exclusive and one inclusive, that
specifies the ratio between a hash table’s usable size and its physical size. Decreasing the
rehash threshold decreases the probability of worse-than-average insertion, deletion, and
lookup times, but increases the physical size of the table for a given usable size. The
default rehash threshold of a newly constructed hash table is 1.

[procedure]hash-table-grow-size hash-table
[obsolete procedure]hash-table/size hash-table

Returns the usable size of hash-table as an exact positive integer. This is the maxi-
mum number of associations that hash-table can hold before it will grow.

[procedure]hash-table-shrink-size hash-table
Returns the minimum number of associations that hash-table can hold before it will
shrink.

Chapter 11: Associations 163

[procedure]hash-table-rehash-size hash-table
[obsolete procedure]hash-table/rehash-size hash-table

Returns the rehash size of hash-table.

[procedure]set-hash-table-rehash-size! hash-table x
[obsolete procedure]set-hash-table/rehash-size! hash-table x

X must be either an exact positive integer, or a real number that is greater than
one. Sets the rehash size of hash-table to x and returns an unspecified result. This
operation adjusts the “shrink threshold” of the table; the table might shrink if the
number of associations is less than the new threshold.

[procedure]hash-table-rehash-threshold hash-table
[obsolete procedure]hash-table/rehash-threshold hash-table

Returns the rehash threshold of hash-table.

[procedure]set-hash-table-rehash-threshold! hash-table x
[obsolete procedure]set-hash-table/rehash-threshold! hash-table x

X must be a real number between zero exclusive and one inclusive. Sets the rehash
threshold of hash-table to x and returns an unspecified result. This operation does
not change the usable size of the table, but it usually changes the physical size of the
table, which causes the table to be rehashed.

11.4.4 Address Hashing

The procedures described in this section may be used to make very efficient key-hashing
procedures for arbitrary objects. All of these procedures are based on address hashing,
which uses the address of an object as its hash number. The great advantage of address
hashing is that converting an arbitrary object to a hash number is extremely fast and takes
the same amount of time for any object.

The disadvantage of address hashing is that the garbage collector changes the addresses
of most objects. The hash-table implementation compensates for this disadvantage by
automatically rehashing tables that use address hashing when garbage collections occur.
Thus, in order to use these procedures for key hashing, it is necessary to tell the hash-
table implementation (by means of the rehash-after-gc? argument to the hash-table type
constructors) that the hash numbers computed by your key-hashing procedure must be
recomputed after a garbage collection.

[procedure]eq-hash object
[procedure]eqv-hash object
[procedure]equal-hash object

These procedures return a hash number for object. The result is always a non-
negative integer, and in the case of eq-hash, a non-negative fixnum. Two objects
that are equivalent according to eq?, eqv?, or equal?, respectively, will produce the
same hash number when passed as arguments to these procedures, provided that the
garbage collector does not run during or between the two calls.

The following procedures are the hash functions specified by SRFI 69.

[procedure]hash-by-identity key [modulus]
This procedure returns the same value as eq-hash, optionally limited by modulus.

164 MIT/GNU Scheme 10.1.1

[procedure]hash-by-eqv key [modulus]
This procedure returns the same value as eqv-hash, optionally limited by modulus.

This procedure is not specified by SRFI 69.

[procedure]hash-by-equal key [modulus]
This procedure returns the same value as equal-hash, optionally limited by modulus.

This procedure is called hash by SRFI 69, but that name was used for a different
purpose by MIT/GNU Scheme long before SRFI 69 was written. The previous use of
hash has been deprecated, but it will be some time until it can be removed.

The following procedures are the key-hashing procedures used by the standard address-
hash-based hash tables. They are

[procedure]eq-hash-mod object modulus
This procedure is the key-hashing procedure used by make-strong-eq-hash-table.

[procedure]eqv-hash-mod object modulus
This procedure is the key-hashing procedure used by make-strong-eqv-hash-table.

[procedure]equal-hash-mod object modulus
This procedure is the key-hashing procedure used by make-equal-hash-table.

11.5 Object Hashing

The MIT/GNU Scheme object-hashing facility provides a mechanism for generating a
unique hash number for an arbitrary object. This hash number, unlike an object’s address,
is unchanged by garbage collection. The object-hashing facility is used in the generation of
the written representation for many objects (see Section 14.10 [Custom Output], page 208),
but it can be used for anything that needs a stable identifier for an arbitrary object.

All of these procedures accept an optional argument called hasher which contains the
object-integer associations. If given, this argument must be an object hasher as constructed
by make-object-hasher (see below). If not given, a default hasher is used.

[procedure]hash-object object [hasher]
[obsolete procedure]hash object [hasher]
[obsolete procedure]object-hash object [hasher]

hash-object associates an exact non-negative integer with object and returns that
integer. If hash-object was previously called with object as its argument, the integer
returned is the same as was returned by the previous call. hash-object guarantees
that distinct objects (in the sense of eqv?) are associated with distinct integers.

[procedure]unhash-object k [hasher]
[obsolete procedure]unhash k [hasher]
[obsolete procedure]object-unhash k [hasher]

unhash-object takes an exact non-negative integer k and returns the object associ-
ated with that integer. If there is no object associated with k, or if the object previ-
ously associated with k has been reclaimed by the garbage collector, an error of type
condition-type:bad-range-argument is signalled. In other words, if hash-object
previously returned k for some object, and that object has not been reclaimed, it is
the value of the call to unhash-object.

Chapter 11: Associations 165

An object that is passed to hash-object as an argument is not protected from being
reclaimed by the garbage collector. If all other references to that object are eliminated, the
object will be reclaimed. Subsequently calling unhash-object with the hash number of the
(now reclaimed) object will signal an error.

(define x (cons 0 0)) ⇒ unspecified
(hash-object x) ⇒ 77

(eqv? (hash-object x)

(hash-object x)) ⇒ #t

(define x 0) ⇒ unspecified
(gc-flip) ;force a garbage collection
(unhash-object 77) error

[procedure]object-hashed? object [hasher]
This predicate is true iff object has an associated hash number.

[procedure]valid-object-hash? k [hasher]
[obsolete procedure]valid-hash-number? k [hasher]

This predicate is true iff k is the hash number associated with some object.

Finally, this procedure makes new object hashers:

[procedure]make-object-hasher
[obsolete procedure]hash-table/make

This procedure creates and returns a new, empty object hasher that is suitable for
use as the optional hasher argument to the above procedures. The returned hasher
contains no associations.

11.6 Red-Black Trees

Balanced binary trees are a useful data structure for maintaining large sets of associations
whose keys are ordered. While most applications involving large association sets should use
hash tables, some applications can benefit from the use of binary trees. Binary trees have
two advantages over hash tables:

• The contents of a binary tree can be converted to an alist, sorted by key, in time
proportional to the number of associations in the tree. A hash table can be converted
into an unsorted alist in linear time; sorting it requires additional time.

• Two binary trees can be compared for equality in linear time. Hash tables, on the other
hand, cannot be compared at all; they must be converted to alists before comparison
can be done, and alist comparison is quadratic unless the alists are sorted.

MIT/GNU Scheme provides an implementation of red-black trees. The red-black tree-
balancing algorithm provides generally good performance because it doesn’t try to keep the
tree very closely balanced. At any given node in the tree, one side of the node can be twice
as high as the other in the worst case. With typical data the tree will remain fairly well
balanced anyway.

A red-black tree takes space that is proportional to the number of associations in the
tree. For the current implementation, the constant of proportionality is eight words per
association.

166 MIT/GNU Scheme 10.1.1

Red-black trees hold their keys strongly. In other words, if a red-black tree contains an
association for a given key, that key cannot be reclaimed by the garbage collector.

The red-black tree implementation is a run-time-loadable option. To use red-black trees,
execute

(load-option ’rb-tree)

once before calling any of the procedures defined here.

[procedure]make-rb-tree key=? key<?
This procedure creates and returns a newly allocated red-black tree. The tree con-
tains no associations. Key=? and key<? are predicates that compare two keys and
determine whether they are equal to or less than one another, respectively. For any
two keys, at most one of these predicates is true.

[procedure]rb-tree? object
Returns #t if object is a red-black tree, otherwise returns #f.

[procedure]rb-tree/insert! rb-tree key datum
Associates datum with key in rb-tree and returns an unspecified value. If rb-tree
already has an association for key, that association is replaced. The average and
worst-case times required by this operation are proportional to the logarithm of the
number of assocations in rb-tree.

[procedure]rb-tree/lookup rb-tree key default
Returns the datum associated with key in rb-tree. If rb-tree doesn’t contain an
association for key, default is returned. The average and worst-case times required
by this operation are proportional to the logarithm of the number of assocations in
rb-tree.

[procedure]rb-tree/delete! rb-tree key
If rb-tree contains an association for key, removes it. Returns an unspecified value.
The average and worst-case times required by this operation are proportional to the
logarithm of the number of assocations in rb-tree.

[procedure]rb-tree->alist rb-tree
Returns the contents of rb-tree as a newly allocated alist. Each element of the alist
is a pair (key . datum) where key is one of the keys of rb-tree, and datum is its
associated datum. The alist is sorted by key according to the key<? argument used
to construct rb-tree. The time required by this operation is proportional to the
number of associations in the tree.

[procedure]rb-tree/key-list rb-tree
Returns a newly allocated list of the keys in rb-tree. The list is sorted by key according
to the key<? argument used to construct rb-tree. The time required by this operation
is proportional to the number of associations in the tree.

[procedure]rb-tree/datum-list rb-tree
Returns a newly allocated list of the datums in rb-tree. Each element of the list
corresponds to one of the associations in rb-tree, so if the tree contains multiple
associations with the same datum, so will this list. The list is sorted by the keys of

Chapter 11: Associations 167

the associations, even though they do not appear in the result. The time required by
this operation is proportional to the number of associations in the tree.

This procedure is equivalent to:

(lambda (rb-tree) (map cdr (rb-tree->alist rb-tree)))

[procedure]rb-tree/equal? rb-tree-1 rb-tree-2 datum=?
Compares rb-tree-1 and rb-tree-2 for equality, returning #t iff they are equal and
#f otherwise. The trees must have been constructed with the same equality and
order predicates (same in the sense of eq?). The keys of the trees are compared
using the key=? predicate used to build the trees, while the datums of the trees are
compared using the equivalence predicate datum=?. The worst-case time required by
this operation is proportional to the number of associations in the tree.

[procedure]rb-tree/empty? rb-tree
Returns #t iff rb-tree contains no associations. Otherwise returns #f.

[procedure]rb-tree/size rb-tree
Returns the number of associations in rb-tree, an exact non-negative integer. The av-
erage and worst-case times required by this operation are proportional to the number
of associations in the tree.

[procedure]rb-tree/height rb-tree
Returns the height of rb-tree, an exact non-negative integer. This is the length of the
longest path from a leaf of the tree to the root. The average and worst-case times
required by this operation are proportional to the number of associations in the tree.

The returned value satisfies the following:

(lambda (rb-tree)

(let ((size (rb-tree/size rb-tree))

(lg (lambda (x) (/ (log x) (log 2)))))

(<= (lg size)

(rb-tree/height rb-tree)

(* 2 (lg (+ size 1))))))

[procedure]rb-tree/copy rb-tree
Returns a newly allocated copy of rb-tree. The copy is identical to rb-tree in all
respects, except that changes to rb-tree do not affect the copy, and vice versa. The
time required by this operation is proportional to the number of associations in the
tree.

[procedure]alist->rb-tree alist key=? key<?
Returns a newly allocated red-black tree that contains the same associations as alist.
This procedure is equivalent to:

168 MIT/GNU Scheme 10.1.1

(lambda (alist key=? key<?)

(let ((tree (make-rb-tree key=? key<?)))

(for-each (lambda (association)

(rb-tree/insert! tree

(car association)

(cdr association)))

alist)

tree))

The following operations provide access to the smallest and largest members in a
red/black tree. They are useful for implementing priority queues.

[procedure]rb-tree/min rb-tree default
Returns the smallest key in rb-tree, or default if the tree is empty.

[procedure]rb-tree/min-datum rb-tree default
Returns the datum associated with the smallest key in rb-tree, or default if the tree
is empty.

[procedure]rb-tree/min-pair rb-tree
Finds the smallest key in rb-tree and returns a pair containing that key and its
associated datum. If the tree is empty, returns #f.

[procedure]rb-tree/max rb-tree default
Returns the largest key in rb-tree, or default if the tree is empty.

[procedure]rb-tree/max-datum rb-tree default
Returns the datum associated with the largest key in rb-tree, or default if the tree is
empty.

[procedure]rb-tree/max-pair rb-tree
Finds the largest key in rb-tree and returns a pair containing that key and its asso-
ciated datum. If the tree is empty, returns #f.

[procedure]rb-tree/delete-min! rb-tree default
[procedure]rb-tree/delete-min-datum! rb-tree default
[procedure]rb-tree/delete-min-pair! rb-tree
[procedure]rb-tree/delete-max! rb-tree default
[procedure]rb-tree/delete-max-datum! rb-tree default
[procedure]rb-tree/delete-max-pair! rb-tree

These operations are exactly like the accessors above, in that they return information
associated with the smallest or largest key, except that they simultaneously delete
that key.

11.7 Weight-Balanced Trees

Balanced binary trees are a useful data structure for maintaining large sets of ordered objects
or sets of associations whose keys are ordered. MIT/GNU Scheme has a comprehensive

Chapter 11: Associations 169

implementation of weight-balanced binary trees which has several advantages over the other
data structures for large aggregates:

• In addition to the usual element-level operations like insertion, deletion and lookup,
there is a full complement of collection-level operations, like set intersection, set union
and subset test, all of which are implemented with good orders of growth in time and
space. This makes weight-balanced trees ideal for rapid prototyping of functionally
derived specifications.

• An element in a tree may be indexed by its position under the ordering of the keys, and
the ordinal position of an element may be determined, both with reasonable efficiency.

• Operations to find and remove minimum element make weight-balanced trees simple
to use for priority queues.

• The implementation is functional rather than imperative. This means that operations
like ‘inserting’ an association in a tree do not destroy the old tree, in much the same way
that (+ 1 x) modifies neither the constant 1 nor the value bound to x. The trees are
referentially transparent thus the programmer need not worry about copying the trees.
Referential transparency allows space efficiency to be achieved by sharing subtrees.

These features make weight-balanced trees suitable for a wide range of applications,
especially those that require large numbers of sets or discrete maps. Applications that have
a few global databases and/or concentrate on element-level operations like insertion and
lookup are probably better off using hash tables or red-black trees.

The size of a tree is the number of associations that it contains. Weight-balanced
binary trees are balanced to keep the sizes of the subtrees of each node within a constant
factor of each other. This ensures logarithmic times for single-path operations (like lookup
and insertion). A weight-balanced tree takes space that is proportional to the number of
associations in the tree. For the current implementation, the constant of proportionality is
six words per association.

Weight-balanced trees can be used as an implementation for either discrete sets or dis-
crete maps (associations). Sets are implemented by ignoring the datum that is associated
with the key. Under this scheme if an association exists in the tree this indicates that the
key of the association is a member of the set. Typically a value such as (), #t or #f is
associated with the key.

Many operations can be viewed as computing a result that, depending on whether the
tree arguments are thought of as sets or maps, is known by two different names. An example
is wt-tree/member?, which, when regarding the tree argument as a set, computes the set
membership operation, but, when regarding the tree as a discrete map, wt-tree/member?
is the predicate testing if the map is defined at an element in its domain. Most names
in this package have been chosen based on interpreting the trees as sets, hence the name
wt-tree/member? rather than wt-tree/defined-at?.

The weight-balanced tree implementation is a run-time-loadable option. To use weight-
balanced trees, execute

(load-option ’wt-tree)

once before calling any of the procedures defined here.

170 MIT/GNU Scheme 10.1.1

11.7.1 Construction of Weight-Balanced Trees

Binary trees require there to be a total order on the keys used to arrange the elements
in the tree. Weight-balanced trees are organized by types, where the type is an object
encapsulating the ordering relation. Creating a tree is a two-stage process. First a tree
type must be created from the predicate that gives the ordering. The tree type is then used
for making trees, either empty or singleton trees or trees from other aggregate structures
like association lists. Once created, a tree ‘knows’ its type and the type is used to test
compatibility between trees in operations taking two trees. Usually a small number of
tree types are created at the beginning of a program and used many times throughout the
program’s execution.

[procedure]make-wt-tree-type key<?
This procedure creates and returns a new tree type based on the ordering predicate
key<?. Key<? must be a total ordering, having the property that for all key values a,
b and c:

(key<? a a) ⇒ #f

(and (key<? a b) (key<? b a)) ⇒ #f

(if (and (key<? a b) (key<? b c))

(key<? a c)

#t) ⇒ #t

Two key values are assumed to be equal if neither is less than the other by key<?.

Each call to make-wt-tree-type returns a distinct value, and trees are only compat-
ible if their tree types are eq?. A consequence is that trees that are intended to be
used in binary-tree operations must all be created with a tree type originating from
the same call to make-wt-tree-type.

[variable]number-wt-type
A standard tree type for trees with numeric keys. Number-wt-type could have been
defined by

(define number-wt-type (make-wt-tree-type <))

[variable]string-wt-type
A standard tree type for trees with string keys. String-wt-type could have been
defined by

(define string-wt-type (make-wt-tree-type string<?))

[procedure]make-wt-tree wt-tree-type
This procedure creates and returns a newly allocated weight-balanced tree. The tree
is empty, i.e. it contains no associations. Wt-tree-type is a weight-balanced tree type
obtained by calling make-wt-tree-type; the returned tree has this type.

[procedure]singleton-wt-tree wt-tree-type key datum
This procedure creates and returns a newly allocated weight-balanced tree. The tree
contains a single association, that of datum with key. Wt-tree-type is a weight-
balanced tree type obtained by calling make-wt-tree-type; the returned tree has
this type.

Chapter 11: Associations 171

[procedure]alist->wt-tree tree-type alist
Returns a newly allocated weight-balanced tree that contains the same associations
as alist. This procedure is equivalent to:

(lambda (type alist)

(let ((tree (make-wt-tree type)))

(for-each (lambda (association)

(wt-tree/add! tree

(car association)

(cdr association)))

alist)

tree))

11.7.2 Basic Operations on Weight-Balanced Trees

This section describes the basic tree operations on weight-balanced trees. These operations
are the usual tree operations for insertion, deletion and lookup, some predicates and a
procedure for determining the number of associations in a tree.

[procedure]wt-tree? object
Returns #t if object is a weight-balanced tree, otherwise returns #f.

[procedure]wt-tree/empty? wt-tree
Returns #t if wt-tree contains no associations, otherwise returns #f.

[procedure]wt-tree/size wt-tree
Returns the number of associations in wt-tree, an exact non-negative integer. This
operation takes constant time.

[procedure]wt-tree/add wt-tree key datum
Returns a new tree containing all the associations in wt-tree and the association of
datum with key. If wt-tree already had an association for key, the new association
overrides the old. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in wt-tree.

[procedure]wt-tree/add! wt-tree key datum
Associates datum with key in wt-tree and returns an unspecified value. If wt-tree
already has an association for key, that association is replaced. The average and
worst-case times required by this operation are proportional to the logarithm of the
number of associations in wt-tree.

[procedure]wt-tree/member? key wt-tree
Returns #t if wt-tree contains an association for key, otherwise returns #f. The aver-
age and worst-case times required by this operation are proportional to the logarithm
of the number of associations in wt-tree.

[procedure]wt-tree/lookup wt-tree key default
Returns the datum associated with key in wt-tree. If wt-tree doesn’t contain an
association for key, default is returned. The average and worst-case times required
by this operation are proportional to the logarithm of the number of associations in
wt-tree.

172 MIT/GNU Scheme 10.1.1

[procedure]wt-tree/delete wt-tree key
Returns a new tree containing all the associations in wt-tree, except that if wt-tree
contains an association for key, it is removed from the result. The average and worst-
case times required by this operation are proportional to the logarithm of the number
of associations in wt-tree.

[procedure]wt-tree/delete! wt-tree key
If wt-tree contains an association for key the association is removed. Returns an
unspecified value. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in wt-tree.

11.7.3 Advanced Operations on Weight-Balanced Trees

In the following the size of a tree is the number of associations that the tree contains, and
a smaller tree contains fewer associations.

[procedure]wt-tree/split< wt-tree bound
Returns a new tree containing all and only the associations in wt-tree that have a key
that is less than bound in the ordering relation of the tree type of wt-tree. The average
and worst-case times required by this operation are proportional to the logarithm of
the size of wt-tree.

[procedure]wt-tree/split> wt-tree bound
Returns a new tree containing all and only the associations in wt-tree that have a
key that is greater than bound in the ordering relation of the tree type of wt-tree.
The average and worst-case times required by this operation are proportional to the
logarithm of the size of wt-tree.

[procedure]wt-tree/union wt-tree-1 wt-tree-2
Returns a new tree containing all the associations from both trees. This operation
is asymmetric: when both trees have an association for the same key, the returned
tree associates the datum from wt-tree-2 with the key. Thus if the trees are viewed
as discrete maps then wt-tree/union computes the map override of wt-tree-1 by
wt-tree-2. If the trees are viewed as sets the result is the set union of the arguments.
The worst-case time required by this operation is proportional to the sum of the sizes
of both trees. If the minimum key of one tree is greater than the maximum key of
the other tree then the worst-case time required is proportional to the logarithm of
the size of the larger tree.

[procedure]wt-tree/intersection wt-tree-1 wt-tree-2
Returns a new tree containing all and only those associations from wt-tree-1 that
have keys appearing as the key of an association in wt-tree-2. Thus the associ-
ated data in the result are those from wt-tree-1. If the trees are being used as sets
the result is the set intersection of the arguments. As a discrete map operation,
wt-tree/intersection computes the domain restriction of wt-tree-1 to (the domain
of) wt-tree-2. The worst-case time required by this operation is proportional to the
sum of the sizes of the trees.

[procedure]wt-tree/difference wt-tree-1 wt-tree-2
Returns a new tree containing all and only those associations from wt-tree-1 that
have keys that do not appear as the key of an association in wt-tree-2. If the trees

Chapter 11: Associations 173

are viewed as sets the result is the asymmetric set difference of the arguments. As a
discrete map operation, it computes the domain restriction of wt-tree-1 to the com-
plement of (the domain of) wt-tree-2. The worst-case time required by this operation
is proportional to the sum of the sizes of the trees.

[procedure]wt-tree/subset? wt-tree-1 wt-tree-2
Returns #t iff the key of each association in wt-tree-1 is the key of some association
in wt-tree-2, otherwise returns #f. Viewed as a set operation, wt-tree/subset? is
the improper subset predicate. A proper subset predicate can be constructed:

(define (proper-subset? s1 s2)

(and (wt-tree/subset? s1 s2)

(< (wt-tree/size s1) (wt-tree/size s2))))

As a discrete map operation, wt-tree/subset? is the subset test on the domain(s)
of the map(s). In the worst-case the time required by this operation is proportional
to the size of wt-tree-1.

[procedure]wt-tree/set-equal? wt-tree-1 wt-tree-2
Returns #t iff for every association in wt-tree-1 there is an association in wt-tree-2
that has the same key, and vice versa.

Viewing the arguments as sets, wt-tree/set-equal? is the set equality predicate.
As a map operation it determines if two maps are defined on the same domain.

This procedure is equivalent to

(lambda (wt-tree-1 wt-tree-2)

(and (wt-tree/subset? wt-tree-1 wt-tree-2

(wt-tree/subset? wt-tree-2 wt-tree-1)))

In the worst case the time required by this operation is proportional to the size of the
smaller tree.

[procedure]wt-tree/fold combiner initial wt-tree
This procedure reduces wt-tree by combining all the associations, using an reverse
in-order traversal, so the associations are visited in reverse order. Combiner is a proce-
dure of three arguments: a key, a datum and the accumulated result so far. Provided
combiner takes time bounded by a constant, wt-tree/fold takes time proportional
to the size of wt-tree.

A sorted association list can be derived simply:

(wt-tree/fold (lambda (key datum list)

(cons (cons key datum) list))

’()

wt-tree))

The data in the associations can be summed like this:

(wt-tree/fold (lambda (key datum sum) (+ sum datum))

0

wt-tree)

[procedure]wt-tree/for-each action wt-tree
This procedure traverses wt-tree in order, applying action to each association. The
associations are processed in increasing order of their keys. Action is a procedure of

174 MIT/GNU Scheme 10.1.1

two arguments that takes the key and datum respectively of the association. Provided
action takes time bounded by a constant, wt-tree/for-each takes time proportional
to the size of wt-tree. The example prints the tree:

(wt-tree/for-each (lambda (key value)

(display (list key value)))

wt-tree))

[procedure]wt-tree/union-merge wt-tree-1 wt-tree-2 merge
Returns a new tree containing all the associations from both trees. If both trees have
an association for the same key, the datum associated with that key in the result tree
is computed by applying the procedure merge to the key, the value from wt-tree-1
and the value from wt-tree-2. Merge is of the form

(lambda (key datum-1 datum-2) ...)

If some key occurs only in one tree, that association will appear in the result tree
without being processed by merge, so for this operation to make sense, either merge
must have both a right and left identity that correspond to the association being
absent in one of the trees, or some guarantee must be made, for example, all the keys
in one tree are known to occur in the other.

These are all reasonable procedures for merge

(lambda (key val1 val2) (+ val1 val2))

(lambda (key val1 val2) (append val1 val2))

(lambda (key val1 val2) (wt-tree/union val1 val2))

However, a procedure like

(lambda (key val1 val2) (- val1 val2))

would result in a subtraction of the data for all associations with keys occuring in both
trees but associations with keys occuring in only the second tree would be copied, not
negated, as is presumably be intent. The programmer might ensure that this never
happens.

This procedure has the same time behavior as wt-tree/union but with a slightly
worse constant factor. Indeed, wt-tree/union might have been defined like this:

(define (wt-tree/union tree1 tree2)

(wt-tree/union-merge tree1 tree2

(lambda (key val1 val2) val2)))

The merge procedure takes the key as a parameter in case the data are not independent
of the key.

11.7.4 Indexing Operations on Weight-Balanced Trees

Weight-balanced trees support operations that view the tree as sorted sequence of associa-
tions. Elements of the sequence can be accessed by position, and the position of an element
in the sequence can be determined, both in logarthmic time.

[procedure]wt-tree/index wt-tree index
[procedure]wt-tree/index-datum wt-tree index

Chapter 11: Associations 175

[procedure]wt-tree/index-pair wt-tree index
Returns the 0-based indexth association of wt-tree in the sorted sequence under
the tree’s ordering relation on the keys. wt-tree/index returns the indexth key,
wt-tree/index-datum returns the datum associated with the indexth key and
wt-tree/index-pair returns a new pair (key . datum) which is the cons of the
indexth key and its datum. The average and worst-case times required by this
operation are proportional to the logarithm of the number of associations in the tree.

These operations signal a condition of type condition-type:bad-range-argument

if index<0 or if index is greater than or equal to the number of associations in the
tree. If the tree is empty, they signal an anonymous error.

Indexing can be used to find the median and maximum keys in the tree as follows:

median: (wt-tree/index wt-tree

(quotient (wt-tree/size wt-tree)

2))

maximum: (wt-tree/index wt-tree

(- (wt-tree/size wt-tree)

1))

[procedure]wt-tree/rank wt-tree key
Determines the 0-based position of key in the sorted sequence of the keys under
the tree’s ordering relation, or #f if the tree has no association with for key. This
procedure returns either an exact non-negative integer or #f. The average and worst-
case times required by this operation are proportional to the logarithm of the number
of associations in the tree.

[procedure]wt-tree/min wt-tree
[procedure]wt-tree/min-datum wt-tree
[procedure]wt-tree/min-pair wt-tree

Returns the association of wt-tree that has the least key under the tree’s ordering
relation. wt-tree/min returns the least key, wt-tree/min-datum returns the da-
tum associated with the least key and wt-tree/min-pair returns a new pair (key

. datum) which is the cons of the minimum key and its datum. The average and
worst-case times required by this operation are proportional to the logarithm of the
number of associations in the tree.

These operations signal an error if the tree is empty. They could have been written

(define (wt-tree/min tree)

(wt-tree/index tree 0))

(define (wt-tree/min-datum tree)

(wt-tree/index-datum tree 0))

(define (wt-tree/min-pair tree)

(wt-tree/index-pair tree 0))

[procedure]wt-tree/delete-min wt-tree
Returns a new tree containing all of the associations in wt-tree except the association
with the least key under the wt-tree’s ordering relation. An error is signalled if
the tree is empty. The average and worst-case times required by this operation are

176 MIT/GNU Scheme 10.1.1

proportional to the logarithm of the number of associations in the tree. This operation
is equivalent to

(wt-tree/delete wt-tree (wt-tree/min wt-tree))

[procedure]wt-tree/delete-min! wt-tree
Removes the association with the least key under the wt-tree’s ordering relation. An
error is signalled if the tree is empty. The average and worst-case times required by
this operation are proportional to the logarithm of the number of associations in the
tree. This operation is equivalent to

(wt-tree/delete! wt-tree (wt-tree/min wt-tree))

177

12 Procedures

Procedures are created by evaluating lambda expressions (see Section 2.1 [Lambda Expres-
sions], page 15); the lambda may either be explicit or may be implicit as in a “procedure
define” (see Section 2.4 [Definitions], page 21). Also there are special built-in procedures,
called primitive procedures, such as car; these procedures are not written in Scheme but in
the language used to implement the Scheme system. MIT/GNU Scheme also provides ap-
plication hooks, which support the construction of data structures that act like procedures.

In MIT/GNU Scheme, the written representation of a procedure tells you the type of
the procedure (compiled, interpreted, or primitive):

pp

⇒ #[compiled-procedure 56 ("pp" #x2) #x10 #x307578]

(lambda (x) x)

⇒ #[compound-procedure 57]

(define (foo x) x)

foo

⇒ #[compound-procedure 58 foo]

car

⇒ #[primitive-procedure car]

(call-with-current-continuation (lambda (x) x))

⇒ #[continuation 59]

Note that interpreted procedures are called “compound” procedures (strictly speaking, com-
piled procedures are also compound procedures). The written representation makes this
distinction for historical reasons, and may eventually change.

12.1 Procedure Operations

[procedure]apply procedure object object . . .
Calls procedure with the elements of the following list as arguments:

(cons* object object ...)

The initial objects may be any objects, but the last object (there must be at least
one object) must be a list.

(apply + (list 3 4 5 6)) ⇒ 18

(apply + 3 4 ’(5 6)) ⇒ 18

(define compose

(lambda (f g)

(lambda args

(f (apply g args)))))

((compose sqrt *) 12 75) ⇒ 30

[procedure]procedure? object
Returns #t if object is a procedure; otherwise returns #f. If #t is returned, ex-
actly one of the following predicates is satisfied by object: compiled-procedure?,
compound-procedure?, or primitive-procedure?.

178 MIT/GNU Scheme 10.1.1

[procedure]compiled-procedure? object
Returns #t if object is a compiled procedure; otherwise returns #f.

[procedure]compound-procedure? object
Returns #t if object is a compound (i.e. interpreted) procedure; otherwise returns #f.

[procedure]primitive-procedure? object
Returns #t if object is a primitive procedure; otherwise returns #f.

[procedure]procedure-environment procedure
Returns the closing environment of procedure. Signals an error if procedure is a
primitive procedure, or if procedure is a compiled procedure for which the debugging
information is unavailable.

12.2 Arity

Each procedure has an arity, which is the minimum and (optionally) maximum number of
arguments that it will accept. MIT/GNU Scheme provides an abstraction that represents
arity, and tests for the apparent arity of a procedure.

Arity objects come in two forms: the simple form, an exact non-negative integer, rep-
resents a fixed number of arguments. The general form is a pair whose car represents the
minimum number of arguments and whose cdr is the maximum number of arguments.

[procedure]make-procedure-arity min [max [simple-ok?]]
Returns an arity object made from min and max. Min must be an exact non-negative
integer. Max must be an exact non-negative integer at least as large as min. Alterna-
tively, max may be omitted or given as ‘#f’, which represents an arity with no upper
bound.

If simple-ok? is true, the returned arity is in the simple form (an exact non-negative
integer) when possible, and otherwise is always in the general form. Simple-ok?
defaults to ‘#f’.

[procedure]procedure-arity? object
Returns ‘#t’ if object is an arity object, and ‘#f’ otherwise.

[procedure]procedure-arity-min arity
[procedure]procedure-arity-max arity

Return the lower and upper bounds of arity, respectively.

The following procedures test for the apparent arity of a procedure. The results of the
test may be less restrictive than the effect of calling the procedure. In other words, these
procedures may indicate that the procedure will accept a given number of arguments, but
if you call the procedure it may signal a condition-type:wrong-number-of-arguments

error. For example, here is a procedure that appears to accept any number of arguments,
but when called will signal an error if the number of arguments is not one:

(lambda arguments (apply car arguments))

Chapter 12: Procedures 179

[procedure]procedure-arity procedure
Returns the arity that procedure accepts. The result may be in either simple or
general form.

(procedure-arity (lambda () 3)) ⇒ (0 . 0)

(procedure-arity (lambda (x) x)) ⇒ (1 . 1)

(procedure-arity car) ⇒ (1 . 1)

(procedure-arity (lambda x x)) ⇒ (0 . #f)

(procedure-arity (lambda (x . y) x)) ⇒ (1 . #f)

(procedure-arity (lambda (x #!optional y) x))

⇒ (1 . 2)

[procedure]procedure-arity-valid? procedure arity
Returns ‘#t’ if procedure accepts arity, and ‘#f’ otherwise.

[procedure]procedure-of-arity? object arity
Returns ‘#t’ if object is a procedure that accepts arity, and ‘#f’ otherwise. Equivalent
to:

(and (procedure? object)

(procedure-arity-valid? object arity))

[procedure]guarantee-procedure-of-arity object arity caller
Signals an error if object is not a procedure accepting arity. Caller is a symbol that is
printed as part of the error message and is intended to be the name of the procedure
where the error occurs.

[procedure]thunk? object
Returns ‘#t’ if object is a procedure that accepts zero arguments, and ‘#f’ otherwise.
Equivalent to:

(procedure-of-arity? object 0)

12.3 Primitive Procedures

[procedure]make-primitive-procedure name [arity]
Name must be a symbol. Arity must be an exact non-negative integer, -1, #f, or #t;
if not supplied it defaults to #f. Returns the primitive procedure called name. May
perform further actions depending on arity :

#f If the primitive procedure is not implemented, signals an error.

#t If the primitive procedure is not implemented, returns #f.

integer If the primitive procedure is implemented, signals an error if its arity
is not equal to arity. If the primitive procedure is not implemented,
returns an unimplemented primitive procedure object that accepts arity
arguments. An arity of -1 means it accepts any number of arguments.

[procedure]primitive-procedure-name primitive-procedure
Returns the name of primitive-procedure, a symbol.

(primitive-procedure-name car) ⇒ car

180 MIT/GNU Scheme 10.1.1

[procedure]implemented-primitive-procedure? primitive-procedure
Returns #t if primitive-procedure is implemented; otherwise returns #f. Useful be-
cause the code that implements a particular primitive procedure is not necessarily
linked into the executable Scheme program.

12.4 Continuations

[procedure]call-with-current-continuation procedure
Procedure must be a procedure of one argument. Packages up the current continua-
tion (see below) as an escape procedure and passes it as an argument to procedure.
The escape procedure is a Scheme procedure of one argument that, if it is later passed
a value, will ignore whatever continuation is in effect at that later time and will give
the value instead to the continuation that was in effect when the escape procedure
was created. The escape procedure created by call-with-current-continuation

has unlimited extent just like any other procedure in Scheme. It may be stored in
variables or data structures and may be called as many times as desired.

The following examples show only the most common uses of this procedure. If all real
programs were as simple as these examples, there would be no need for a procedure
with the power of call-with-current-continuation.

(call-with-current-continuation

(lambda (exit)

(for-each (lambda (x)

(if (negative? x)

(exit x)))

’(54 0 37 -3 245 19))

#t)) ⇒ -3

(define list-length

(lambda (obj)

(call-with-current-continuation

(lambda (return)

(letrec ((r

(lambda (obj)

(cond ((null? obj) 0)

((pair? obj) (+ (r (cdr obj)) 1))

(else (return #f))))))

(r obj))))))

(list-length ’(1 2 3 4)) ⇒ 4

(list-length ’(a b . c)) ⇒ #f

A common use of call-with-current-continuation is for structured, non-local
exits from loops or procedure bodies, but in fact call-with-current-continuation
is quite useful for implementing a wide variety of advanced control structures.

Whenever a Scheme expression is evaluated a continuation exists that wants the
result of the expression. The continuation represents an entire (default) future for the
computation. If the expression is evaluated at top level, for example, the continuation
will take the result, print it on the screen, prompt for the next input, evaluate it, and

Chapter 12: Procedures 181

so on forever. Most of the time the continuation includes actions specified by user
code, as in a continuation that will take the result, multiply it by the value stored in
a local variable, add seven, and give the answer to the top-level continuation to be
printed. Normally these ubiquitous continuations are hidden behind the scenes and
programmers don’t think much about them. On the rare occasions that you may need
to deal explicitly with continuations, call-with-current-continuation lets you do
so by creating a procedure that acts just like the current continuation.

[procedure]continuation? object
Returns #t if object is a continuation; otherwise returns #f.

[procedure]within-continuation continuation thunk
Thunk must be a procedure of no arguments. Conceptually,
within-continuation invokes continuation on the result of invoking thunk, but
thunk is executed in the dynamic state of continuation. In other words, the “current”
continuation is abandoned before thunk is invoked.

[procedure]dynamic-wind before thunk after
Calls thunk without arguments, returning the result(s) of this call. Before and after
are called, also without arguments, as required by the following rules. Note that in the
absence of calls to continuations captured using call-with-current-continuation

the three arguments are called once each, in order. Before is called whenever execution
enters the dynamic extent of the call to thunk and after is called whenever it exits
that dynamic extent. The dynamic extent of a procedure call is the period between
when the call is initiated and when it returns. In Scheme, because of call-with-
current-continuation, the dynamic extent of a call may not be a single, connected
time period. It is defined as follows:

• The dynamic extent is entered when execution of the body of the called procedure
begins.

• The dynamic extent is also entered when execution is not within the dynamic ex-
tent and a continuation is invoked that was captured (using call-with-current-
continuation) during the dynamic extent.

• It is exited when the called procedure returns.

• It is also exited when execution is within the dynamic extent and a continuation
is invoked that was captured while not within the dynamic extent.

If a second call to dynamic-wind occurs within the dynamic extent of the call to
thunk and then a continuation is invoked in such a way that the afters from these
two invocations of dynamic-wind are both to be called, then the after associated with
the second (inner) call to dynamic-wind is called first.

If a second call to dynamic-wind occurs within the dynamic extent of the call to
thunk and then a continuation is invoked in such a way that the befores from these
two invocations of dynamic-wind are both to be called, then the before associated
with the first (outer) call to dynamic-wind is called first.

If invoking a continuation requires calling the before from one call to dynamic-wind

and the after from another, then the after is called first.

182 MIT/GNU Scheme 10.1.1

The effect of using a captured continuation to enter or exit the dynamic extent of a
call to before or after is undefined.

(let ((path ’())

(c #f))

(let ((add (lambda (s)

(set! path (cons s path)))))

(dynamic-wind

(lambda () (add ’connect))

(lambda ()

(add (call-with-current-continuation

(lambda (c0)

(set! c c0)

’talk1))))

(lambda () (add ’disconnect)))

(if (< (length path) 4)

(c ’talk2)

(reverse path))))

⇒ (connect talk1 disconnect connect talk2 disconnect)

The following two procedures support multiple values.

[procedure]call-with-values thunk procedure
Thunk must be a procedure of no arguments, and procedure must be a procedure.
Thunk is invoked with a continuation that expects to receive multiple values; specif-
ically, the continuation expects to receive the same number of values that procedure
accepts as arguments. Thunk must return multiple values using the values proce-
dure. Then procedure is called with the multiple values as its arguments. The result
yielded by procedure is returned as the result of call-with-values.

[procedure]values object . . .
Returns multiple values. The continuation in effect when this procedure is called
must be a multiple-value continuation that was created by call-with-values. Fur-
thermore it must accept as many values as there are objects.

12.5 Application Hooks

Application hooks are objects that can be applied like procedures. Each application hook
has two parts: a procedure that specifies what to do when the application hook is applied,
and an arbitrary object, called extra. Often the procedure uses the extra object to determine
what to do.

There are two kinds of application hooks, which differ in what arguments are passed to
the procedure. When an apply hook is applied, the procedure is passed exactly the same
arguments that were passed to the apply hook. When an entity is applied, the entity itself
is passed as the first argument, followed by the other arguments that were passed to the
entity.

Both apply hooks and entities satisfy the predicate procedure?. Each satisfies either
compiled-procedure?, compound-procedure?, or primitive-procedure?, depending on

183

its procedure component. An apply hook is considered to accept the same number of
arguments as its procedure, while an entity is considered to accept one less argument than
its procedure.

[procedure]make-apply-hook procedure object
Returns a newly allocated apply hook with a procedure component of procedure and
an extra component of object.

[procedure]apply-hook? object
Returns #t if object is an apply hook; otherwise returns #f.

[procedure]apply-hook-procedure apply-hook
Returns the procedure component of apply-hook.

[procedure]set-apply-hook-procedure! apply-hook procedure
Changes the procedure component of apply-hook to be procedure. Returns an un-
specified value.

[procedure]apply-hook-extra apply-hook
Returns the extra component of apply-hook.

[procedure]set-apply-hook-extra! apply-hook object
Changes the extra component of apply-hook to be object. Returns an unspecified
value.

[procedure]make-entity procedure object
Returns a newly allocated entity with a procedure component of procedure and an
extra component of object.

[procedure]entity? object
Returns #t if object is an entity; otherwise returns #f.

[procedure]entity-procedure entity
Returns the procedure component of entity.

[procedure]set-entity-procedure! entity procedure
Changes the procedure component of entity to be procedure. Returns an unspecified
value.

[procedure]entity-extra entity
Returns the extra component of entity.

[procedure]set-entity-extra! entity object
Changes the extra component of entity to be object. Returns an unspecified value.

185

13 Environments

13.1 Environment Operations

Environments are first-class objects in MIT/GNU Scheme. An environment consists of some
bindings and possibly a parent environment, from which other bindings are inherited. The
operations in this section reveal the frame-like structure of environments by permitting you
to examine the bindings of a particular environment separately from those of its parent.

There are several types of bindings that can occur in an environment. The most com-
mon is the simple variable binding, which associates a value (any Scheme object) with an
identifier (a symbol). A variable binding can also be unassigned, which means that it has
no value. An unassigned variable is bound, in that is will shadow other bindings of the
same name in ancestor environments, but a reference to that variable will signal an error
of type condition-type:unassigned-variable. An unassigned variable can be assigned
(using set! or environment-assign!) to give it a value.

In addition to variable bindings, an environment can also have keyword bindings. A
keyword binding associates a syntactic keyword (usually a macro transformer) with an
identifier. Keyword bindings are special in that they are considered “bound”, but ordinary
variable references don’t work on them. So an attempt to reference or assign a keyword
binding results in an error of type condition-type:macro-binding. However, keyword
bindings can be redefined using define or environment-define.

[procedure]environment? object
Returns #t if object is an environment; otherwise returns #f.

[procedure]environment-has-parent? environment
Returns #t if environment has a parent environment; otherwise returns #f.

[procedure]environment-parent environment
Returns the parent environment of environment. It is an error if environment has no
parent.

[procedure]environment-bound-names environment
Returns a newly allocated list of the names (symbols) that are bound by environment.
This does not include the names that are bound by the parent environment of
environment. It does include names that are unassigned or keywords in environment.

[procedure]environment-macro-names environment
Returns a newly allocated list of the names (symbols) that are bound to syntactic
keywords in environment.

[procedure]environment-bindings environment
Returns a newly allocated list of the bindings of environment; does not include the
bindings of the parent environment. Each element of this list takes one of two forms:
(symbol) indicates that symbol is bound but unassigned, while (symbol object)

indicates that symbol is bound, and its value is object.

186 MIT/GNU Scheme 10.1.1

[procedure]environment-reference-type environment symbol
Returns a symbol describing the reference type of symbol in environment or one of
its ancestor environments. The result is one of the following:

normal means symbol is a variable binding with a normal value.

unassigned

means symbol is a variable binding with no value.

macro means symbol is a keyword binding.

unbound means symbol has no associated binding.

[procedure]environment-bound? environment symbol
Returns #t if symbol is bound in environment or one of its ancestor environments;
otherwise returns #f. This is equivalent to

(not (eq? ’unbound

(environment-reference-type environment symbol)))

[procedure]environment-assigned? environment symbol
Returns #t if symbol is bound in environment or one of its ancestor environments,
and has a normal value. Returns #f if it is bound but unassigned. Signals an error if
it is unbound or is bound to a keyword.

[procedure]environment-lookup environment symbol
Symbol must be bound to a normal value in environment or one of its ancestor
environments. Returns the value to which it is bound. Signals an error if unbound,
unassigned, or a keyword.

[procedure]environment-lookup-macro environment symbol
If symbol is a keyword binding in environment or one of its ancestor environments,
returns the value of the binding. Otherwise, returns #f. Does not signal any errors
other than argument-type errors.

[procedure]environment-assignable? environment symbol
Symbol must be bound in environment or one of its ancestor environments. Returns
#t if the binding may be modified by side effect.

[procedure]environment-assign! environment symbol object
Symbol must be bound in environment or one of its ancestor environments, and
must be assignable. Modifies the binding to have object as its value, and returns an
unspecified result.

[procedure]environment-definable? environment symbol
Returns #t if symbol is definable in environment, and #f otherwise. At present, this
is false for environments generated by application of compiled procedures, and true
for all other environments.

[procedure]environment-define environment symbol object
Defines symbol to be bound to object in environment, and returns an unspecified
value. Signals an error if symbol isn’t definable in environment.

Chapter 13: Environments 187

[procedure]environment-define-macro environment symbol transformer
Defines symbol to be a keyword bound to transformer in environment, and returns an
unspecified value. Signals an error if symbol isn’t definable in environment. The type
of transformer is defined by the syntax engine and is not checked by this procedure.
If the type is incorrect this will subsequently signal an error during syntax expansion.

[procedure]eval expression environment
Evaluates expression, a list-structure representation (sometimes called s-expression
representation) of a Scheme expression, in environment. You rarely need eval in
ordinary programs; it is useful mostly for evaluating expressions that have been cre-
ated “on the fly” by a program. eval is relatively expensive because it must convert
expression to an internal form before it is executed.

(define foo (list ’+ 1 2))

(eval foo (the-environment)) ⇒ 3

13.2 Environment Variables

The user-initial-environment is where the top-level read-eval-print (REP) loop evaluates
expressions and binds definitions. It is a child of system-global-environment, which is
where all of the Scheme system definitions are bound. All of the bindings in system-global-
environment are available when the current environment is user-initial-environment.
However, any new bindings that you create in the REP loop (with define forms or by
loading files containing define forms) occur in user-initial-environment.

[variable]system-global-environment
The variable system-global-environment is bound to the distinguished
environment that’s the ancestor of most other environments (except for those
created by make-root-top-level-environment). It is the parent environment of
user-initial-environment. Primitives, system procedures, and most syntactic
keywords are bound (and sometimes closed) in this environment.

[variable]user-initial-environment
The variable user-initial-environment is bound to the default environment in
which typed expressions are evaluated by the top-level REP loop.

Although all bindings in system-global-environment are visible to the REP loop,
definitions that are typed at, or loaded by, the REP loop occur in the user-initial-
environment. This is partly a safety measure: if you enter a definition that happens
to have the same name as a critical system procedure, your definition will be visible
only to the procedures you define in the user-initial-environment; the MIT/GNU
Scheme system procedures, which are defined in system-global-environment, will
continue to see the original definition.

13.3 REPL Environment

[procedure]nearest-repl/environment
Returns the current REP loop environment (i.e. the current environment of the closest
enclosing REP loop). When Scheme first starts up, this is the same as user-initial-
environment.

188 MIT/GNU Scheme 10.1.1

[procedure]ge environment
Changes the current REP loop environment to environment. Environment can be
either an environment or a procedure object. If it’s a procedure, the environment in
which that procedure was closed is the new environment.

13.4 Top-level Environments

The operations in this section manipulate top-level environments, as opposed to environ-
ments created by the application of procedures. For historical reasons, top-level environ-
ments are referred to as interpreter environments.

[special form]the-environment
Returns the current environment. This form may only be evaluated in a top-level
environment. An error is signalled if it appears elsewhere.

[procedure]top-level-environment? object
[procedure]interpreter-environment? object

Returns #t if object is an top-level environment; otherwise returns #f.

interpreter-environment? is an alias for top-level-environment?.

[procedure]extend-top-level-environment environment [names [values]]
[procedure]make-top-level-environment [names [values]]
[procedure]make-root-top-level-environment [names [values]]

Returns a newly allocated top-level environment. extend-top-level-environment

creates an environment that has parent environment, make-top-level-environment
creates an environment that has parent system-global-environment, and
make-root-top-level-environment creates an environment that has no parent.

The optional arguments names and values are used to specify initial bindings in the
new environment. If specified, names must be a list of symbols, and values must be
a list of objects. If only names is specified, each name in names will be bound in the
environment, but unassigned. If names and values are both specified, they must be
the same length, and each name in names will be bound to the corresponding value in
values. If neither names nor values is specified, the environment will have no initial
bindings.

[procedure]link-variables environment1 symbol1 environment2 symbol2
Defines symbol1 in environment1 to have the same binding as symbol2 in
environment2, and returns an unspecified value. Prior to the call, symbol2 must be
bound in environment2, but the type of binding is irrelevant; it may be a normal
binding, an unassigned binding, or a keyword binding. Signals an error if symbol1
isn’t definable in environment1, or if symbol2 is unbound in environment2.

By “the same binding”, we mean that the value cell is shared between the two envi-
ronments. If a value is assigned to symbol1 in environment1, a subsequent reference
to symbol2 in environment2 will see that value, and vice versa.

[procedure]unbind-variable environment symbol
If symbol is bound in environment or one of its ancestor environments, removes the
binding, so that subsequent accesses to that symbol behave as if the binding never
existed. Returns #t if there was a binding prior to the call, and #f if there wasn’t.

189

14 Input/Output

This chapter describes the procedures that are used for input and output (I/O). The chapter
first describes ports and how they are manipulated, then describes the I/O operations.
Finally, some low-level procedures are described that permit the implementation of custom
ports and high-performance I/O.

14.1 Ports

Ports represent input and output devices. To Scheme, an input port is a Scheme object that
can deliver data upon command, while an output port is a Scheme object that can accept
data. Whether the input and output port types are disjoint is implementation-dependent.
(In MIT/GNU Scheme, there are input ports, output ports, and input/output ports.)

Different port types operate on different data. Scheme implementations are required to
support textual ports and binary ports, but may also provide other port types.

A textual port supports reading or writing of individual characters from or to a back-
ing store containing characters using read-char and write-char below, and it supports
operations defined in terms of characters, such as read and write.

A binary port supports reading or writing of individual bytes from or to a backing
store containing bytes using read-u8 and write-u8 below, as well as operations defined in
terms of bytes. Whether the textual and binary port types are disjoint is implementation-
dependent. (In MIT/GNU Scheme, textual ports and binary ports are distinct.)

Ports can be used to access files, devices, and similar things on the host system on which
the Scheme program is running.

[standard procedure]call-with-port port procedure
It is an error if procedure does not accept one argument.

The call-with-port procedure calls procedure with port as an argument. If proce-
dure returns, then the port is closed automatically and the values yielded by proce-
dure are returned. If procedure does not return, then the port must not be closed
automatically unless it is possible to prove that the port will never again be used for
a read or write operation.

Rationale: Because Schemes escape procedures have unlimited extent, it is possible to
escape from the current continuation but later to resume it. If implementations were
permitted to close the port on any escape from the current continuation, then it would
be impossible to write portable code using both call-with-current-continuation

and call-with-port.

[procedure]call-with-truncated-output-port limit output-port procedure
The limit argument must be a nonnegative integer. It is an error if procedure does
not accept one argument.

This procedure uses a continuation to escape from procedure if it tries to write more
than limit characters.

It calls procedure with a special output port as an argument. Up to limit characters
may be written to that output port, and those characters are transparently written
through to output-port.

190 MIT/GNU Scheme 10.1.1

If the number of characters written to that port exceeds limit, then the escape con-
tinuation is invoked and #t is returned. Otherwise, procedure returns normally and
#f is returned.

Note that if procedure writes exactly limit characters, then the escape continuation
is not invoked, and #f is returned.

In no case does call-with-truncated-output-port close output-port.

[standard procedure]input-port? object
[standard procedure]output-port? object

[procedure]i/o-port? object
[standard procedure]textual-port? object
[standard procedure]binary-port? object
[standard procedure]port? object

These procedures return #t if object is an input port, output port, input/output port,
textual port, binary port, or any kind of port, respectively. Otherwise they return
#f.

[standard procedure]input-port-open? port
[standard procedure]output-port-open? port

Returns #t if port is still open and capable of performing input or output, respectively,
and #f otherwise.

[standard parameter]current-input-port [input-port]
[standard parameter]current-output-port [output-port]
[standard parameter]current-error-port [output-port]

Returns the current default input port, output port, or error port (an output port),
respectively. These procedures are parameter objects, which can be overridden with
parameterize. The initial bindings for these are implementation-defined textual
ports.

[parameter]notification-output-port [output-port]
Returns an output port suitable for generating “notifications”, that is, messages to
the user that supply interesting information about the execution of a program. For
example, the load procedure writes messages to this port informing the user that a
file is being loaded.

This procedure is a parameter object, which can be overridden with parameterize.

[parameter]trace-output-port [output-port]
Returns an output port suitable for generating “tracing” information about a pro-
gram’s execution. The output generated by the trace procedure is sent to this port.

This procedure is a parameter object, which can be overridden with parameterize.

[parameter]interaction-i/o-port [i/o-port]
Returns an I/O port suitable for querying or prompting the user. The standard
prompting procedures use this port by default (see Section 14.11 [Prompting],
page 209).

This procedure is a parameter object, which can be overridden with parameterize.

Chapter 14: Input/Output 191

[standard procedure]close-port port
[standard procedure]close-input-port port
[standard procedure]close-output-port port

Closes the resource associated with port, rendering the port incapable of delivering
or accepting data. It is an error to apply the last two procedures to a port which
is not an input or output port, respectively. Scheme implementations may provide
ports which are simultaneously input and output ports, such as sockets; the close-
input-port and close-output-port procedures can then be used to close the input and
output sides of the port independently.

These routines have no effect if the port has already been closed.

[obsolete procedure]set-current-input-port! input-port
[obsolete procedure]set-current-output-port! output-port
[obsolete procedure]set-notification-output-port! output-port
[obsolete procedure]set-trace-output-port! output-port
[obsolete procedure]set-interaction-i/o-port! i/o-port

These procedures are deprecated; instead call the corresponding parameters with an
argument.

[obsolete procedure]with-input-from-port input-port thunk
[obsolete procedure]with-output-to-port output-port thunk
[obsolete procedure]with-notification-output-port output-port thunk
[obsolete procedure]with-trace-output-port output-port thunk
[obsolete procedure]with-interaction-i/o-port i/o-port thunk

These procedures are deprecated; instead use parameterize on the corresponding
parameters.

[variable]console-i/o-port
console-i/o-port is an I/O port that communicates with the “console”. Under unix,
the console is the controlling terminal of the Scheme process. Under Windows, the
console is the window that is created when Scheme starts up.

This variable is rarely used; instead programs should use one of the standard ports
defined above. This variable should not be modified.

14.2 File Ports

Before Scheme can access a file for reading or writing, it is necessary to open a port to the
file. This section describes procedures used to open ports to files. Such ports are closed
(like any other port) by close-port. File ports are automatically closed if and when they
are reclaimed by the garbage collector.

Before opening a file for input or output, by whatever method, the filename argument
is converted to canonical form by calling the procedure merge-pathnames with filename as
its sole argument. Thus, filename can be either a string or a pathname, and it is merged
with the current pathname defaults to produce the pathname that is then opened.

[standard procedure]call-with-input-file filename procedure
[standard procedure]call-with-output-file filename procedure

It is an error if procedure does not accept one argument.

192 MIT/GNU Scheme 10.1.1

These procedures obtain a textual port obtained by opening the named file for input
or output as if by open-input-file or open-output-file. The port and procedure
are then passed to a procedure equivalent to call-with-port.

[procedure]call-with-binary-input-file filename procedure
[procedure]call-with-binary-output-file filename procedure

It is an error if procedure does not accept one argument.

These procedures obtain a binary port obtained by opening the named file for input or
output as if by open-binary-input-file or open-binary-output-file. The port
and procedure are then passed to a procedure equivalent to call-with-port.

[standard procedure]with-input-from-file filename thunk
[standard procedure]with-output-to-file filename thunk

The file named by filename is opened for input or output as if by open-input-

file or open-output-file, and the new port is made to be the value returned by
current-input-port or current-output-port (as used by (read), (write obj),
and so forth). The thunk is then called with no arguments. When the thunk returns,
the port is closed and the previous default is restored. It is an error if thunk does not
accept zero arguments. Both procedures return the values yielded by thunk. If an
escape procedure is used to escape from the continuation of these procedures, they
behave exactly as if the current input or output port had been bound dynamically
with parameterize.

[obsolete procedure]with-input-from-binary-file filename thunk
[obsolete procedure]with-output-to-binary-file filename thunk

These procedures are deprecated; instead use parameterize along with call-with-

binary-input-file or call-with-binary-output-file.

[procedure]open-input-file filename
[procedure]open-binary-input-file filename

Takes a filename for an existing file and returns a textual input port or binary input
port that is capable of delivering data from the file. If the file does not exist or cannot
be opened, an error an error that satisfies file-error? is signaled.

[standard procedure]open-output-file filename [append?]
[standard procedure]open-binary-output-file filename [append?]

Takes a filename naming an output file to be created and returns a textual output
port or binary output port that is capable of writing data to a new file by that name.
If a file with the given name already exists, the effect is unspecified. (In that case,
MIT/GNU Scheme overwrites an existing file.) If the file cannot be opened, an error
that satisfies file-error? is signalled.

The optional argument append? is an MIT/GNU Scheme extension. If append? is
given and not #f, the file is opened in append mode. In this mode, the contents of
the file are not overwritten; instead any characters written to the file are appended
to the end of the existing contents. If the file does not exist, append mode creates
the file and writes to it in the normal way.

Chapter 14: Input/Output 193

[procedure]open-i/o-file filename
[procedure]open-binary-i/o-file filename

Takes a filename referring to an existing file and returns an I/O port that is capable
of both reading from and writing to the file. If the file cannot be opened, an error
that satisfies file-error? is signalled.

This procedure is often used to open special files. For example, under unix this
procedure can be used to open terminal device files, pty device files, and named
pipes.

[procedure]close-all-open-files
This procedure closes all file ports that are open at the time that it is called, and
returns an unspecified value.

14.3 String Ports

This section describes textual input ports that read their input from given strings, and
textual output ports that accumulate their output and return it as a string.

[standard procedure]open-input-string string [start [end]]
Takes a string and returns a textual input port that delivers characters from the
string. If the string is modified, the effect is unspecified.

The optional arguments start and end may be used to specify that the string port
delivers characters from a substring of string ; if not given, start defaults to 0 and end
defaults to (string-length string).

[standard procedure]open-output-string
Returns a textual output port that will accumulate characters for retrieval by
get-output-string.

[standard procedure]get-output-string port
It is an error if port was not created with open-output-string.

Returns a string consisting of the characters that have been output to the port so far
in the order they were output. If the result string is modified, the effect is unspecified.

(parameterize ((current-output-port (open-output-string)))

(display "piece")

(display " by piece ")

(display "by piece.")

(newline)

(get-output-string (current-output-port)))

⇒ "piece by piece by piece.\n"

[procedure]call-with-output-string procedure
The procedure is called with one argument, a textual output port. The values yielded
by procedure are ignored. When procedure returns, call-with-output-string re-
turns the port’s accumulated output as a string. If the result string is modified, the
effect is unspecified.

194 MIT/GNU Scheme 10.1.1

This procedure could have been defined as follows:

(define (call-with-output-string procedure)

(let ((port (open-output-string)))

(procedure port)

(get-output-string port)))

[procedure]call-with-truncated-output-string limit procedure
Similar to call-with-output-string, except that the output is limited to at most
limit characters. The returned value is a pair; the car of the pair is #t if procedure
attempted to write more than limit characters, and #f otherwise. The cdr of the pair
is a newly allocated string containing the accumulated output.

This procedure could have been defined as follows:

(define (call-with-truncated-output-string limit procedure)

(let ((port (open-output-string)))

(let ((truncated?

(call-with-truncated-output-port limit port

procedure)))

(cons truncated? (get-output-string port)))))

This procedure is helpful for displaying circular lists, as shown in this example:

(define inf (list ’inf))

(call-with-truncated-output-string 40

(lambda (port)

(write inf port))) ⇒ (#f . "(inf)")

(set-cdr! inf inf)

(call-with-truncated-output-string 40

(lambda (port)

(write inf port)))

⇒ (#t . "(inf inf inf inf inf inf inf inf inf inf")

[procedure]write-to-string object [limit]
Writes object to a string output port, and returns the resulting string.

If limit is supplied and not #f, then this procedure is equivalent to the following and
returns a pair instead of just a string:

(call-with-truncated-output-string limit

(lambda (port)

(write object port)))

[obsolete procedure]with-input-from-string string thunk
[obsolete procedure]with-output-to-string thunk
[obsolete procedure]with-output-to-truncated-string limit thunk

These procedures are deprecated; instead use open-input-string, call-with-

output-string, or call-with-truncated-output-string along with
parameterize.

Chapter 14: Input/Output 195

14.4 Bytevector Ports

This section describes binary input ports that read their input from given bytevectors, and
binary output ports that accumulate their output and return it as a bytevector.

[standard procedure]open-input-bytevector bytevector [start [end]]
Takes a bytevector and returns a binary input port that delivers bytes from the
bytevector. If the bytevector is modified, the effect is unspecified.

The optional arguments start and end may be used to specify that the bytevector
port delivers bytes from a portion of bytevector; if not given, start defaults to 0 and
end defaults to (bytevector-length bytevector).

[standard procedure]open-output-bytevector
Returns a binary output port that will accumulate bytes for retrieval by get-output-

bytevector.

[standard procedure]get-output-bytevector port
It is an error if port was not created with open-output-bytevector.

Returns a bytevector consisting of the bytes that have been output to the port so
far in the order they were output. If the result bytevector is modified, the effect is
unspecified.

[procedure]call-with-output-bytevector procedure
The procedure is called with one argument, a binary output port. The values yielded
by procedure are ignored. When procedure returns, call-with-output-bytevector
returns the port’s accumulated output as a newly allocated bytevector.

This procedure could have been defined as follows:

(define (call-with-output-bytevector procedure)

(let ((port (open-output-bytevector)))

(procedure port)

(get-output-bytevector port)))

14.5 Input Procedures

This section describes the procedures that read input. Input procedures can read either
from the current input port or from a given port. Remember that to read from a file, you
must first open a port to the file.

Input ports can be divided into two types, called interactive and non-interactive. Interac-
tive input ports are ports that read input from a source that is time-dependent; for example,
a port that reads input from a terminal or from another program. Non-interactive input
ports read input from a time-independent source, such as an ordinary file or a character
string.

In this section, all optional arguments called port default to the current input port.

[standard procedure]read [port]
The read procedure converts external representations of Scheme objects into the ob-
jects themselves. It returns the next object parsable from the given textual input

196 MIT/GNU Scheme 10.1.1

port, updating port to point to the first character past the end of the external repre-
sentation of the object.

Implementations may support extended syntax to represent record types or other
types that do not have datum representations.

If an end of file is encountered in the input before any characters are found that
can begin an object, then an end-of-file object is returned. The port remains open,
and further attempts to read will also return an end-of-file object. If an end of
file is encountered after the beginning of an objects external representation, but the
external representation is incomplete and therefore not parsable, an error that satisfies
read-error? is signaled.

The port remains open, and further attempts to read will also return an end-of-file
object. If an end of file is encountered after the beginning of an object’s written rep-
resentation, but the written representation is incomplete and therefore not parsable,
an error is signalled.

[standard procedure]read-char [port]
Returns the next character available from the textual input port, updating port to
point to the following character. If no more characters are available, an end-of-file
object is returned.

In MIT/GNU Scheme, if port is an interactive input port and no characters are
immediately available, read-char will hang waiting for input, even if the port is in
non-blocking mode.

[procedure]read-char-no-hang [port]
This procedure behaves exactly like read-char except when port is an interactive
port in non-blocking mode, and there are no characters immediately available. In
that case this procedure returns #f without blocking.

[procedure]unread-char char [port]
The given char must be the most-recently read character from the textual input port.
This procedure “unreads” the character, updating port as if the character had never
been read.

Note that this only works with characters returned by read-char or read-char-no-
hang.

[standard procedure]peek-char [port]
Returns the next character available from the textual input port, without updating
port to point to the following character. If no more characters are available, an
end-of-file object is returned.

Note: The value returned by a call to peek-char is the same as the value that would
have been returned by a call to read-char on the same port. The only difference is
that the very next call to read-char or peek-char on that port will return the value
returned by the preceding call to peek-char. In particular, a call to peek-char on
an interactive port will hang waiting for input whenever a call to read-char would
have hung.

Chapter 14: Input/Output 197

[standard procedure]read-line [port]
Returns the next line of text available from the textual input port, updating the port
to point to the following character. If an end of line is read, a string containing all of
the text up to (but not including) the end of line is returned, and the port is updated
to point just past the end of line. If an end of file is encountered before any end of line
is read, but some characters have been read, a string containing those characters is
returned. If an end of file is encountered before any characters are read, an end-of-file
object is returned. For the purpose of this procedure, an end of line consists of either
a linefeed character, a carriage return character, or a sequence of a carriage return
character followed by a linefeed character. Implementations may also recognize other
end of line characters or sequences.

In MIT/GNU Scheme, if port is an interactive input port and no characters are
immediately available, read-line will hang waiting for input, even if the port is in
non-blocking mode.

[standard procedure]eof-object? object
Returns #t if object is an end-of-file object, otherwise returns #f. The precise set
of end-of-file objects will vary among implementations, but in any case no end-of-file
object will ever be an object that can be read in using read.

[standard procedure]eof-object
Returns an end-of-file object, not necessarily unique.

[standard procedure]char-ready? [port]
Returns #t if a character is ready on the textual input port and returns #f otherwise.
If char-ready? returns #t then the next read-char operation on the given port is
guaranteed not to hang. If the port is at end of file then char-ready? returns #t.

Rationale: The char-ready? procedure exists to make it possible for a program to
accept characters from interactive ports without getting stuck waiting for input. Any
input editors associated with such ports must ensure that characters whose existence
has been asserted by char-ready? cannot be removed from the input. If char-ready?
were to return #f at end of file, a port at end of file would be indistinguishable from
an interactive port that has no ready characters.

[standard procedure]read-string k [port]
Reads the next k characters, or as many as are available before the end of file, from
the textual input port into a newly allocated string in left-to-right order and returns
the string. If no characters are available before the end of file, an end-of-file object is
returned.

Note: MIT/GNU Scheme previously defined this procedure differently, and this al-
ternate usage is deprecated; please use read-delimited-string instead. For now,
read-string will redirect to read-delimited-string as needed, but this redirection
will be eliminated in a future release.

[procedure]read-string! string [port [start [end]]]
Reads the next end-start characters, or as many as are available before the end of file,
from the textual input port into string in left-to-right order beginning at the start
position. If end is not supplied, reads until the end of string has been reached. If

198 MIT/GNU Scheme 10.1.1

start is not supplied, reads beginning at position 0. Returns the number of characters
read. If no characters are available, an end-of-file object is returned.

In MIT/GNU Scheme, if port is an interactive port in non-blocking mode and no char-
acters are immediately available, #f is returned without any modification of string.

However, if one or more characters are immediately available, the region is filled using
the available characters. The procedure then returns the number of characters filled
in, without waiting for further characters, even if the number of filled characters is
less than the size of the region.

[obsolete procedure]read-substring! string start end [port]
This procedure is deprecated; use read-string! instead.

[standard procedure]read-u8 [port]
Returns the next byte available from the binary input port, updating the port to
point to the following byte. If no more bytes are available, an end-of-file object is
returned.

In MIT/GNU Scheme, if port is an interactive input port in non-blocking mode and
no characters are immediately available, read-u8 will return #f.

[standard procedure]peek-u8 [port]
Returns the next byte available from the binary input port, but without updating
the port to point to the following byte. If no more bytes are available, an end-of-file
object is returned.

In MIT/GNU Scheme, if port is an interactive input port in non-blocking mode and
no characters are immediately available, peek-u8 will return #f.

[standard procedure]u8-ready? [port]
Returns #t if a byte is ready on the binary input port and returns #f otherwise. If
u8-ready? returns #t then the next read-u8 operation on the given port is guaranteed
not to hang. If the port is at end of file then u8-ready? returns #t.

[standard procedure]read-bytevector k [port]
Reads the next k bytes, or as many as are available before the end of file, from the
binary input port into a newly allocated bytevector in left-to-right order and returns
the bytevector. If no bytes are available before the end of file, an end-of-file object is
returned.

In MIT/GNU Scheme, if port is an interactive input port in non-blocking mode and
no characters are immediately available, read-bytevector will return #f.

However, if one or more bytes are immediately available, they are read and returned
as a bytevector, without waiting for further bytes, even if the number of bytes is less
than k.

[standard procedure]read-bytevector! bytevector [port [start [end]]]
Reads the next end-start bytes, or as many as are available before the end of file,
from the binary input port into bytevector in left-to-right order beginning at the
start position. If end is not supplied, reads until the end of bytevector has been
reached. If start is not supplied, reads beginning at position 0. Returns the number
of bytes read. If no bytes are available, an end-of-file object is returned.

Chapter 14: Input/Output 199

In MIT/GNU Scheme, if port is an interactive input port in non-blocking mode and
no characters are immediately available, read-bytevector! will return #f.

However, if one or more bytes are immediately available, the region is filled using the
available bytes. The procedure then returns the number of bytes filled in, without
waiting for further bytes, even if the number of filled bytes is less than the size of the
region.

[procedure]read-delimited-string char-set [port]
Reads characters from port until it finds a terminating character that is a member of
char-set (see Section 5.3 [Character Sets], page 86) or encounters end of file. The port
is updated to point to the terminating character, or to end of file if no terminating
character was found. read-delimited-string returns the characters, up to but
excluding the terminating character, as a newly allocated string.

This procedure ignores the blocking mode of the port, blocking unconditionally until it
sees either a delimiter or end of file. If end of file is encountered before any characters
are read, an end-of-file object is returned.

On many input ports, this operation is significantly faster than the following equiva-
lent code using peek-char and read-char:

(define (read-delimited-string char-set port)

(let ((char (peek-char port)))

(if (eof-object? char)

char

(list->string

(let loop ((char char))

(if (or (eof-object? char)

(char-in-set? char char-set))

’()

(begin

(read-char port)

(cons char

(loop (peek-char port))))))))))

14.5.1 Reader Controls

The following parameters control the behavior of the read procedure.

[parameter]param:reader-radix
This parameter defines the radix used by the reader when it parses numbers. This is
similar to passing a radix argument to string->number. The value of the parameter
must be one of 2, 8, 10, or 16; an error is signaled if the parameter is bound to any
other value.

Note that much of the number syntax is invalid for radixes other than 10. The
reader detects cases where such invalid syntax is used and signals an error. However,
problems can still occur when param:reader-radix is bound to 16, because syntax
that normally denotes symbols can now denote numbers (e.g. abc). Because of this,
it is usually undesirable to bind this parameter to anything other than the default.

The default value of this parameter is 10.

200 MIT/GNU Scheme 10.1.1

[parameter]param:reader-fold-case?
This parameter controls whether the parser folds the case of symbols, character names,
and certain other syntax. If it is bound to its default value of #t, symbols read by
the parser are case-folded prior to being interned. Otherwise, symbols are interned
without folding.

At present, it is a bad idea to use this feature, as it doesn’t really make Scheme
case-sensitive, and therefore can break features of the Scheme runtime that depend
on case-folded symbols. Instead, use the #!fold-case or #!no-fold-case markers
in your code.

[obsolete variable]*parser-radix*
[obsolete variable]*parser-canonicalize-symbols?*

These variables are deprecated; instead use the corresponding parameter objects.

14.6 Output Procedures

Output ports may or may not support buffering of output, in which output characters are
collected together in a buffer and then sent to the output device all at once. (Most of the
output ports implemented by the runtime system support buffering.) Sending all of the
characters in the buffer to the output device is called flushing the buffer. In general, output
procedures do not flush the buffer of an output port unless the buffer is full.

However, the standard output procedures described in this section perform what is
called discretionary flushing of the buffer. Discretionary output flushing works as follows.
After a procedure performs its output (writing characters to the output buffer), it checks
to see if the port implements an operation called discretionary-flush-output. If so,
then that operation is invoked to flush the buffer. At present, only the console port defines
discretionary-flush-output; this is used to guarantee that output to the console appears
immediately after it is written, without requiring calls to flush-output-port.

In this section, all optional arguments called port default to the current output port.

Note: MIT/GNU Scheme doesn’t support datum labels, so any behavior in write,
write-shared, or write-simple that depends on datum labels is not implemented. At
present all three of these procedures are equivalent. This will be remedied in a future
release.

[standard procedure]write object [port]
Writes a representation of object to the given textual output port. Strings that appear
in the written representation are enclosed in quotation marks, and within those strings
backslash and quotation mark characters are escaped by backslashes. Symbols that
contain non-ASCII characters are escaped with vertical lines. Character objects are
written using the #\ notation.

If object contains cycles which would cause an infinite loop using the normal written
representation, then at least the objects that form part of the cycle must be repre-
sented using datum labels. Datum labels must not be used if there are no cycles.

Implementations may support extended syntax to represent record types or other
types that do not have datum representations.

The write procedure returns an unspecified value.

On MIT/GNU Scheme write performs discretionary output flushing.

Chapter 14: Input/Output 201

[standard procedure]write-shared object [port]
The write-shared procedure is the same as write, except that shared structure must
be represented using datum labels for all pairs and vectors that appear more than
once in the output.

[standard procedure]write-simple object [port]
The write-simple procedure is the same as write, except that shared structure is
never represented using datum labels. This can cause write-simple not to terminate
if object contains circular structure.

[standard procedure]display object [port]
Writes a representation of object to the given textual output port. Strings that
appear in the written representation are output as if by write-string instead of by
write. Symbols are not escaped. Character objects appear in the representation as
if written by write-char instead of by write. The display representation of other
objects is unspecified. However, display must not loop forever on self-referencing
pairs, vectors, or records. Thus if the normal write representation is used, datum
labels are needed to represent cycles as in write.

Implementations may support extended syntax to represent record types or other
types that do not have datum representations.

The display procedure returns an unspecified value.

Rationale: The write procedure is intended for producing machine-readable output
and display for producing human-readable output.

[standard procedure]newline [port]
Writes an end of line to textual output port. Exactly how this is done differs from
one operating system to another. Returns an unspecified value.

[standard procedure]write-char char [port]
Writes the character char (not an external representation of the character) to the
given textual output port and returns an unspecified value.

[standard procedure]write-string string [port [start [end]]]
Writes the characters of string from start to end in left-to-right order to the textual
output port.

[obsolete procedure]write-substring string start end [port]
This procedure is deprecated; use write-string instead.

[standard procedure]write-u8 byte [port]
Writes the byte to the given binary output port and returns an unspecified value.

In MIT/GNU Scheme, if port is an interactive output port in non-blocking mode
and writing a byte would block, write-u8 immediately returns #f without writing
anything. Otherwise byte is written and 1 is returned.

[standard procedure]write-bytevector bytevector [port [start [end]]]
Writes the bytes of bytevector from start to end in left-to-right order to the binary
output port.

202 MIT/GNU Scheme 10.1.1

In MIT/GNU Scheme, if port is an interactive output port in non-blocking mode
write-bytevector will write as many bytes as it can without blocking, then returns
the number of bytes written; if no bytes can be written without blocking, returns #f
without writing anything. Otherwise write-bytevector returns the number of bytes
actually written, which may be less than the number requested if unable to write all
the bytes. (For example, if writing to a file and the file system is full.)

[standard procedure]flush-output-port [port]
Flushes any buffered output from the buffer of port to the underlying file or device
and returns an unspecified value.

[obsolete procedure]flush-output [port]
This procedure is deprecated; use flush-output-port instead.

[procedure]fresh-line [port]
Most output ports are able to tell whether or not they are at the beginning of a line
of output. If port is such a port, this procedure writes an end-of-line to the port only
if the port is not already at the beginning of a line. If port is not such a port, this
procedure is identical to newline. In either case, fresh-line performs discretionary
output flushing and returns an unspecified value.

[procedure]write-line object [port]
Like write, except that it writes an end-of-line to port after writing object’s rep-
resentation. This procedure performs discretionary output flushing and returns an
unspecified value.

[procedure]beep [port]
Performs a “beep” operation on port, performs discretionary output flushing, and
returns an unspecified value. On the console port, this usually causes the console
bell to beep, but more sophisticated interactive ports may take other actions, such as
flashing the screen. On most output ports, e.g. file and string output ports, this does
nothing.

[procedure]clear [port]
“Clears the screen” of port, performs discretionary output flushing, and returns an
unspecified value. On a terminal or window, this has a well-defined effect. On other
output ports, e.g. file and string output ports, this does nothing.

[procedure]pp object [port [as-code?]]
pp prints object in a visually appealing and structurally revealing manner on port. If
object is a procedure, pp attempts to print the source text. If the optional argument
as-code? is true, pp prints lists as Scheme code, providing appropriate indentation; by
default this argument is false. pp performs discretionary output flushing and returns
an unspecified value.

The following parameters may be used with parameterize to change the behavior of
the write and display procedures.

Chapter 14: Input/Output 203

[parameter]param:printer-radix
This parameter specifies the default radix used to print numbers. Its value must be
one of the exact integers 2, 8, 10, or 16; the default is 10. For values other than 10,
numbers are prefixed to indicate their radix.

[parameter]param:printer-list-breadth-limit
This parameter specifies a limit on the length of the printed representation of a list
or vector; for example, if the limit is 4, only the first four elements of any list are
printed, followed by ellipses to indicate any additional elements. The value of this
parameter must be an exact non-negative integer, or #f meaning no limit; the default
is #f.

(parameterize ((param:printer-list-breadth-limit 4))

(lambda ()

(write-to-string ’(a b c d))))

⇒ "(a b c d)"

(parameterize ((param:printer-list-breadth-limit 4))

(lambda ()

(write-to-string ’(a b c d e))))

⇒ "(a b c d ...)"

[parameter]param:printer-list-depth-limit
This parameter specifies a limit on the nesting of lists and vectors in the printed
representation. If lists (or vectors) are more deeply nested than the limit, the part
of the representation that exceeds the limit is replaced by ellipses. The value of this
parameter must be an exact non-negative integer, or #f meaning no limit; the default
is #f.

(parameterize ((param:printer-list-depth-limit 4))

(lambda ()

(write-to-string ’((((a))) b c d))))

⇒ "((((a))) b c d)"

(parameterize ((param:printer-list-depth-limit 4))

(lambda ()

(write-to-string ’(((((a)))) b c d))))

⇒ "((((...))) b c d)"

[parameter]param:printer-string-length-limit
This parameter specifies a limit on the length of the printed representation of strings.
If a string’s length exceeds this limit, the part of the printed representation for the
characters exceeding the limit is replaced by ellipses. The value of this parameter
must be an exact non-negative integer, or #f meaning no limit; the default is #f.

(parameterize ((param:printer-string-length-limit 4))

(lambda ()

(write-to-string "abcd")))

⇒ "\"abcd\""

(parameterize ((param:printer-string-length-limit 4))

(lambda ()

(write-to-string "abcde")))

⇒ "\"abcd...\""

204 MIT/GNU Scheme 10.1.1

[parameter]param:print-with-maximum-readability?
This parameter, which takes a boolean value, tells the printer to use a special printed
representation for objects that normally print in a form that cannot be recognized by
read. These objects are printed using the representation #@n, where n is the result
of calling hash on the object to be printed. The reader recognizes this syntax, calling
unhash on n to get back the original object. Note that this printed representation
can only be recognized by the Scheme program in which it was generated, because
these hash numbers are different for each invocation of Scheme.

[obsolete variable]*unparser-radix*
[obsolete variable]*unparser-list-breadth-limit*
[obsolete variable]*unparser-list-depth-limit*
[obsolete variable]*unparser-string-length-limit*
[obsolete variable]*unparse-with-maximum-readability?*

These variables are deprecated; instead use the corresponding parameter objects.

14.7 Blocking Mode

An interactive port is always in one of two modes: blocking or non-blocking. This mode
is independent of the terminal mode: each can be changed independently of the other.
Furthermore, if it is an interactive I/O port, there are separate blocking modes for input
and for output.

If an input port is in blocking mode, attempting to read from it when no input is available
will cause Scheme to “block”, i.e. suspend itself, until input is available. If an input port is
in non-blocking mode, attempting to read from it when no input is available will cause the
reading procedure to return immediately, indicating the lack of input in some way (exactly
how this situation is indicated is separately specified for each procedure or operation).

An output port in blocking mode will block if the output device is not ready to accept
output. In non-blocking mode it will return immediately after performing as much output
as the device will allow (again, each procedure or operation reports this situation in its own
way).

Interactive ports are initially in blocking mode; this can be changed at any time with
the procedures defined in this section.

These procedures represent blocking mode by the symbol blocking, and non-blocking
mode by the symbol nonblocking. An argument called mode must be one of these symbols.
A port argument to any of these procedures may be any port, even if that port does not
support blocking mode; in that case, the port is not modified in any way.

[procedure]input-port-blocking-mode input-port
[procedure]output-port-blocking-mode output-port

Returns the blocking mode of input-port or output-port. Returns #f if the given port
doesn’t support blocking mode.

[procedure]set-input-port-blocking-mode! input-port mode
[procedure]set-output-port-blocking-mode output-port mode

Changes the blocking mode of input-port or output-port to be mode and returns an
unspecified value.

Chapter 14: Input/Output 205

[procedure]with-input-port-blocking-mode input-port mode thunk
[procedure]with-output-port-blocking-mode output-port mode thunk

Thunk must be a procedure of no arguments.

Binds the blocking mode of input-port or output-port to be mode, and calls thunk.
When thunk returns, the original blocking mode is restored and the values yielded
by thunk are returned.

[obsolete procedure]port/input-blocking-mode input-port
[obsolete procedure]port/set-input-blocking-mode input-port mode
[obsolete procedure]port/with-input-blocking-mode input-port mode thunk
[obsolete procedure]port/output-blocking-mode output-port
[obsolete procedure]port/set-output-blocking-mode output-port mode
[obsolete procedure]port/with-output-blocking-mode output-port mode

thunk
These procedures are deprecated; instead use the corresponding procedures above.

14.8 Terminal Mode

A port that reads from or writes to a terminal has a terminal mode; this is either cooked or
raw. This mode is independent of the blocking mode: each can be changed independently
of the other. Furthermore, a terminal I/O port has independent terminal modes both for
input and for output.

A terminal port in cooked mode provides some standard processing to make the terminal
easy to communicate with. For example, under unix, cooked mode on input reads from the
terminal a line at a time and provides editing within the line, while cooked mode on output
might translate linefeeds to carriage-return/linefeed pairs. In general, the precise meaning
of cooked mode is operating-system dependent, and furthermore might be customizable by
means of operating-system utilities. The basic idea is that cooked mode does whatever
is necessary to make the terminal handle all of the usual user-interface conventions for
the operating system, while keeping the program’s interaction with the port as normal as
possible.

A terminal port in raw mode disables all of that processing. In raw mode, characters are
directly read from and written to the device without any translation or interpretation by
the operating system. On input, characters are available as soon as they are typed, and are
not echoed on the terminal by the operating system. In general, programs that put ports
in raw mode have to know the details of interacting with the terminal. In particular, raw
mode is used for writing programs such as text editors.

Terminal ports are initially in cooked mode; this can be changed at any time with the
procedures defined in this section.

These procedures represent cooked mode by the symbol cooked, and raw mode by the
symbol raw. An argument called mode must be one of these symbols. A port argument
to any of these procedures may be any port, even if that port does not support terminal
mode; in that case, the port is not modified in any way.

206 MIT/GNU Scheme 10.1.1

[procedure]input-port-terminal-mode input-port
[procedure]output-port-terminal-mode output-port

Returns the terminal mode of input-port or output-port. Returns #f if the given port
is not a terminal port.

[procedure]set-input-port-terminal-mode! input-port mode
[procedure]set-output-port-terminal-mode! output-port mode

Changes the terminal mode of input-port or output-port to be mode and returns an
unspecified value.

[procedure]with-input-port-terminal-mode input-port mode thunk
[procedure]with-output-port-terminal-mode output-port mode thunk

Thunk must be a procedure of no arguments.

Binds the terminal mode of input-port or output-port to be mode, and calls thunk.
When thunk returns, the original terminal mode is restored and the values yielded
by thunk are returned.

[obsolete procedure]port/input-terminal-mode input-port
[obsolete procedure]port/set-input-terminal-mode input-port mode
[obsolete procedure]port/with-input-terminal-mode input-port mode thunk
[obsolete procedure]port/output-terminal-mode output-port
[obsolete procedure]port/set-output-terminal-mode output-port mode
[obsolete procedure]port/with-output-terminal-mode output-port mode

thunk
These procedures are deprecated; instead use the corresponding procedures above.

14.9 Format

The procedure format is very useful for producing nicely formatted text, producing good-
looking messages, and so on. MIT/GNU Scheme’s implementation of format is similar to
that of Common Lisp, except that Common Lisp defines many more directives.1

format is a run-time-loadable option. To use it, execute

(load-option ’format)

once before calling it.

[procedure]format destination control-string argument . . .
Writes the characters of control-string to destination, except that a tilde (~) intro-
duces a format directive. The character after the tilde, possibly preceded by prefix
parameters and modifiers, specifies what kind of formatting is desired. Most direc-
tives use one or more arguments to create their output; the typical directive puts the
next argument into the output, formatted in some special way. It is an error if no
argument remains for a directive requiring an argument, but it is not an error if one
or more arguments remain unprocessed by a directive.

The output is sent to destination. If destination is #f, a string is created that contains
the output; this string is returned as the value of the call to format. In all other cases
format returns an unspecified value. If destination is #t, the output is sent to the

1 This description of format is adapted from Common Lisp, The Language, second edition, section 22.3.3.

Chapter 14: Input/Output 207

current output port. Otherwise, destination must be an output port, and the output
is sent there.

This procedure performs discretionary output flushing (see Section 14.6 [Output Pro-
cedures], page 200).

A format directive consists of a tilde (~), optional prefix parameters separated by
commas, optional colon (:) and at-sign (@) modifiers, and a single character indicating
what kind of directive this is. The alphabetic case of the directive character is ignored.
The prefix parameters are generally integers, notated as optionally signed decimal
numbers. If both the colon and at-sign modifiers are given, they may appear in either
order.

In place of a prefix parameter to a directive, you can put the letter ‘V’ (or ‘v’), which
takes an argument for use as a parameter to the directive. Normally this should be
an exact integer. This feature allows variable-width fields and the like. You can also
use the character ‘#’ in place of a parameter; it represents the number of arguments
remaining to be processed.

It is an error to give a format directive more parameters than it is described here
as accepting. It is also an error to give colon or at-sign modifiers to a directive in a
combination not specifically described here as being meaningful.

~A The next argument, which may be any object, is printed as if by display.
~mincolA inserts spaces on the right, if necessary, to make the width at
least mincol columns. The @ modifier causes the spaces to be inserted on
the left rather than the right.

~S The next argument, which may be any object, is printed as if by write.
~mincolS inserts spaces on the right, if necessary, to make the width at
least mincol columns. The @ modifier causes the spaces to be inserted on
the left rather than the right.

~% This outputs a #\newline character. ~n% outputs n newlines. No ar-
gument is used. Simply putting a newline in control-string would work,
but ~% is often used because it makes the control string look nicer in the
middle of a program.

~~ This outputs a tilde. ~n~ outputs n tildes.

~newline Tilde immediately followed by a newline ignores the newline and any
following non-newline whitespace characters. With an @, the newline is
left in place, but any following whitespace is ignored. This directive is
typically used when control-string is too long to fit nicely into one line of
the program:

(define (type-clash-error procedure arg spec actual)

(format

#t

"~%Procedure ~S~%requires its %A argument ~

to be of type ~S,~%but it was called with ~

an argument of type ~S.~%"

procedure arg spec actual))

208 MIT/GNU Scheme 10.1.1

(type-clash-error ’vector-ref

"first"

’integer

’vector)

prints

Procedure vector-ref

requires its first argument to be of type integer,

but it was called with an argument of type vector.

Note that in this example newlines appear in the output only as specified
by the ~% directives; the actual newline characters in the control string
are suppressed because each is preceded by a tilde.

14.10 Custom Output

MIT/GNU Scheme provides hooks for specifying that specified objects have special written
representations. There are no restrictions on the written representations.

[procedure]define-print-method predicate print-method
Defines the print method for objects satisfying predicate to be print-method. The
predicate argument must be a unary procedure that returns true for the objects to
print specially, and print-method must be a binary procedure that accepts one of
those objects and a textual output port.

Although print-method can print the object in any way, we strongly recomment using
one of the following special printers.

[procedure]standard-print-method name [get-parts]
The name argument may be a unary procedure, a string, or a symbol; if it is a
procedure it is called with the object to be printed as its argument and should return
a string or a symbol. The get-parts argument, if provided, must be a unary procedure
that is called with the object to be printed and must return a list of objects. If get-
parts is not provided, it defaults to a procedure that returns an empty list.

The output generated by this method is in a standard format:

#[<name> <hash> <part>...]

where <name> is the string or symbol from name as printed by display, <hash> is
a unique nonnegative integer generated by calling hash-object on the object, and
the <part>s are the result of calling get-parts as printed by write and separated by
spaces.

One significant advantage of print methods generated by standard-print-method

is that the parts returned by get-parts are examined when searching for circular
structure (as by write) or shared structure (as by write-shared). In effect the
printer sees one of these objects as a compound object containing those parts.

[procedure]bracketed-print-method name printer
The name argument may be a unary procedure, a string, or a symbol; if it is a
procedure it is called with the object to be printed as its argument and should return

Chapter 14: Input/Output 209

a string or a symbol. The printer argument must be a binary procedure, which is
called with the object to print and a textual output port as its arguments.

Similar to standard-print-method, this procedure prints an object

#[<name> <hash><output>]

where <name> is the string or symbol from name as printed by display, <hash> is
a unique nonnegative integer generated by calling hash-object on the object, and
<output> is the text written by printer.

This procedure has the benefit of printing objects using the standard bracketed form,
but because its output is unstructured can not be examined for sharing or circularity.
Generally speaking it’s preferable to use standard-print-method instead.

The following are deprecated procedures that have been replaced by the above.

[obsolete procedure]set-record-type-unparser-method! record-type
unparser-method

This procedure is deprecated; instead use

(define-print-method (record-constructor record-type)

unparser-method)

provided that unparser-method is really a print method.

[obsolete procedure]unparser/set-tagged-vector-method! tag
unparser-method

[obsolete procedure]unparser/set-tagged-pair-method! tag unparser-method
These procedures arg deprecated. There is no direct replacement for them.

These were primarily used by define-structure, which now generates new-style
print methods. If you have other uses of these, it should be possible to translate them
to use define-print-method with hand-written predicates.

[obsolete procedure]standard-unparser-method name procedure
This procedure is deprecated; it is currently an alias for bracketed-print-method.

[obsolete procedure]with-current-unparser-state unparser-state procedure
This procedure is deprecated, with no direct replacement. In general just use proce-
dure without wrapping it.

14.11 Prompting

This section describes procedures that prompt the user for input. Why should the pro-
grammer use these procedures when it is possible to do prompting using ordinary input
and output procedures? One reason is that the prompting procedures are more succinct.
However, a second and better reason is that the prompting procedures can be separately
customized for each user interface, providing more natural interaction. The interfaces for
Edwin and for GNU Emacs have already been customized in this fashion; because Edwin
and Emacs are very similar editors, their customizations provide very similar behavior.

Each of these procedure accepts an optional argument called port, which if given must
be an I/O port. If not given, this port defaults to the value of (interaction-i/o-port);
this is initially the console I/O port.

210 MIT/GNU Scheme 10.1.1

[procedure]prompt-for-command-expression prompt [port]
Prompts the user for an expression that is to be executed as a command. This is the
procedure called by the REP loop to read the user’s expressions.

If prompt is a string, it is used verbatim as the prompt string. Otherwise, it must
be a pair whose car is the symbol ‘standard’ and whose cdr is a string; in this case
the prompt string is formed by prepending to the string the current REP loop “level
number” and a space. Also, a space is appended to the string, unless it already ends
in a space or is an empty string.

The default behavior of this procedure is to print a fresh line, a newline, and the
prompt string; flush the output buffer; then read an object and return it. v Under
Edwin and Emacs, before the object is read, the interaction buffer is put into a mode
that allows expressions to be edited and submitted for input using specific editor
commands. The first expression that is submitted is returned as the value of this
procedure.

[procedure]prompt-for-command-char prompt [port]
Prompts the user for a single character that is to be executed as a command; the
returned character is guaranteed to satisfy char-graphic?. If at all possible, the
character is read from the user interface using a mode that reads the character as a
single keystroke; in other words, it should not be necessary for the user to follow the
character with a carriage return or something similar.

This is the procedure called by debug and where to read the user’s commands.

If prompt is a string, it is used verbatim as the prompt string. Otherwise, it must
be a pair whose car is standard and whose cdr is a string; in this case the prompt
string is formed by prepending to the string the current REP loop “level number” and
a space. Also, a space is appended to the string, unless it already ends in a space or
is an empty string.

The default behavior of this procedure is to print a fresh line, a newline, and the
prompt string; flush the output buffer; read a character in raw mode, echo that
character, and return it.

Under Edwin and Emacs, instead of reading a character, the interaction buffer is put
into a mode in which graphic characters submit themselves as input. After this mode
change, the first such character submitted is returned as the value of this procedure.

[procedure]prompt-for-expression prompt [port]
Prompts the user for an expression.

The prompt string is formed by appending a colon and a space to prompt, unless
prompt already ends in a space or is the null string.

The default behavior of this procedure is to print a fresh line, a newline, and the
prompt string; flush the output buffer; then read an object and return it.

Under Edwin and Emacs, the expression is read in the minibuffer.

[procedure]prompt-for-evaluated-expression prompt [environment [port]]
Prompts the user for an evaluated expression. Calls prompt-for-expression to read
an expression, then evaluates the expression using environment; if environment is not
given, the REP loop environment is used.

Chapter 14: Input/Output 211

[procedure]prompt-for-confirmation prompt [port]
Prompts the user for confirmation. The result yielded by this procedure is a boolean.

The prompt string is formed by appending the string " (y or n)? " to prompt, unless
prompt already ends in a space or is the null string.

The default behavior of this procedure is to print a fresh line, a newline, and the
prompt string; flush the output buffer; then read a character in raw mode. If the
character is #\y, #\Y, or #\space, the procedure returns #t; If the character is #\n,
#\N, or #\rubout, the procedure returns #f. Otherwise the prompt is repeated.

Under Edwin or Emacs, the confirmation is read in the minibuffer.

14.12 Textual Port Primitives

This section describes the low-level operations that can be used to build and manipulate
textual I/O ports. The purpose of these operations is to allow programmers to construct
new kinds of textual I/O ports.

The mechanisms described in this section are exclusively for textual ports; binary ports
can’t be customized. In this section, any reference to a “port” that isn’t modified by
“textual” or “binary” is assumed to be a textual port.

The abstract model of a textual I/O port, as implemented here, is a combination of a
set of named operations and a state. The state is an arbitrary object, the meaning of which
is determined by the operations. The operations are defined by a mapping from names to
procedures.

The set of named operations is represented by an object called a textual port type.
A port type is constructed from a set of named operations, and is subsequently used to
construct a port. The port type completely specifies the behavior of the port. Port types
also support a simple form of inheritance, allowing you to create new ports that are similar
to existing ports.

The port operations are divided into two classes:

Standard operations
There is a specific set of standard operations for input ports, and a different set
for output ports. Applications can assume that the standard input operations
are implemented for all input ports, and likewise the standard output operations
are implemented for all output ports.

Custom operations
Some ports support additional operations. For example, ports that implement
output to terminals (or windows) may define an operation named y-size that
returns the height of the terminal in characters. Because only some ports will
implement these operations, programs that use custom operations must test
each port for their existence, and be prepared to deal with ports that do not
implement them.

14.12.1 Textual Port Types

The procedures in this section provide means for constructing port types with standard and
custom operations, and accessing their operations.

212 MIT/GNU Scheme 10.1.1

[procedure]make-textual-port-type operations port-type
Creates and returns a new port type. Operations must be a list; each element is a
list of two elements, the name of the operation (a symbol) and the procedure that
implements it. Port-type is either #f or a port type; if it is a port type, any operations
implemented by port-type but not specified in operations will be implemented by the
resulting port type.

Operations need not contain definitions for all of the standard operations; the pro-
cedure will provide defaults for any standard operations that are not defined. At
a minimum, the following operations must be defined: for input ports, read-char
and peek-char; for output ports, either write-char or write-substring. I/O ports
must supply the minimum operations for both input and output.

If an operation in operations is defined to be #f, then the corresponding operation in
port-type is not inherited.

If read-char is defined in operations, then any standard input operations defined
in port-type are ignored. Likewise, if write-char or write-substring is defined in
operations, then any standard output operations defined in port-type are ignored.
This feature allows overriding the standard operations without having to enumerate
them.

[procedure]textual-port-type? object
[procedure]textual-input-port-type? object
[procedure]textual-output-port-type? object
[procedure]textual-i/o-port-type? object

These predicates return #t if object is a port type, input-port type, output-port type,
or I/O-port type, respectively. Otherwise, they return #f.

[obsolete procedure]make-port-type operations port-type
[obsolete procedure]port-type? object
[obsolete procedure]input-port-type? object
[obsolete procedure]output-port-type? object
[obsolete procedure]i/o-port-type? object

These procedures are deprecated; use the procedures defined above.

[obsolete procedure]port-type/operations port-type
[obsolete procedure]port-type/operation-names port-type
[obsolete procedure]port-type/operation port-type symbol

These procedures are deprecated and will be removed in the near future. There are
no replacements planned.

14.12.2 Constructors and Accessors for Textual Ports

The procedures in this section provide means for constructing ports, accessing the type of
a port, and manipulating the state of a port.

[procedure]make-textual-port port-type state
Returns a new port with type port-type and the given state. The port will be an
input, output, or I/O port according to port-type.

Chapter 14: Input/Output 213

[procedure]textual-port-type textual-port
Returns the port type of textual-port.

[procedure]textual-port-state textual-port
Returns the state component of textual-port.

[procedure]set-textual-port-state! textual-port object
Changes the state component of textual-port to be object. Returns an unspecified
value.

[procedure]textual-port-operation textual-port symbol
Returns the operation named symbol for textual-port. If textual-port has no such
operation, returns #f.

[procedure]textual-port-operation-names textual-port
Returns a newly allocated list whose elements are the names of the operations imple-
mented by textual-port.

[obsolete procedure]make-port port-type state
[obsolete procedure]port/type textual-port
[obsolete procedure]port/state textual-port
[obsolete procedure]set-port/state! textual-port object
[obsolete procedure]port/operation textual-port symbol
[obsolete procedure]port/operation-names port

These procedures are deprecated; use the procedures defined above.

14.12.3 Textual Input Port Operations

This section describes the standard operations on textual input ports. Following that, some
useful custom operations are described.

[operation on textual input port]read-char port
Removes the next character available from port and returns it. If port has no more
characters and will never have any (e.g. at the end of an input file), this operation
returns an end-of-file object. If port has no more characters but will eventually have
some more (e.g. a terminal where nothing has been typed recently), and it is in non-
blocking mode, #f is returned; otherwise the operation hangs until input is available.

[operation on textual input port]peek-char port
Reads the next character available from port and returns it. The character is not
removed from port, and a subsequent attempt to read from the port will get that
character again. In other respects this operation behaves like read-char.

[operation on textual input port]char-ready? port k
char-ready? returns #t if at least one character is available to be read from port. If
no characters are available, the operation waits up to k milliseconds before returning
#f, returning immediately if any characters become available while it is waiting.

[operation on textual input port]read-string port char-set
[operation on textual input port]discard-chars port char-set

These operations are like read-char, except that they read or discard multiple char-
acters at once. All characters up to, but excluding, the first character in char-set (or

214 MIT/GNU Scheme 10.1.1

end of file) are read from port. read-string returns these characters as a newly al-
located string, while discard-chars discards them and returns an unspecified value.
These operations hang until sufficient input is available, even if port is in non-blocking
mode. If end of file is encountered before any input characters, read-string returns
an end-of-file object.

[operation on textual input port]read-substring port string start end
Reads characters from port into the substring defined by string, start, and end until
either the substring has been filled or there are no more characters available. Returns
the number of characters written to the substring.

If port is an interactive port, and at least one character is immediately available, the
available characters are written to the substring and this operation returns imme-
diately. If no characters are available, and port is in blocking mode, the operation
blocks until at least one character is available. Otherwise, the operation returns #f
immediately.

This is an extremely fast way to read characters from a port.

[procedure]input-port/read-char textual-input-port
[procedure]input-port/peek-char textual-input-port
[procedure]input-port/char-ready? textual-input-port k
[procedure]input-port/read-string textual-input-port char-set
[procedure]input-port/discard-chars textual-input-port char-set
[procedure]input-port/read-substring textual-input-port string start end

Each of these procedures invokes the respective operation on textual-input-port. For
example, the following are equivalent:

(input-port/read-char textual-input-port)

((textual-port-operation textual-input-port ’read-char)

textual-input-port)

The following custom operations are implemented for input ports to files, and will also
work with some other kinds of input ports:

[operation on textual input port]eof? port
Returns #t if port is known to be at end of file, otherwise it returns #f.

[operation on textual input port]chars-remaining port
Returns an estimate of the number of characters remaining to be read from port.
This is useful only when port is a file port in binary mode; in other cases, it returns
#f.

[operation on textual input port]buffered-input-chars port
Returns the number of unread characters that are stored in port’s buffer. This will
always be less than or equal to the buffer’s size.

[operation on textual input port]input-buffer-size port
Returns the maximum number of characters that port’s buffer can hold.

[operation on textual input port]set-input-buffer-size port size
Resizes port’s buffer so that it can hold at most size characters. Characters in the
buffer are discarded. Size must be an exact non-negative integer.

Chapter 14: Input/Output 215

14.12.4 Textual Output Port Operations

This section describes the standard operations on output ports. Following that, some useful
custom operations are described.

[operation on textual output port]write-char port char
Writes char to port and returns an unspecified value.

[operation on textual output port]write-substring port string start end
Writes the substring specified by string, start, and end to port and returns an un-
specified value. Equivalent to writing the characters of the substring, one by one, to
port, but is implemented very efficiently.

[operation on textual output port]fresh-line port
Most output ports are able to tell whether or not they are at the beginning of a line
of output. If port is such a port, end-of-line is written to the port only if the port
is not already at the beginning of a line. If port is not such a port, an end-of-line is
unconditionally written to the port. Returns an unspecified value.

[operation on textual output port]flush-output port
If port is buffered, this causes its buffer to be written out. Otherwise it has no effect.
Returns an unspecified value.

[operation on textual output port]discretionary-flush-output port
Normally, this operation does nothing. However, ports that support discretionary
output flushing implement this operation identically to flush-output.

[procedure]output-port/write-char textual-output-port char
[procedure]output-port/write-substring textual-output-port string start

end
[procedure]output-port/fresh-line textual-output-port
[procedure]output-port/flush-output textual-output-port
[procedure]output-port/discretionary-flush-output textual-output-port

Each of these procedures invokes the respective operation on textual-output-port. For
example, the following are equivalent:

(output-port/write-char textual-output-port char)

((textual-port-operation textual-output-port ’write-char)

textual-output-port char)

[procedure]output-port/write-string textual-output-port string
Writes string to textual-output-port. Equivalent to

(output-port/write-substring textual-output-port

string

0

(string-length string))

The following custom operations are generally useful.

[operation on textual output port]buffered-output-chars port
Returns the number of unwritten characters that are stored in port’s buffer. This will
always be less than or equal to the buffer’s size.

216 MIT/GNU Scheme 10.1.1

[operation on textual output port]output-buffer-size port
Returns the maximum number of characters that port’s buffer can hold.

[operation on textual output port]set-output-buffer-size port size
Resizes port’s buffer so that it can hold at most size characters. Characters in the
buffer are discarded. Size must be an exact non-negative integer.

[operation on textual output port]x-size port
Returns an exact positive integer that is the width of port in characters. If port has
no natural width, e.g. if it is a file port, #f is returned.

[operation on textual output port]y-size port
Returns an exact positive integer that is the height of port in characters. If port has
no natural height, e.g. if it is a file port, #f is returned.

[procedure]output-port/x-size textual-output-port
This procedure invokes the custom operation whose name is the symbol x-size, if it
exists. If the x-size operation is both defined and returns a value other than #f, that
value is returned as the result of this procedure. Otherwise, output-port/x-size
returns a default value (currently 80).

output-port/x-size is useful for programs that tailor their output to the width
of the display (a fairly common practice). If the output device is not a display,
such programs normally want some reasonable default width to work with, and this
procedure provides exactly that.

[procedure]output-port/y-size textual-output-port
This procedure invokes the custom operation whose name is the symbol y-size, if
it exists. If the y-size operation is defined, the value it returns is returned as the
result of this procedure; otherwise, #f is returned.

14.13 Parser Buffers

The parser buffer mechanism facilitates construction of parsers for complex grammars. It
does this by providing an input stream with unbounded buffering and backtracking. The
amount of buffering is under program control. The stream can backtrack to any position
in the buffer.

The mechanism defines two data types: the parser buffer and the parser-buffer pointer.
A parser buffer is like an input port with buffering and backtracking. A parser-buffer pointer
is a pointer into the stream of characters provided by a parser buffer.

Note that all of the procedures defined here consider a parser buffer to contain a stream
of Unicode characters.

There are several constructors for parser buffers:

[procedure]textual-input-port->parser-buffer textual-input-port
[obsolete procedure]input-port->parser-buffer textual-input-port

Returns a parser buffer that buffers characters read from textual-input-port.

Chapter 14: Input/Output 217

[procedure]substring->parser-buffer string start end
Returns a parser buffer that buffers the characters in the argument substring. This is
equivalent to creating a string input port and calling textual-input-port->parser-
buffer, but it runs faster and uses less memory.

[procedure]string->parser-buffer string
Like substring->parser-buffer but buffers the entire string.

[procedure]source->parser-buffer source
Returns a parser buffer that buffers the characters returned by calling source. Source
is a procedure of three arguments: a string, a start index, and an end index (in other
words, a substring specifier). Each time source is called, it writes some characters
in the substring, and returns the number of characters written. When there are
no more characters available, it returns zero. It must not return zero in any other
circumstance.

Parser buffers and parser-buffer pointers may be distinguished from other objects:

[procedure]parser-buffer? object
Returns #t if object is a parser buffer, otherwise returns #f.

[procedure]parser-buffer-pointer? object
Returns #t if object is a parser-buffer pointer, otherwise returns #f.

Characters can be read from a parser buffer much as they can be read from an input
port. The parser buffer maintains an internal pointer indicating its current position in the
input stream. Additionally, the buffer remembers all characters that were previously read,
and can look at characters arbitrarily far ahead in the stream. It is this buffering capability
that facilitates complex matching and backtracking.

[procedure]read-parser-buffer-char buffer
Returns the next character in buffer, advancing the internal pointer past that char-
acter. If there are no more characters available, returns #f and leaves the internal
pointer unchanged.

[procedure]peek-parser-buffer-char buffer
Returns the next character in buffer, or #f if no characters are available. Leaves the
internal pointer unchanged.

[procedure]parser-buffer-ref buffer index
Returns a character in buffer. Index is a non-negative integer specifying the character
to be returned. If index is zero, returns the next available character; if it is one,
returns the character after that, and so on. If index specifies a position after the last
character in buffer, returns #f. Leaves the internal pointer unchanged.

The internal pointer of a parser buffer can be read or written:

[procedure]get-parser-buffer-pointer buffer
Returns a parser-buffer pointer object corresponding to the internal pointer of buffer.

218 MIT/GNU Scheme 10.1.1

[procedure]set-parser-buffer-pointer! buffer pointer
Sets the internal pointer of buffer to the position specified by pointer. Pointer must
have been returned from a previous call of get-parser-buffer-pointer on buffer.
Additionally, if some of buffer’s characters have been discarded by discard-parser-

buffer-head!, pointer must be outside the range that was discarded.

[procedure]get-parser-buffer-tail buffer pointer
Returns a newly-allocated string consisting of all of the characters in buffer that fall
between pointer and buffer’s internal pointer. Pointer must have been returned from
a previous call of get-parser-buffer-pointer on buffer. Additionally, if some of
buffer’s characters have been discarded by discard-parser-buffer-head!, pointer
must be outside the range that was discarded.

[procedure]discard-parser-buffer-head! buffer
Discards all characters in buffer that have already been read; in other words, all
characters prior to the internal pointer. After this operation has completed, it is no
longer possible to move the internal pointer backwards past the current position by
calling set-parser-buffer-pointer!.

The next rather large set of procedures does conditional matching against the contents
of a parser buffer. All matching is performed relative to the buffer’s internal pointer, so
the first character to be matched against is the next character that would be returned
by peek-parser-buffer-char. The returned value is always #t for a successful match,
and #f otherwise. For procedures whose names do not end in ‘-no-advance’, a successful
match also moves the internal pointer of the buffer forward to the end of the matched text;
otherwise the internal pointer is unchanged.

[procedure]match-parser-buffer-char buffer char
[procedure]match-parser-buffer-char-ci buffer char
[procedure]match-parser-buffer-not-char buffer char
[procedure]match-parser-buffer-not-char-ci buffer char
[procedure]match-parser-buffer-char-no-advance buffer char
[procedure]match-parser-buffer-char-ci-no-advance buffer char
[procedure]match-parser-buffer-not-char-no-advance buffer char
[procedure]match-parser-buffer-not-char-ci-no-advance buffer char

Each of these procedures compares a single character in buffer to char. The ba-
sic comparison match-parser-buffer-char compares the character to char using
char=?. The procedures whose names contain the ‘-ci’ modifier do case-insensitive
comparison (i.e. they use char-ci=?). The procedures whose names contain the
‘not-’ modifier are successful if the character doesn’t match char.

[procedure]match-parser-buffer-char-in-set buffer char-set
[procedure]match-parser-buffer-char-in-set-no-advance buffer char-set

These procedures compare the next character in buffer against char-set using
char-in-set?.

[procedure]match-parser-buffer-string buffer string
[procedure]match-parser-buffer-string-ci buffer string
[procedure]match-parser-buffer-string-no-advance buffer string

Chapter 14: Input/Output 219

[procedure]match-parser-buffer-string-ci-no-advance buffer string
These procedures match string against buffer’s contents. The ‘-ci’ procedures do
case-insensitive matching.

[procedure]match-parser-buffer-substring buffer string start end
[procedure]match-parser-buffer-substring-ci buffer string start end
[procedure]match-parser-buffer-substring-no-advance buffer string start

end
[procedure]match-parser-buffer-substring-ci-no-advance buffer string

start end
These procedures match the specified substring against buffer’s contents. The ‘-ci’
procedures do case-insensitive matching.

The remaining procedures provide information that can be used to identify locations in
a parser buffer’s stream.

[procedure]parser-buffer-position-string pointer
Returns a string describing the location of pointer in terms of its character and line
indexes. This resulting string is meant to be presented to an end user in order to
direct their attention to a feature in the input stream. In this string, the indexes are
presented as one-based numbers.

Pointer may alternatively be a parser buffer, in which case it is equivalent to having
specified the buffer’s internal pointer.

[procedure]parser-buffer-pointer-index pointer
[procedure]parser-buffer-pointer-line pointer

Returns the character or line index, respectively, of pointer. Both indexes are zero-
based.

14.14 Parser Language

Although it is possible to write parsers using the parser-buffer abstraction (see Section 14.13
[Parser Buffers], page 216), it is tedious. The problem is that the abstraction isn’t closely
matched to the way that people think about syntactic structures. In this section, we
introduce a higher-level mechanism that greatly simplifies the implementation of a parser.

The parser language described here allows the programmer to write BNF-like specifi-
cations that are translated into efficient Scheme code at compile time. The language is
declarative, but it can be freely mixed with Scheme code; this allows the parsing of gram-
mars that aren’t conveniently described in the language.

The language also provides backtracking. For example, this expression matches any
sequence of alphanumeric characters followed by a single alphabetic character:

(*matcher

(seq (* (char-set char-set:alphanumeric))

(char-set char-set:alphabetic)))

The way that this works is that the matcher matches alphanumeric characters in the input
stream until it finds a non-alphanumeric character. It then tries to match an alphabetic
character, which of course fails. At this point, if it matched at least one alphanumeric char-
acter, it backtracks: the last matched alphanumeric is “unmatched”, and it again attempts

220 MIT/GNU Scheme 10.1.1

to match an alphabetic character. The backtracking can be arbitrarily deep; the matcher
will continue to back up until it finds a way to match the remainder of the expression.

So far, this sounds a lot like regular-expression matching (see Section 6.2 [Regular Ex-
pressions], page 104). However, there are some important differences.

• The parser language uses a Scheme-like syntax that is easier to read and write than
regular-expression notation.

• The language provides macros so that common syntactic constructs can be abstracted.

• The language mixes easily with Scheme code, allowing the full power of Scheme to be
applied to program around limitations in the parser language.

• The language provides expressive facilities for converting syntax into parsed structure.
It also makes it easy to convert parsed strings into meaningful objects (e.g. numbers).

• The language is compiled into machine language; regular expressions are usually inter-
preted.

Here is an example that shows off several of the features of the parser language. The
example is a parser for XML start tags:

(*parser

(with-pointer p

(seq "<"

parse-name

parse-attribute-list

(alt (match ">")

(match "/>")

(sexp

(lambda (b)

(error

(string-append

"Unterminated start tag at "

(parser-buffer-position-string p)))))))))

This shows that the basic description of a start tag is very similar to its BNF. Non-terminal
symbols parse-name and parse-attribute-list do most of the work, and the noise strings
"<" and ">" are the syntactic markers delimiting the form. There are two alternate endings
for start tags, and if the parser doesn’t find either of the endings, the Scheme code (wrapped
in sexp) is run to signal an error. The error procedure perror takes a pointer p, which it
uses to indicate the position in the input stream at which the error occurred. In this case,
that is the beginning of the start tag, i.e. the position of the leading "<" marker.

This example still looks pretty complicated, mostly due to the error-signalling code. In
practice, this is abstracted into a macro, after which the expression is quite succinct:

(*parser

(bracket "start tag"

(seq (noise (string "<")) parse-name)

(match (alt (string ">") (string "/>")))

parse-attribute-list))

The bracket macro captures the pattern of a bracketed item, and hides much of the detail.

Chapter 14: Input/Output 221

The parser language actually consists of two languages: one for defining matchers, and
one for defining parsers. The languages are intentionally very similar, and are meant to be
used together. Each sub-language is described below in its own section.

The parser language is a run-time-loadable option; to use it, execute

(load-option ’*parser)

once before compiling any code that uses the language.

14.14.1 *Matcher

The matcher language is a declarative language for specifying a matcher procedure. A
matcher procedure is a procedure that accepts a single parser-buffer argument and returns
a boolean value indicating whether the match it performs was successful. If the match
succeeds, the internal pointer of the parser buffer is moved forward over the matched text.
If the match fails, the internal pointer is unchanged.

For example, here is a matcher procedure that matches the character ‘a’:

(lambda (b) (match-parser-buffer-char b #\a))

Here is another example that matches two given characters, c1 and c2, in sequence:

(lambda (b)

(let ((p (get-parser-buffer-pointer b)))

(if (match-parser-buffer-char b c1)

(if (match-parser-buffer-char b c2)

#t

(begin

(set-parser-buffer-pointer! b p)

#f))

#f)))

This is code is clear, but has lots of details that get in the way of understanding what it is
doing. Here is the same example in the matcher language:

(*matcher (seq (char c1) (char c2)))

This is much simpler and more intuitive. And it generates virtually the same code:

(pp (*matcher (seq (char c1) (char c2))))

a (lambda (#[b1])

a (let ((#[p1] (get-parser-buffer-pointer #[b1])))

a (and (match-parser-buffer-char #[b1] c1)

a (if (match-parser-buffer-char #[b1] c2)

a #t

a (begin

a (set-parser-buffer-pointer! #[b1] #[p1])

a #f)))))

Now that we have seen an example of the language, it’s time to look at the detail. The
*matcher special form is the interface between the matcher language and Scheme.

[special form]*matcher mexp
The operand mexp is an expression in the matcher language. The *matcher expres-
sion expands into Scheme code that implements a matcher procedure.

222 MIT/GNU Scheme 10.1.1

Here are the predefined matcher expressions. New matcher expressions can be defined
using the macro facility (see Section 14.14.3 [Parser-language Macros], page 227). We will
start with the primitive expressions.

[matcher expression]char expression
[matcher expression]char-ci expression
[matcher expression]not-char expression
[matcher expression]not-char-ci expression

These expressions match a given character. In each case, the expression operand
is a Scheme expression that must evaluate to a character at run time. The ‘-ci’
expressions do case-insensitive matching. The ‘not-’ expressions match any character
other than the given one.

[matcher expression]string expression
[matcher expression]string-ci expression

These expressions match a given string. The expression operand is a Scheme ex-
pression that must evaluate to a string at run time. The string-ci expression does
case-insensitive matching.

[matcher expression]char-set expression
These expressions match a single character that is a member of a given character set.
The expression operand is a Scheme expression that must evaluate to a character set
at run time.

[matcher expression]end-of-input
The end-of-input expression is successful only when there are no more characters
available to be matched.

[matcher expression]discard-matched
The discard-matched expression always successfully matches the null string. How-
ever, it isn’t meant to be used as a matching expression; it is used for its effect.
discard-matched causes all of the buffered text prior to this point to be discarded
(i.e. it calls discard-parser-buffer-head! on the parser buffer).

Note that discard-matched may not be used in certain places in a matcher ex-
pression. The reason for this is that it deliberately discards information needed for
backtracking, so it may not be used in a place where subsequent backtracking will
need to back over it. As a rule of thumb, use discard-matched only in the last
operand of a seq or alt expression (including any seq or alt expressions in which it
is indirectly contained).

In addition to the above primitive expressions, there are two convenient abbreviations.
A character literal (e.g. ‘#\A’) is a legal primitive expression, and is equivalent to a char

expression with that literal as its operand (e.g. ‘(char #\A)’). Likewise, a string literal is
equivalent to a string expression (e.g. ‘(string "abc")’).

Next there are several combinator expressions. These closely correspond to similar com-
binators in regular expressions. Parameters named mexp are arbitrary expressions in the
matcher language.

Chapter 14: Input/Output 223

[matcher expression]seq mexp . . .
This matches each mexp operand in sequence. For example,

(seq (char-set char-set:alphabetic)

(char-set char-set:numeric))

matches an alphabetic character followed by a numeric character, such as ‘H4’.

Note that if there are no mexp operands, the seq expression successfully matches the
null string.

[matcher expression]alt mexp . . .
This attempts to match each mexp operand in order from left to right. The first one
that successfully matches becomes the match for the entire alt expression.

The alt expression participates in backtracking. If one of themexp operands matches,
but the overall match in which this expression is embedded fails, the backtracking
mechanism will cause the alt expression to try the remaining mexp operands. For
example, if the expression

(seq (alt "ab" "a") "b")

is matched against the text ‘abc’, the alt expression will initially match its first
operand. But it will then fail to match the second operand of the seq expression.
This will cause the alt to be restarted, at which time it will match ‘a’, and the overall
match will succeed.

Note that if there are no mexp operands, the alt match will always fail.

[matcher expression]* mexp
This matches zero or more occurrences of the mexp operand. (Consequently this
match always succeeds.)

The * expression participates in backtracking; if it matches N occurrences of mexp,
but the overall match fails, it will backtrack to N-1 occurrences and continue. If the
overall match continues to fail, the * expression will continue to backtrack until there
are no occurrences left.

[matcher expression]+ mexp
This matches one or more occurrences of the mexp operand. It is equivalent to

(seq mexp (* mexp))

[matcher expression]? mexp
This matches zero or one occurrences of the mexp operand. It is equivalent to

(alt mexp (seq))

[matcher expression]sexp expression
The sexp expression allows arbitrary Scheme code to be embedded inside a matcher.
The expression operand must evaluate to a matcher procedure at run time; the pro-
cedure is called to match the parser buffer. For example,

(*matcher

(seq "a"

(sexp parse-foo)

"b"))

224 MIT/GNU Scheme 10.1.1

expands to

(lambda (#[b1])

(let ((#[p1] (get-parser-buffer-pointer #[b1])))

(and (match-parser-buffer-char #[b1] #\a)

(if (parse-foo #[b1])

(if (match-parser-buffer-char #[b1] #\b)

#t

(begin

(set-parser-buffer-pointer! #[b1] #[p1])

#f))

(begin

(set-parser-buffer-pointer! #[b1] #[p1])

#f)))))

The case in which expression is a symbol is so common that it has an abbreviation:
‘(sexp symbol)’ may be abbreviated as just symbol.

[matcher expression]with-pointer identifier mexp
The with-pointer expression fetches the parser buffer’s internal pointer (using
get-parser-buffer-pointer), binds it to identifier, and then matches the pattern
specified by mexp. Identifier must be a symbol.

This is meant to be used on conjunction with sexp, as a way to capture a pointer to
a part of the input stream that is outside the sexp expression. An example of the
use of with-pointer appears above (see [with-pointer example], page 220).

14.14.2 *Parser

The parser language is a declarative language for specifying a parser procedure. A parser
procedure is a procedure that accepts a single parser-buffer argument and parses some of
the input from the buffer. If the parse is successful, the procedure returns a vector of objects
that are the result of the parse, and the internal pointer of the parser buffer is advanced
past the input that was parsed. If the parse fails, the procedure returns #f and the internal
pointer is unchanged. This interface is much like that of a matcher procedure, except that
on success the parser procedure returns a vector of values rather than #t.

The *parser special form is the interface between the parser language and Scheme.

[special form]*parser pexp
The operand pexp is an expression in the parser language. The *parser expression
expands into Scheme code that implements a parser procedure.

There are several primitive expressions in the parser language. The first two provide a
bridge to the matcher language (see Section 14.14.1 [*Matcher], page 221):

[parser expression]match mexp
The match expression performs a match on the parser buffer. The match to be
performed is specified by mexp, which is an expression in the matcher language. If
the match is successful, the result of the match expression is a vector of one element:
a string containing that text.

Chapter 14: Input/Output 225

[parser expression]noise mexp
The noise expression performs a match on the parser buffer. The match to be
performed is specified by mexp, which is an expression in the matcher language. If
the match is successful, the result of the noise expression is a vector of zero elements.
(In other words, the text is matched and then thrown away.)

The mexp operand is often a known character or string, so in the case that mexp is
a character or string literal, the noise expression can be abbreviated as the literal.
In other words, ‘(noise "foo")’ can be abbreviated just ‘"foo"’.

[parser expression]values expression . . .
Sometimes it is useful to be able to insert arbitrary values into the parser result. The
values expression supports this. The expression arguments are arbitrary Scheme
expressions that are evaluated at run time and returned in a vector. The values

expression always succeeds and never modifies the internal pointer of the parser buffer.

[parser expression]discard-matched
The discard-matched expression always succeeds, returning a vector of zero ele-
ments. In all other respects it is identical to the discard-matched expression in the
matcher language.

Next there are several combinator expressions. Parameters named pexp are arbitrary
expressions in the parser language. The first few combinators are direct equivalents of those
in the matcher language.

[parser expression]seq pexp . . .
The seq expression parses each of the pexp operands in order. If all of the pexp
operands successfully match, the result is the concatenation of their values (by
vector-append).

[parser expression]alt pexp . . .
The alt expression attempts to parse each pexp operand in order from left to right.
The first one that successfully parses produces the result for the entire alt expression.

Like the alt expression in the matcher language, this expression participates in back-
tracking.

[parser expression]* pexp
The * expression parses zero or more occurrences of pexp. The results of the parsed
occurrences are concatenated together (by vector-append) to produce the expres-
sion’s result.

Like the * expression in the matcher language, this expression participates in back-
tracking.

[parser expression]+ pexp
The * expression parses one or more occurrences of pexp. It is equivalent to

(seq pexp (* pexp))

[parser expression]? pexp
The * expression parses zero or one occurrences of pexp. It is equivalent to

(alt pexp (seq))

226 MIT/GNU Scheme 10.1.1

The next three expressions do not have equivalents in the matcher language. Each
accepts a single pexp argument, which is parsed in the usual way. These expressions perform
transformations on the returned values of a successful match.

[parser expression]transform expression pexp
The transform expression performs an arbitrary transformation of the values re-
turned by parsing pexp. Expression is a Scheme expression that must evaluate to a
procedure at run time. If pexp is successfully parsed, the procedure is called with
the vector of values as its argument, and must return a vector or #f. If it returns
a vector, the parse is successful, and those are the resulting values. If it returns #f,
the parse fails and the internal pointer of the parser buffer is returned to what it was
before pexp was parsed.

For example:

(transform (lambda (v) (if (= 0 (vector-length v)) #f v)) ...)

[parser expression]encapsulate expression pexp
The encapsulate expression transforms the values returned by parsing pexp into a
single value. Expression is a Scheme expression that must evaluate to a procedure
at run time. If pexp is successfully parsed, the procedure is called with the vector
of values as its argument, and may return any Scheme object. The result of the
encapsulate expression is a vector of length one containing that object. (And con-
sequently encapsulate doesn’t change the success or failure of pexp, only its value.)

For example:

(encapsulate vector->list ...)

[parser expression]map expression pexp
The map expression performs a per-element transform on the values returned by pars-
ing pexp. Expression is a Scheme expression that must evaluate to a procedure at run
time. If pexp is successfully parsed, the procedure is mapped (by vector-map) over
the values returned from the parse. The mapped values are returned as the result of
the map expression. (And consequently map doesn’t change the success or failure of
pexp, nor the number of values returned.)

For example:

(map string->symbol ...)

Finally, as in the matcher language, we have sexp and with-pointer to support em-
bedding Scheme code in the parser.

[parser expression]sexp expression
The sexp expression allows arbitrary Scheme code to be embedded inside a parser.
The expression operand must evaluate to a parser procedure at run time; the proce-
dure is called to parse the parser buffer. This is the parser-language equivalent of the
sexp expression in the matcher language.

The case in which expression is a symbol is so common that it has an abbreviation:
‘(sexp symbol)’ may be abbreviated as just symbol.

Chapter 14: Input/Output 227

[parser expression]with-pointer identifier pexp
The with-pointer expression fetches the parser buffer’s internal pointer (using
get-parser-buffer-pointer), binds it to identifier, and then parses the pattern
specified by pexp. Identifier must be a symbol. This is the parser-language
equivalent of the with-pointer expression in the matcher language.

14.14.3 Parser-language Macros

The parser and matcher languages provide a macro facility so that common patterns can
be abstracted. The macro facility allows new expression types to be independently defined
in the two languages. The macros are defined in hierarchically organized tables, so that
different applications can have private macro bindings.

[special form]define-*matcher-macro formals expression
[special form]define-*parser-macro formals expression

These special forms are used to define macros in the matcher and parser language,
respectively. Formals is like the formals list of a define special form, and expression
is a Scheme expression.

If formals is a list (or improper list) of symbols, the first symbol in the list is the name
of the macro, and the remaining symbols are interpreted as the formals of a lambda
expression. A lambda expression is formed by combining the latter formals with
the expression, and this lambda expression, when evaluated, becomes the expander.
The defined macro accepts the same number of operands as the expander. A macro
instance is expanded by applying the expander to the list of operands; the result of
the application is interpreted as a replacement expression for the macro instance.

If formals is a symbol, it is the name of the macro. In this case, the expander is
a procedure of no arguments whose body is expression. When the formals symbol
appears by itself as an expression in the language, the expander is called with no
arguments, and the result is interpreted as a replacement expression for the symbol.

[procedure]define-*matcher-expander identifier expander
[procedure]define-*parser-expander identifier expander

These procedures provide a procedural interface to the macro-definition mechanism.
Identifier must be a symbol, and expander must be an expander procedure, as defined
above. Instances of the define-*matcher-macro and define-*parser-macro special
forms expand into calls to these procedures.

The remaining procedures define the interface to the parser-macros table abstraction.
Each parser-macro table has a separate binding space for macros in the matcher and parser
languages. However, the table inherits bindings from one specified table; it’s not possible
to inherit matcher-language bindings from one table and parser-language bindings from
another.

[procedure]make-parser-macros parent-table
Create and return a new parser-macro table that inherits from parent-table. Parent-
table must be either a parser-macro table, or #f; usually it is specified as the value
of global-parser-macros.

[procedure]parser-macros? object
This is a predicate for parser-macro tables.

228 MIT/GNU Scheme 10.1.1

[procedure]global-parser-macros
Return the global parser-macro table. This table is predefined and contains all of the
bindings documented here.

There is a “current” table at all times, and macro definitions are always placed in this
table. By default, the current table is the global macro table, but the following procedures
allow this to be changed.

[procedure]current-parser-macros
Return the current parser-macro table.

[procedure]set-current-parser-macros! table
Change the current parser-macro table to table, which must satisfy parser-macros?.

[procedure]with-current-parser-macros table thunk
Bind the current parser-macro table to table, call thunk with no arguments, then
restore the original table binding. The value returned by thunk is the returned as the
value of this procedure. Table must satisfy parser-macros?, and thunk must be a
procedure of no arguments.

14.15 XML Support

MIT/GNU Scheme provides a simple non-validating XML parser. This parser is believed
to be conformant with XML 1.0. It passes all of the tests in the "xmltest" directory of
the XML conformance tests (dated 2001-03-15). The parser supports XML namespaces; it
doesn’t support external document type declarations (DTDs), and it doesn’t yet support
XML 1.1. The output of the parser is a record tree that closely reflects the structure of the
XML document.

MIT/GNU Scheme also provides support for writing an XML record tree to an output
port. There is no guarantee that parsing an XML document and writing it back out will
make a verbatim copy of the document. The output will be semantically identical but may
have small syntactic differences. For example, entities are substituted during the parsing
process.

The purpose of the XML support is to provide a mechanism for reading and writing
simple XML documents. In the future this support may be further developed to support a
standard interface such as DOM or SAX.

The XML support is a run-time-loadable option; to use it, execute

(load-option ’xml)

once before running any code that uses it.

14.15.1 XML Input

The primary entry point for the XML parser is read-xml, which reads characters from a
port and returns an XML document record. The character coding of the input is determined
by reading some of the input stream and looking for a byte order mark and/or an encoding
in the XML declaration. We support all ISO 8859 codings, as well as UTF-8, UTF-16, and
UTF-32.

Chapter 14: Input/Output 229

When an XHTML document is read, the parser provides entity definitions for all of the
named XHTML characters; for example, it defines ‘ ’ and ‘©’. In order for a
document to be recognized as XHTML, it must contain an XHTML DTD, such as this:

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

At present the parser recognizes XHTML Strict 1.0 and XHTML 1.1 documents.

[procedure]read-xml port [pi-handlers]
Read an XML document from port and return the corresponding XML document
record.

Pi-handlers, if specified, must be an association list. Each element of pi-handlers must
be a list of two elements: a symbol and a procedure. When the parser encounters
processing instructions with a name that appears in pi-handlers, the procedure is
called with one argument, which is the text of the processing instructions. The
procedure must return a list of XML structure records that are legal for the context
of the processing instructions.

[procedure]read-xml-file pathname [pi-handlers]
This convenience procedure simplifies reading XML from a file. It is roughly equivalent
to

(define (read-xml-file pathname #!optional pi-handlers)

(call-with-input-file pathname

(lambda (port)

(read-xml port pi-handlers))))

[procedure]string->xml string [start [end [pi-handlers]]]
This convenience procedure simplifies reading XML from a string. The string argu-
ment may be a string or a wide string. It is roughly equivalent to

(define (string->xml string #!optional start end pi-handlers)

(read-xml (open-input-string string start end)

pi-handlers))

14.15.2 XML Output

The following procedures serialize XML document records into character sequences. All are
virtually identical except for the way that the character sequence is represented.

Each procedure will accept either an xml-document record or any of the other XML

record types. This makes it possible to write fragments of XML documents, although you
should keep in mind that such fragments aren’t documents and won’t generally be accepted
by any XML parser.

If the xml being written is an xml-document record, the procedures write-xml and
write-xml-file will look for a contained xml-declaration record and its encoding at-
tribute. If the encoding is a supported value, the output will be encoded as specified;
otherwise it will be encoded as UTF-8.

When an XHTML document record is written, named XHTML characters are trans-
lated into their corresponding entities. For example, the character ‘#\U+00A0’ is written as

230 MIT/GNU Scheme 10.1.1

‘ ’. In order for an XML document record to be recognized as XHTML, it must have
a DTD record that satisfies the predicate html-dtd?.

[procedure]write-xml xml port
Write xml to port. Note that character encoding will only be done if port supports
it.

[procedure]write-xml-file xml pathname
Write xml to the file specified by pathname. Roughly equivalent to

(define (write-xml-file xml pathname)

(call-with-output-file pathname

(lambda (port)

(write-xml xml port))))

[procedure]xml->wide-string xml
Convert xml to a wide string. No character encoding is used, since wide strings can
represent all characters without encoding. Roughly equivalent to

(define (xml->wide-string xml)

(call-with-wide-output-string

(lambda (port)

(write-xml xml port))))

[procedure]xml->string xml
Convert xml to a character string encoded as UTF-8. Roughly equivalent to

(define (xml->string xml)

(wide-string->utf8-string (xml->wide-string xml)))

14.15.3 XML Names

MIT/GNU Scheme implements XML names in a slightly complex way. Unfortunately, this
complexity is a direct consequence of the definition of XML names rather than a mis-feature
of this implementation.

The reason that XML names are complex is that XML namespace support, which was
added after XML was standardized, is not very well integrated with the core XML definition.
The most obvious problem is that names can’t have associated namespaces when they ap-
pear in the DTD of a document, even if the body of the document uses them. Consequently,
it must be possible to compare non-associated names with associated names.

An XML name consists of two parts: the qname, which is a symbol, possibly including a
namespace prefix; and the Uniform Resource Identifier (URI), which identifies an optional
namespace.

[procedure]make-xml-name qname uri
Creates and returns an XML name. Qname must be a symbol whose name satis-
fies string-is-xml-name?. Uri must satisfy either absolute-uri? or null-xml-

namespace-uri?. The returned value is an XML name that satisfies xml-name?.

If uri is the null namespace (satisfies null-xml-namespace-uri?), the returned value
is a symbol equivalent to qname. This means that an ordinary symbol can be used
as an XML name when there is no namespace associated with the name.

Chapter 14: Input/Output 231

For convenience, qname may be a string, in which case it is converted to a symbol
using make-xml-qname.

For convenience, uri may be any object that ->uri is able to convert to a URI record,
provided the resulting URI meets the above restrictions.

[procedure]xml-name? object
Returns #t if object is an XML name, and #f otherwise.

[procedure]xml-name->symbol xml-name
Returns the symbol part of xml-name.

[procedure]xml-name-uri xml-name
Returns the URI of xml-name. The result always satisfies absolute-uri? or
null-xml-namespace-uri?.

[procedure]xml-name-string xml-name
Returns the qname of xml-name as a string. Equivalent to

(symbol->string (xml-name->symbol xml-name))

The next two procedures get the prefix and local part of an XML name, respectively.
The prefix of an XML name is the part of the qname to the left of the colon, while the local
part is the part of the qname to the right of the colon. If there is no colon in the qname,
the local part is the entire qname, and the prefix is the null symbol (i.e. ‘||’).

[procedure]xml-name-prefix xml-name
Returns the prefix of xml-name as a symbol.

[procedure]xml-name-local xml-name
Returns the local part of xml-name as a symbol.

The next procedure compares two XML names for equality. The rules for equality are
slightly complex, in order to permit comparing names in the DTD with names in the doc-
ument body. So, if both of the names have non-null namespace URIs, then the names are
equal if and only if their local parts are equal and their URIs are equal. (The prefixes of
the names are not considered in this case.) Otherwise, the names are equal if and only if
their qnames are equal.

[procedure]xml-name=? xml-name-1 xml-name-2
Returns #t if xml-name-1 and xml-name-2 are the same name, and #f otherwise.

These next procedures define the data abstraction for qnames. While qnames are repre-
sented as symbols, only symbols whose names satisfy string-is-xml-name? are qnames.

[procedure]make-xml-qname string
String must satisfy string-is-xml-name?. Returns the qname corresponding to
string (the symbol whose name is string).

[procedure]xml-qname? object
Returns #t if object is a qname, otherwise returns #f.

232 MIT/GNU Scheme 10.1.1

[procedure]xml-qname-prefix qname
Returns the prefix of qname as a symbol.

[procedure]xml-qname-local qname
Returns the local part of qname as a symbol.

The prefix of a qname or XML name may be absent if there is no colon in the name. The
absent, or null, prefix is abstracted by the next two procedures. Note that the null prefix
is a symbol, just like non-null prefixes.

[procedure]null-xml-name-prefix
Returns the null prefix.

[procedure]null-xml-name-prefix? object
Returns #t if object is the null prefix, otherwise returns #f.

The namespace URI of an XML name may be null, meaning that there is no namespace
associated with the name. This namespace is represented by a relative URI record whose
string representation is the null string.

[procedure]null-xml-namespace-uri
Returns the null namespace URI record.

[procedure]null-xml-namespace-uri? object
Returns #t if object is the null namespace URI record, otherwise returns #f.

The following values are two distinguished URI records.

[variable]xml-uri
xml-uri is the URI reserved for use by the XML recommendation. This URI must be
used with the ‘xml’ prefix.

[variable]xmlns-uri
xmlns-uri is the URI reserved for use by the XML namespace recommendation. This
URI must be used with the ‘xmlns’ prefix.

[procedure]make-xml-nmtoken string

[procedure]xml-nmtoken? object

[procedure]string-is-xml-name? string

[procedure]string-is-xml-nmtoken? string

14.15.4 XML Structure

The output from the XML parser and the input to the XML output procedure is a complex
data structure composed of a hierarchy of typed components. Each component is a record
whose fields correspond to parts of the XML structure that the record represents. There
are no special operations on these records; each is a tuple with named subparts. The root
record type is xml-document, which represents a complete XML document.

Each record type type has the following associated bindings:

<type> is a variable bound to the record-type descriptor for type. The record-type
descriptor may be used as a specializer in SOS method definitions, which greatly
simplifies code to dispatch on these types.

Chapter 14: Input/Output 233

type? is a predicate for records of type type. It accepts one argument, which can be
any object, and returns #t if the object is a record of this type, or #f otherwise.

make-type

is a constructor for records of type type. It accepts one argument for each field
of type, in the same order that they are written in the type description, and
returns a newly-allocated record of that type.

type-field

is an accessor procedure for the field field in records of type type. It accepts
one argument, which must be a record of that type, and returns the contents
of the corresponding field in the record.

set-type-field!

is a modifier procedure for the field field in records of type type. It accepts two
arguments: the first must be a record of that type, and the second is a new
value for the corresponding field. The record’s field is modified to have the new
value.

[record type]xml-document declaration misc-1 dtd misc-2 root misc-3
The xml-document record is the top-level record representing a complete XML doc-
ument. Declaration is either an xml-declaration object or #f. Dtd is either an
xml-dtd object or #f. Root is an xml-element object. Misc-1, misc-2, and misc-3
are lists of miscellaneous items; a miscellaneous item is either an xml-comment object,
an xml-processing-instructions object, or a string of whitespace.

[record type]xml-declaration version encoding standalone
The xml-declaration record represents the ‘<?xml ... ?>’ declaration that option-
ally appears at the beginning of an XML document. Version is a version string,
typically "1.0". Encoding is either an encoding string or #f. Standalone is either
"yes", "no", or #f.

[record type]xml-element name attributes contents
The xml-element record represents general XML elements; the bulk of a typical XML

document consists of these elements. Name is the element name (an XML name).
Attributes is a list of XML attribute objects. Contents is a list of the contents of the
element. Each element of this list is either a string, an xml-element record or an
xml-processing-instructions record.

[record type]xml-processing-instructions name text
The xml-processing-instructions record represents processing instructions, which
have the form ‘<?name ... ?>’. These instructions are intended to contain non-XML

data that will be processed by another interpreter; for example they might contain
PHP programs. The name field is the processor name (a symbol), and the text field
is the body of the instructions (a string).

[record type]xml-dtd root external internal
The xml-dtd record represents a document type declaration. The root field is an XML

name for the root element of the document. External is either an xml-external-

id record or #f. Internal is a list of DTD element records (e.g. xml-!element,
xml-!attlist, etc.).

234 MIT/GNU Scheme 10.1.1

The remaining record types are valid only within a DTD.

[record type]xml-!element name content-type
The xml-!element record represents an element-type declaration. Name is the XML

name of the type being declared (a symbol). Content-type describes the type and
can have several different values, as follows:

• The XML names ‘EMPTY’ and ‘ANY’ correspond to the XML keywords of the same
name.

• A list ‘(MIX type ...)’ corresponds to the ‘(#PCDATA | type | ...)’ syntax.

[record type]xml-!attlist name definitions
The xml-!attlist record represents an attribute-list declaration. Name is the XML

name of the type for which attributes are being declared (a symbol). Definitions is
a list of attribute definitions, each of which is a list of three elements (name type

default). Name is an XML name for the name of the attribute (a symbol). Type
describes the attribute type, and can have one of the following values:

• The XML names ‘CDATA’, ‘IDREFS’, ‘IDREF’, ‘ID’, ‘ENTITY’, ‘ENTITIES’,
‘NMTOKENS’, and ‘NMTOKEN’ correspond to the XML keywords of the same names.

• A list ‘(NOTATION name1 name2 ...)’ corresponds to the ‘NOTATION (name1 |

name2 ...)’ syntax.

• A list ‘(ENUMERATED name1 name2 ...)’ corresponds to the ‘(name1 | name2

...)’ syntax.

Default describes the default value for the attribute, and can have one of the following
values:

• The XML names ‘#REQUIRED’ and ‘#IMPLIED’ correspond to the XML keywords
of the same names.

• A list ‘(#FIXED value)’ corresponds to the ‘#FIXED "value"’ syntax. Value is
represented as a string.

• A list ‘(DEFAULT value)’ corresponds to the ‘"value"’ syntax. Value is repre-
sented as a string.

[record type]xml-!entity name value
The xml-!entity record represents a general entity declaration. Name is an XML

name for the entity. Value is the entity’s value, either a string or an xml-external-id

record.

[record type]xml-parameter-!entity name value
The xml-parameter-!entity record represents a parameter entity declaration.
Name is an XML name for the entity. Value is the entity’s value, either a string or
an xml-external-id record.

[record type]xml-unparsed-!entity name id notation
The xml-unparsed-!entity record represents an unparsed entity declaration. Name
is an XML name for the entity. Id is an xml-external-id record. Notation is an
XML name for the notation.

235

[record type]xml-!notation name id
The xml-!notation record represents a notation declaration. Name is an XML name
for the notation. Id is an xml-external-id record.

[record type]xml-external-id id uri
The xml-external-id record is a reference to an external DTD. This reference con-
sists of two parts: id is a public ID literal, corresponding to the ‘PUBLIC’ keyword,
while uri is a system literal, corresponding to the ‘SYSTEM’ keyword. Either or both
may be present, depending on the context. Id is represented as a string, while uri is
represented as a URI record.

237

15 Operating-System Interface

The Scheme standard provides a simple mechanism for reading and writing files: file ports.
MIT/GNU Scheme provides additional tools for dealing with other aspects of the operating
system:

• Pathnames are a reasonably operating-system independent tool for manipulating the
component parts of file names. This can be useful for implementing defaulting of file
name components.

• Control over the current working directory : the place in the file system from which
relative file names are interpreted.

• Procedures that rename, copy, delete, and test for the existence of files. Also, proce-
dures that return detailed information about a particular file, such as its type (directory,
link, etc.) or length.

• Procedures for reading the contents of a directory.

• Procedures for obtaining times in various formats, converting between the formats, and
generating human-readable time strings.

• Procedures to run other programs as subprocesses of Scheme, to read their output, and
write input to them.

• A means to determine the operating system Scheme is running under.

15.1 Pathnames

MIT/GNU Scheme programs need to use names to designate files. The main difficulty in
dealing with names of files is that different file systems have different naming formats for
files. For example, here is a table of several file systems (actually, operating systems that
provide file systems) and what equivalent file names might look like for each one:

System File Name

------ ---------

TOPS-20 <LISPIO>FORMAT.FASL.13

TOPS-10 FORMAT.FAS[1,4]

ITS LISPIO;FORMAT FASL

MULTICS >udd>LispIO>format.fasl

TENEX <LISPIO>FORMAT.FASL;13

VAX/VMS [LISPIO]FORMAT.FAS;13

UNIX /usr/lispio/format.fasl

DOS C:\USR\LISPIO\FORMAT.FAS

It would be impossible for each program that deals with file names to know about
each different file name format that exists; a new operating system to which Scheme was
ported might use a format different from any of its predecessors. Therefore, MIT/GNU
Scheme provides two ways to represent file names: filenames (also called namestrings),
which are strings in the implementation-dependent form customary for the file system,
and pathnames, which are special abstract data objects that represent file names in an
implementation-independent way. Procedures are provided to convert between these two
representations, and all manipulations of files can be expressed in machine-independent
terms by using pathnames.

238 MIT/GNU Scheme 10.1.1

In order to allow MIT/GNU Scheme programs to operate in a network environment that
may have more than one kind of file system, the pathname facility allows a file name to
specify which file system is to be used. In this context, each file system is called a host, in
keeping with the usual networking terminology.1

Note that the examples given in this section are specific to unix pathnames. Pathnames
for other operating systems have different external representations.

15.1.1 Filenames and Pathnames

Pathname objects are usually created by parsing filenames (character strings) into compo-
nent parts. MIT/GNU Scheme provides operations that convert filenames into pathnames
and vice versa.

[procedure]->pathname object
Returns a pathname that is the equivalent of object. Object must be a pathname or
a string. If object is a pathname, it is returned. If object is a string, this procedure
returns the pathname that corresponds to the string; in this case it is equivalent to
(parse-namestring object #f #f).

(->pathname "foo") ⇒ #[pathname 65 "foo"]

(->pathname "/usr/morris") ⇒ #[pathname 66 "/usr/morris"]

[procedure]parse-namestring thing [host [defaults]]
This turns thing into a pathname. Thing must be a pathname or a string. If thing is
a pathname, it is returned. If thing is a string, this procedure returns the pathname
that corresponds to the string, parsed according to the syntax of the file system
specified by host.

This procedure does not do defaulting of pathname components.

The optional arguments are used to determine what syntax should be used for parsing
the string. In general this is only really useful if your implementation of MIT/GNU
Scheme supports more than one file system, otherwise you would use ->pathname.
If given, host must be a host object or #f, and defaults must be a pathname. Host
specifies the syntax used to parse the string. If host is not given or #f, the host
component from defaults is used instead; if defaults is not given, the host component
from param:default-pathname-defaults is used.

[procedure]->namestring pathname
->namestring returns a newly allocated string that is the filename corresponding to
pathname.

(->namestring (->pathname "/usr/morris/minor.van"))

⇒ "/usr/morris/minor.van"

[procedure]pathname-simplify pathname
Returns a pathname that locates the same file or directory as pathname, but is in some
sense simpler. Note that pathname-simplifymight not always be able to simplify the
pathname, e.g. on unix with symbolic links the directory /usr/morris/../ need not

1 This introduction is adapted from Common Lisp, The Language, second edition, section 23.1.

Chapter 15: Operating-System Interface 239

be the same as /usr/. In cases of uncertainty the behavior is conservative, returning
the original or a partly simplified pathname.

(pathname-simplify "/usr/morris/../morris/dance")

⇒ #[pathname "/usr/morris/dance"]

15.1.2 Components of Pathnames

A pathname object always has six components, described below. These components are the
common interface that allows programs to work the same way with different file systems;
the mapping of the pathname components into the concepts peculiar to each file system is
taken care of by the Scheme implementation.

host The name of the file system on which the file resides. In the current implemen-
tation, this component is always a host object that is filled in automatically by
the runtime system. When specifying the host component, use either #f or the
value of the variable local-host.

device Corresponds to the “device” or “file structure” concept in many host file sys-
tems: the name of a (logical or physical) device containing files. This component
is the drive letter for PC file systems, and is unused for unix file systems.

directory Corresponds to the “directory” concept in many host file systems: the name of
a group of related files (typically those belonging to a single user or project).
This component is always used for all file systems.

name The name of a group of files that can be thought of as conceptually the “same”
file. This component is always used for all file systems.

type Corresponds to the “filetype” or “extension” concept in many host file systems.
This says what kind of file this is. Files with the same name but different type
are usually related in some specific way, such as one being a source file, another
the compiled form of that source, and a third the listing of error messages
from the compiler. This component is currently used for all file systems, and is
formed by taking the characters that follow the last dot in the namestring.

version Corresponds to the “version number” concept in many host file systems. Typ-
ically this is a number that is incremented every time the file is modified. This
component is currently unused for all file systems.

Note that a pathname is not necessarily the name of a specific file. Rather, it is a
specification (possibly only a partial specification) of how to access a file. A pathname need
not correspond to any file that actually exists, and more than one pathname can refer to the
same file. For example, the pathname with a version of newest may refer to the same file
as a pathname with the same components except a certain number as the version. Indeed,
a pathname with version newest may refer to different files as time passes, because the
meaning of such a pathname depends on the state of the file system. In file systems with
such facilities as “links”, multiple file names, logical devices, and so on, two pathnames
that look quite different may turn out to address the same file. To access a file given a
pathname, one must do a file-system operation such as open-input-file.

Two important operations involving pathnames are parsing and merging. Parsing is the
conversion of a filename (which might be something supplied interactively by the users

240 MIT/GNU Scheme 10.1.1

when asked to supply the name of a file) into a pathname object. This operation is
implementation-dependent, because the format of filenames is implementation-dependent.
Merging takes a pathname with missing components and supplies values for those compo-
nents from a source of default values.

Not all of the components of a pathname need to be specified. If a component of a
pathname is missing, its value is #f. Before the file system interface can do anything
interesting with a file, such as opening the file, all the missing components of a pathname
must be filled in. Pathnames with missing components are used internally for various
purposes; in particular, parsing a namestring that does not specify certain components will
result in a pathname with missing components.

Any component of a pathname may be the symbol unspecific, meaning that the com-
ponent simply does not exist, for file systems in which such a value makes no sense. For
example, unix and Windows file systems usually do not support version numbers, so the
version component for such a host might be unspecific.2

In addition to #f and unspecific, the components of a pathname may take on the
following meaningful values:

host An implementation-defined type which may be tested for using the host? pred-
icate.

device On systems that support this component (Windows), it may be specified as a
string containing a single alphabetic character, for which the alphabetic case is
ignored.

directory A non-empty list, which represents a directory path: a sequence of directories,
each of which has a name in the previous directory, the last of which is the
directory specified by the entire path. Each element in such a path specifies
the name of the directory relative to the directory specified by the elements
to its left. The first element of the list is either the symbol absolute or the
symbol relative. If the first element in the list is the symbol absolute, then
the directory component (and subsequently the pathname) is absolute; the first
component in the sequence is to be found at the “root” of the file system. If
the directory is relative then the first component is to be found in some as yet
unspecified directory; typically this is later specified to be the current working
directory.

Aside from absolute and relative, which may only appear as the first element
of the list, each subsequent element in the list is either: a string, which is a
literal component; the symbol wild, meaningful only when used in conjunction
with the directory reader; or the symbol up, meaning the next directory is the
“parent” of the previous one. up corresponds to the file .. in unix and PC file
systems.

(The following note does not refer to any file system currently supported by
MIT/GNU Scheme, but is included for completeness.) In file systems that do
not have “hierarchical” structure, a specified directory component will always be
a list whose first element is absolute. If the system does not support directories
other than a single global directory, the list will have no other elements. If

2 This description is adapted from Common Lisp, The Language, second edition, section 23.1.1.

Chapter 15: Operating-System Interface 241

the system supports “flat” directories, i.e. a global set of directories with no
subdirectories, then the list will contain a second element, which is either a
string or wild. In other words, a non-hierarchical file system is treated as if it
were hierarchical, but the hierarchical features are unused. This representation
is somewhat inconvenient for such file systems, but it discourages programmers
from making code depend on the lack of a file hierarchy.

name A string, which is a literal component; or the symbol wild, meaningful only
when used in conjunction with the directory reader.

type A string, which is a literal component; or the symbol wild, meaningful only
when used in conjunction with the directory reader.

version An exact positive integer, which is a literal component; the symbol newest,
which means to choose the largest available version number for that file; the
symbol oldest, which means to choose the smallest version number; or the sym-
bol wild, meaningful only when used in conjunction with the directory reader.
In the future some other possible values may be added, e.g. installed. Note
that currently no file systems support version numbers; thus this component is
not used and should be specified as #f.

[procedure]make-pathname host device directory name type version
Returns a pathname object whose components are the respective arguments. Each
argument must satisfy the restrictions for the corresponding component, which were
outlined above.

(make-pathname #f

#f

’(absolute "usr" "morris")

"foo"

"scm"

#f)

⇒ #[pathname 67 "/usr/morris/foo.scm"]

[procedure]pathname-host pathname
[procedure]pathname-device pathname
[procedure]pathname-directory pathname
[procedure]pathname-name pathname
[procedure]pathname-type pathname
[procedure]pathname-version pathname

Returns a particular component of pathname.

(define x (->pathname "/usr/morris/foo.scm"))

(pathname-host x) ⇒ #[host 1]

(pathname-device x) ⇒ unspecific

(pathname-directory x) ⇒ (absolute "usr" "morris")

(pathname-name x) ⇒ "foo"

(pathname-type x) ⇒ "scm"

(pathname-version x) ⇒ unspecific

[procedure]pathname-new-device pathname device
[procedure]pathname-new-directory pathname directory

242 MIT/GNU Scheme 10.1.1

[procedure]pathname-new-name pathname name
[procedure]pathname-new-type pathname type
[procedure]pathname-new-version pathname version

Returns a new copy of pathname with the respective component replaced by the
second argument. Pathname is unchanged. Portable programs should not explicitly
replace a component with unspecific because this might not be permitted in some
situations.

(define p (->pathname "/usr/blisp/rel15"))

p

⇒ #[pathname 71 "/usr/blisp/rel15"]

(pathname-new-name p "rel100")

⇒ #[pathname 72 "/usr/blisp/rel100"]

(pathname-new-directory p ’(relative "test" "morris"))

⇒ #[pathname 73 "test/morris/rel15"]

p

⇒ #[pathname 71 "/usr/blisp/rel15"]

[procedure]pathname-default-device pathname device
[procedure]pathname-default-directory pathname directory
[procedure]pathname-default-name pathname name
[procedure]pathname-default-type pathname type
[procedure]pathname-default-version pathname version

These operations are similar to the pathname-new-component operations, except that
they only change the specified component if it has the value #f in pathname.

15.1.3 Operations on Pathnames

[procedure]pathname? object
Returns #t if object is a pathname; otherwise returns #f.

[procedure]pathname=? pathname1 pathname2
Returns #t if pathname1 is equivalent to pathname2; otherwise returns #f. Path-
names are equivalent if all of their components are equivalent, hence two pathnames
that are equivalent must identify the same file or equivalent partial pathnames. How-
ever, the converse is not true: non-equivalent pathnames may specify the same file
(e.g. via absolute and relative directory components), and pathnames that specify no
file at all (e.g. name and directory components unspecified) may be equivalent.

[procedure]pathname-absolute? pathname
Returns #t if pathname is an absolute rather than relative pathname object; otherwise
returns #f. Specifically, this procedure returns #t when the directory component of
pathname is a list starting with the symbol absolute, and returns #f in all other
cases. All pathnames are either absolute or relative, so if this procedure returns #f,
the argument is a relative pathname.

[procedure]directory-pathname? pathname
Returns #t if pathname has only directory components and no file components. This
is roughly equivalent to

Chapter 15: Operating-System Interface 243

(define (directory-pathname? pathname)

(string-null? (file-namestring pathname)))

except that it is faster.

[procedure]pathname-wild? pathname
Returns #t if pathname contains any wildcard components; otherwise returns #f.

[procedure]merge-pathnames pathname [defaults [default-version]]
Returns a pathname whose components are obtained by combining those of pathname
and defaults. Defaults defaults to the value of param:default-pathname-defaults
and default-version defaults to newest.

The pathnames are combined by components: if pathname has a non-missing com-
ponent, that is the resulting component, otherwise the component from defaults is
used. The default version can be #f to preserve the information that the component
was missing from pathname. The directory component is handled specially: if both
pathnames have directory components that are lists, and the directory component
from pathname is relative (i.e. starts with relative), then the resulting directory
component is formed by appending pathname’s component to defaults’s component.
For example:

(define path1 (->pathname "scheme/foo.scm"))

(define path2 (->pathname "/usr/morris"))

path1

⇒ #[pathname 74 "scheme/foo.scm"]

path2

⇒ #[pathname 75 "/usr/morris"]

(merge-pathnames path1 path2)

⇒ #[pathname 76 "/usr/scheme/foo.scm"]

(merge-pathnames path2 path1)

⇒ #[pathname 77 "/usr/morris.scm"]

The merging rules for the version are more complex and depend on whether pathname
specifies a name. If pathname does not specify a name, then the version, if not
provided, will come from defaults. However, if pathname does specify a name then
the version is not affected by defaults. The reason is that the version “belongs to”
some other file name and is unlikely to have anything to do with the new one. Finally,
if this process leaves the version missing, then default-version is used.

The net effect is that if the user supplies just a name, then the host, device, directory
and type will come from defaults, but the version will come from default-version. If
the user supplies nothing, or just a directory, the name, type and version will come
over from defaults together.

[parameter]param:default-pathname-defaults
The value of this parameter (see Section 10.3 [Parameters], page 139) is the default
pathname-defaults pathname; if any pathname primitive that needs a set of defaults
is not given one, it uses this one. Modifying the working-directory-pathname

parameter also changes this parameter to the same value, computed by merging the
new working directory with the parameter’s old value.

244 MIT/GNU Scheme 10.1.1

[variable]*default-pathname-defaults*
This variable is deprecated; use param:default-pathname-defaults instead.

[procedure]pathname-default pathname device directory name type version
This procedure defaults all of the components of pathname simultaneously. It could
have been defined by:

(define (pathname-default pathname

device directory name type version)

(make-pathname (pathname-host pathname)

(or (pathname-device pathname) device)

(or (pathname-directory pathname) directory)

(or (pathname-name pathname) name)

(or (pathname-type pathname) type)

(or (pathname-version pathname) version)))

[procedure]file-namestring pathname
[procedure]directory-namestring pathname
[procedure]host-namestring pathname
[procedure]enough-namestring pathname [defaults]

These procedures return a string corresponding to a subset of the pathname informa-
tion. file-namestring returns a string representing just the name, type and version
components of pathname; the result of directory-namestring represents just the
host, device, and directory components; and host-namestring returns a string for
just the host portion.

enough-namestring takes another argument, defaults. It returns an abbreviated
namestring that is just sufficient to identify the file named by pathname
when considered relative to the defaults (which defaults to the value of
param:default-pathname-defaults).

(file-namestring "/usr/morris/minor.van")

⇒ "minor.van"

(directory-namestring "/usr/morris/minor.van")

⇒ "/usr/morris/"

(enough-namestring "/usr/morris/men")

⇒ "men" ;perhaps

[procedure]file-pathname pathname
[procedure]directory-pathname pathname
[procedure]enough-pathname pathname [defaults]

These procedures return a pathname corresponding to a subset of the pathname in-
formation. file-pathname returns a pathname with just the name, type and version
components of pathname. The result of directory-pathname is a pathname contain-
ing the host, device and directory components of pathname.

enough-pathname takes another argument, defaults. It returns an abbreviated path-
name that is just sufficient to identify the file named by pathname when considered
relative to the defaults (which defaults to the value of param:default-pathname-
defaults).

Chapter 15: Operating-System Interface 245

These procedures are similar to file-namestring, directory-namestring and
enough-namestring, but they return pathnames instead of strings.

[procedure]directory-pathname-as-file pathname
Returns a pathname that is equivalent to pathname, but in which the directory com-
ponent is represented as a file. The last directory is removed from the directory
component and converted into name and type components. This is the inverse oper-
ation to pathname-as-directory.

(directory-pathname-as-file (->pathname "/usr/blisp/"))

⇒ #[pathname "/usr/blisp"]

[procedure]pathname-as-directory pathname
Returns a pathname that is equivalent to pathname, but in which any file components
have been converted to a directory component. If pathname does not have name,
type, or version components, it is returned without modification. Otherwise, these
file components are converted into a string, and the string is added to the end of the
list of directory components. This is the inverse operation to directory-pathname-

as-file.

(pathname-as-directory (->pathname "/usr/blisp/rel5"))

⇒ #[pathname "/usr/blisp/rel5/"]

15.1.4 Miscellaneous Pathname Procedures

This section gives some standard operations on host objects, and some procedures that
return some useful pathnames.

[variable]local-host
This variable has as its value the host object that describes the local host’s file system.

[procedure]host? object
Returns #t if object is a pathname host; otherwise returns #f.

[procedure]host=? host1 host2
Returns #t if host1 and host2 denote the same pathname host; otherwise returns #f.

[procedure]init-file-pathname [host]
Returns a pathname for the user’s initialization file on host. The host argument
defaults to the value of local-host. If the initialization file does not exist this
procedure returns #f.

Under unix, the init file is called .scheme.init; under Windows, the init file is
called scheme.ini. In either case, it is located in the user’s home directory, which is
computed by user-homedir-pathname.

[procedure]user-homedir-pathname [host]
Returns a pathname for the user’s “home directory” on host. The host argument
defaults to the value of local-host. The concept of a “home directory” is itself
somewhat implementation-dependent, but it should be the place where the user keeps
personal files, such as initialization files and mail.

Under unix, the user’s home directory is specified by the HOME environment variable.
If this variable is undefined, the user name is computed using the getlogin system

246 MIT/GNU Scheme 10.1.1

call, or if that fails, the getuid system call. The resulting user name is passed to the
getpwnam system call to obtain the home directory.

Under Windows, several heuristics are tried to find the user’s home directory. The
user’s home directory is computed by examining several environment variables, in the
following order:

• HOMEDRIVE and HOMEPATH are both defined and %HOMEDRIVE%%HOMEPATH% is an
existing directory. (These variables are automatically defined by Windows NT.)

• HOME is defined and %HOME% is an existing directory.

• USERDIR and USERNAME are defined and %USERDIR%\%USERNAME% is an existing
directory.

• USERDIR and USER are defined and %USERDIR%\%USER% is an existing directory.

• USERNAME is defined and %USERNAME% is an existing directory on the Windows
system drive.

• USER is defined and %USER% is an existing directory on the Windows system drive.

• Finally, if all else fails, the Windows system drive is used as the home directory.

[procedure]system-library-pathname pathname
Locates pathname in MIT/GNU Scheme’s system library directory. An error of type
condition-type:file-operation-error is signalled if pathname cannot be located
on the library search path.

(system-library-pathname "compiler.com")

⇒ #[pathname 45 "/usr/local/lib/mit-scheme/compiler.com"]

[procedure]system-library-directory-pathname pathname
Locates the pathname of an MIT/GNU Scheme system library directory. An error
of type condition-type:file-operation-error is signalled if pathname cannot be
located on the library search path.

(system-library-directory-pathname "options")

⇒ #[pathname 44 "/usr/local/lib/mit-scheme/options/"]

15.2 Working Directory

When MIT/GNU Scheme is started, the current working directory (or simply, working
directory) is initialized in an operating-system dependent manner; usually, it is the directory
in which Scheme was invoked. The working directory can be determined from within Scheme
by calling the pwd procedure, and changed by calling the cd procedure. Each REP loop has
its own working directory, and inferior REP loops initialize their working directory from the
value in effect in their superior at the time they are created.

[parameter]working-directory-pathname
[parameter]pwd

Returns the current working directory as a pathname that has no name, type, or
version components, just host, device, and directory components. pwd is an alias for
working-directory-pathname; the long name is intended for programs and the short
name for interactive use.

Chapter 15: Operating-System Interface 247

This parameter may be called with an argument to set its value, in which case it
also modifies the value of param:default-pathname-defaults by merging the new
working directory into it.

[procedure]set-working-directory-pathname! filename
[procedure]cd filename

This procedure is deprecated; instead call working-directory-pathname with an
argument.

Makes filename the current working directory and returns the new current working
directory as a pathname. Filename is coerced to a pathname using pathname-as-

directory. cd is an alias for set-working-directory-pathname!; the long name is
intended for programs and the short name for interactive use.

Additionally, set-working-directory-pathname! modifies the value of
param:default-pathname-defaults by merging the new working directory into it.

When this procedure is executed in the top-level REP loop, it changes the working
directory of the running Scheme executable.

(set-working-directory-pathname! "/usr/morris/blisp")

⇒ #[pathname "/usr/morris/blisp/"]

(set-working-directory-pathname! "~")

⇒ #[pathname "/usr/morris/"]

This procedure signals an error if filename does not refer to an existing directory.

If filename describes a relative rather than absolute pathname, this procedure in-
terprets it as relative to the current working directory, before changing the working
directory.

(working-directory-pathname)

⇒ #[pathname "/usr/morris/"]

(set-working-directory-pathname! "foo")

⇒ #[pathname "/usr/morris/foo/"]

[procedure]with-working-directory-pathname filename thunk
This procedure is deprecated; instead bind working-directory-pathname using
parameterize.

This procedure dynamically binds the current working directory to filename
and returns the value of thunk (a procedure of no arguments). Filename is
coerced to a pathname using pathname-as-directory. In addition to binding the
working directory, with-working-directory-pathname also dynamically binds the
param:default-pathname-defaults parameter, merging the old value with the new
working directory pathname.

15.3 File Manipulation

This section describes procedures that manipulate files and directories. Any of these proce-
dures can signal a number of errors for many reasons. The specifics of these errors are much
too operating-system dependent to document here. However, if such an error is signalled
by one of these procedures, it will be of type condition-type:file-operation-error.

248 MIT/GNU Scheme 10.1.1

[procedure]file-exists? filename
[procedure]file-exists-direct? filename
[procedure]file-exists-indirect? filename

These procedures return #t if filename is an existing file or directory; otherwise they
return #f. In operating systems that support symbolic links, if the file is a symbolic
link, file-exists-direct? tests for the existence of the link, while file-exists-

indirect? and file-exists? test for the existence of the file pointed to by the
link.

[procedure]copy-file source-filename target-filename
Makes a copy of the file named by source-filename. The copy is performed by creating
a new file called target-filename, and filling it with the same data as source-filename.

[procedure]rename-file source-filename target-filename
Changes the name of source-filename to be target-filename. In the unix implementa-
tion, this will not rename across file systems.

[procedure]delete-file filename
Deletes the file named filename.

[procedure]delete-file-no-errors filename
Like delete-file, but returns a boolean value indicating whether an error occurred
during the deletion. If no errors occurred, #t is returned. If an error of type
condition-type:file-error or condition-type:port-error is signalled, #f is re-
turned.

[procedure]hard-link-file source-filename target-filename
Makes a hard link from source-filename to target-filename. This operation gives the
file specified by source-filename a new name, in addition to the old name.

This currently works only on unix systems. It is further restricted to work only when
source-filename and target-filename refer to names in the same file system.

[procedure]soft-link-file source-filename target-filename
Creates a new soft link called target-filename that points at the file source-filename.
(Soft links are also sometimes called symbolic links.) Note that source-filename will
be interpreted as a string (although you may specify it as a pathname object, if
you wish). The contents of this string will be stored in the file system as the soft
link. When a file operation attempts to open the link, the contents of the link are
interpreted relative to the link’s location at that time.

This currently works only on unix systems.

[procedure]make-directory filename
Creates a new directory named filename. Signals an error if filename already exists,
or if the directory cannot be created.

[procedure]delete-directory filename
Deletes the directory named filename. Signals an error if the directory does not exist,
is not a directory, or contains any files or subdirectories.

Chapter 15: Operating-System Interface 249

[procedure]->truename filename
This procedure attempts to discover and return the “true name” of the file associ-
ated with filename within the file system. An error of type condition-type:file-

operation-error is signalled if the appropriate file cannot be located within the file
system.

[procedure]call-with-temporary-file-pathname procedure
Calls temporary-file-pathname to create a temporary file, then calls procedure
with one argument, the pathname referring to that file. When procedure returns, if
the temporary file still exists, it is deleted; then, the value yielded by procedure is
returned. If procedure escapes from its continuation, and the file still exists, it is
deleted.

[procedure]temporary-file-pathname [directory]
Creates a new empty temporary file and returns a pathname referring to it. The
temporary file is created with Scheme’s default permissions, so barring unusual cir-
cumstances it can be opened for input and/or output without error. The temporary
file will remain in existence until explicitly deleted. If the file still exists when the
Scheme process terminates, it will be deleted.

If directory is specified, the temporary file will be stored there. If it is not spec-
ified, or if it is #f, the temporary file will be stored in the directory returned by
temporary-directory-pathname.

[procedure]temporary-directory-pathname
Returns the pathname of an existing directory that can be used to store temporary
files. These directory names are tried, in order, until a writeable directory is found:

• The directories specified by the environment variables TMPDIR, TEMP, or TMP.

• Under unix, the directories /var/tmp, /usr/tmp, or /tmp.

• Under Windows, the following directories on the system drive: \temp, \tmp, or
\.

• UnderWindows, the current directory, as specified by param:default-pathname-
defaults.

[procedure]file-directory? filename
Returns #t if the file named filename exists and is a directory. Otherwise returns #f.
In operating systems that support symbolic links, if filename names a symbolic link,
this examines the file linked to, not the link itself.

This is equivalent to

(eq? ’directory (file-type-indirect filename))

[procedure]file-regular? filename
Returns #t if the file named filename exists and is a regular file (i.e. not a directory,
symbolic link, device file, etc.). Otherwise returns #f. In operating systems that
support symbolic links, if filename names a symbolic link, this examines the file
linked to, not the link itself.

This is equivalent to

(eq? ’regular (file-type-indirect filename))

250 MIT/GNU Scheme 10.1.1

[procedure]file-symbolic-link? filename
In operating systems that support symbolic links, if the file named filename exists and
is a symbolic link, this procedure returns the contents of the symbolic link as a newly
allocated string. The returned value is the name of the file that the symbolic link
points to and must be interpreted relative to the directory of filename. If filename
either does not exist or is not a symbolic link, or if the operating system does not
support symbolic links, this procedure returns #f.

[procedure]file-type-direct filename
[procedure]file-type-indirect filename

If the file named filename exists, file-type-direct returns a symbol specifying what
type of file it is. For example, if filename refers to a directory, the symbol directory
is returned. If filename doesn’t refer to an existing file, #f is returned.

If filename refers to a symbolic link, file-type-direct returns the type of the link
itself, while file-type-indirect returns the type of the file linked to.

At this time, the symbols that can be returned are the following. The names are in-
tended to be self-explanatory. Most of these names can only be returned on particular
operating systems, and so the operating-system name is prefixed to the name.

regular

directory

unix-symbolic-link

unix-character-device

unix-block-device

unix-named-pipe

unix-socket

win32-named-pipe

[procedure]file-readable? filename
Returns #t if filename names a file that can be opened for input; i.e. a readable file.
Otherwise returns #f.

[procedure]file-writeable? filename
Returns #t if filename names a file that can be opened for output; i.e. a writeable
file. Otherwise returns #f.

[procedure]file-executable? filename
Returns #t if filename names a file that can be executed. Otherwise returns #f.
Under unix, an executable file is identified by its mode bits. Under Windows, an
executable file has one of the file extensions .exe, .com, or .bat.

[procedure]file-access filename mode
Mode must be an exact integer between 0 and 7 inclusive; it is a bitwise-encoded
predicate selector with 1 meaning “executable”, 2 meaning “writeable”, and 4 mean-
ing “readable”. file-access returns #t if filename exists and satisfies the predicates
selected by mode. For example, if mode is 5, then filename must be both readable and
executable. If filename doesn’t exist, or if it does not satisfy the selected predicates,
#f is returned.

Chapter 15: Operating-System Interface 251

[procedure]file-eq? filename1 filename2
Determines whether filename1 and filename2 refer to the same file. Under unix, this
is done by comparing the inodes and devices of the two files. Under Windows, this is
done by comparing the filename strings.

[procedure]file-modes filename
If filename names an existing file, file-modes returns an exact non-negative integer
encoding the file’s permissions. The encoding of this integer is operating-system
dependent. Under unix, it is the least-significant 12 bits of the st_mode element of
the struct stat structure. Under Windows, it is the file attribute bits, which are
described below. If filename does not name an existing file, #f is returned.

[procedure]set-file-modes! filename modes
Filename must name an existing file. Modes must be an exact non-negative integer
that could have been returned by a call to file-modes. set-file-modes! modifies
the file’s permissions to be those encoded by modes.

[variable]nt-file-mode/read-only
[variable]nt-file-mode/hidden
[variable]nt-file-mode/system
[variable]nt-file-mode/directory
[variable]nt-file-mode/archive
[variable]nt-file-mode/normal
[variable]nt-file-mode/temporary
[variable]nt-file-mode/compressed

The values of these variables are the “mode bits” that comprise the value returned
by file-modes under Windows. These bits are small integers that are combined by
adding to form a complete set of modes. The integer zero represents a set of modes
in which none of these bits are set.

[procedure]file-modification-time filename
Returns the modification time of filename as an exact non-negative integer. The result
may be compared to other file times using ordinary integer arithmetic. If filename
names a file that does not exist, file-modification-time returns #f.

In operating systems that support symbolic links, if filename names a symbolic
link, file-modification-time returns the modification time of the file linked
to. An alternate procedure, file-modification-time-direct, returns the
modification time of the link itself; in all other respects it is identical to
file-modification-time. For symmetry, file-modification-time-indirect is
a synonym of file-modification-time.

[procedure]file-access-time filename
Returns the access time of filename as an exact non-negative integer. The result may
be compared to other file times using ordinary integer arithmetic. If filename names
a file that does not exist, file-access-time returns #f.

In operating systems that support symbolic links, if filename names a symbolic link,
file-access-time returns the access time of the file linked to. An alternate pro-
cedure, file-access-time-direct, returns the access time of the link itself; in all

252 MIT/GNU Scheme 10.1.1

other respects it is identical to file-access-time. For symmetry, file-access-
time-indirect is a synonym of file-access-time.

[procedure]set-file-times! filename access-time modification-time
Filename must name an existing file, while access-time and modification-time
must be valid file times that might have been returned by file-access-time

and file-modification-time, respectively. set-file-times! alters the access
and modification times of the file specified by filename to the values given by
access-time and modification-time, respectively. For convenience, either of the
time arguments may be specified as #f; in this case the corresponding time is not
changed. set-file-times! returns an unspecified value.

[procedure]current-file-time
Returns the current time as an exact non-negative integer, in the same format used
by the above file-time procedures. This number can be compared to other file times
using ordinary arithmetic operations.

[procedure]file-touch filename
Touches the file named filename. If the file already exists, its modification time is set
to the current file time and #f is returned. Otherwise, the file is created and #t is
returned. This is an atomic test-and-set operation, so it is useful as a synchronization
mechanism.

[procedure]file-length filename
Returns the length, in bytes, of the file named filename as an exact non-negative
integer.

[procedure]file-attributes filename
This procedure determines if the file named filename exists, and returns information
about it if so; if the file does not exist, it returns #f.

In operating systems that support symbolic links, if filename names a symbolic
link, file-attributes returns the attributes of the link itself. An alternate proce-
dure, file-attributes-indirect, returns the attributes of the file linked to; in all
other respects it is identical to file-attributes. For symmetry, file-attributes-
direct is a synonym of file-attributes.

The information returned by file-attributes is decoded by accessor procedures. The
following accessors are defined in all operating systems:

[procedure]file-attributes/type attributes
The file type: #t if the file is a directory, a character string (the name linked to) if a
symbolic link, or #f for all other types of file.

[procedure]file-attributes/access-time attributes
The last access time of the file, an exact non-negative integer.

[procedure]file-attributes/modification-time attributes
The last modification time of the file, an exact non-negative integer.

[procedure]file-attributes/change-time attributes
The last change time of the file, an exact non-negative integer.

Chapter 15: Operating-System Interface 253

[procedure]file-attributes/length attributes
The length of the file in bytes.

[procedure]file-attributes/mode-string attributes
The mode string of the file, a newly allocated string showing the file’s mode bits.
Under unix, this string is in unix format. Under Windows, this string shows the
standard “DOS” attributes in their usual format.

[procedure]file-attributes/n-links attributes
The number of links to the file, an exact positive integer. Under Windows, this is
always 1.

The following additional accessors are defined under unix:

[procedure]file-attributes/uid attributes
The user id of the file’s owner, an exact non-negative integer.

[procedure]file-attributes/gid attributes
The group id of the file’s group, an exact non-negative integer.

[procedure]file-attributes/inode-number attributes
The inode number of the file, an exact non-negative integer.

The following additional accessor is defined under Windows:

[procedure]file-attributes/modes attributes
The attribute bits of the file. This is an exact non-negative integer containing the
file’s attribute bits, exactly as specified by the operating system’s API.

15.4 Directory Reader

[procedure]directory-read directory [sort?]
Directory must be an object that can be converted into a pathname by
->pathname. The directory specified by directory is read, and the contents of the
directory is returned as a newly allocated list of absolute pathnames. The result
is sorted according to the usual sorting conventions for directories, unless sort? is
specified as #f. If directory has name, type, or version components, the returned
list contains only those pathnames whose name, type, and version components match
those of directory ; wild or #f as one of these components means “match anything”.

The Windows implementation supports “globbing”, in which the characters * and ?

are interpreted to mean “match anything” and “match any character”, respectively.
This “globbing” is supported only in the file part of directory.

15.5 Date and Time

MIT/GNU Scheme provides a simple set of procedures for manipulating date and time
information. There are four time representations, each of which serves a different purpose.
Each representation may be converted to any of the others.

The primary time representation, universal time, is an exact non-negative integer count-
ing the number of seconds that have elapsed since midnight January 1, 1900 UTC. (UTC

254 MIT/GNU Scheme 10.1.1

stands for Coordinated Universal Time, and is the modern name for Greenwich Mean Time.)
This format is produced by get-universal-time and decoded-time->universal-time.

The second representation, decoded time, is a record structure in which the time is
broken down into components, such as month, minute, etc. Decoded time is always relative
to a particular time zone, which is a component of the structure. This format is produced
by global-decoded-time and local-decoded-time.

The third representation, file time, is an exact non-negative integer that is larger
for increasing time. Unlike universal time, this representation is operating-system
dependent. This format is produced by all of the file-attribute procedures, for example
file-modification-time and file-attributes.

The fourth representation, the time string, is an external representation for time. This
format is defined by RFC-822, Standard for the format of ARPA Internet text messages,
with the modification that years are represented as four-digit numbers rather than two-
digit numbers. This format is the standard format for Internet email and numerous other
network protocols.

Within this section, argument variables named universal-time, decoded-time, file-time,
and time-string are respectively required to be of the corresponding format.

15.5.1 Universal Time

[procedure]get-universal-time
Return the current time in universal format.

(get-universal-time) ⇒ 3131453078

[variable]epoch
epoch is the representation of midnight January 1, 1970 UTC in universal-time for-
mat.

epoch ⇒ 2208988800

15.5.2 Decoded Time

Objects representing standard time components, such as seconds and minutes, are required
to be exact non-negative integers. Seconds and minutes must be inclusively between 0 and
59; hours between 0 and 23; days between 1 and 31; months between 1 and 12; years are
represented in “four-digit” form, in which 1999 is represented as 1999 — not 99.

[procedure]local-decoded-time
Return the current time in decoded format. The decoded time is represented in the
local time zone.

Chapter 15: Operating-System Interface 255

(pp (local-decoded-time))

a #[decoded-time 76]

a (second 2)

a (minute 12)

a (hour 11)

a (day 27)

a (month 4)

a (year 1999)

a (day-of-week 1)

a (daylight-savings-time 1)

a (zone 5)

[procedure]global-decoded-time
Return the current time in decoded format. The decoded time is represented in UTC.

(pp (global-decoded-time))

a #[decoded-time 77]

a (second 8)

a (minute 12)

a (hour 15)

a (day 27)

a (month 4)

a (year 1999)

a (day-of-week 1)

a (daylight-savings-time 0)

a (zone 0)

[procedure]make-decoded-time second minute hour day month year [zone]
Return a new decoded-time object representing the given time. The arguments must
be valid components according to the above rules, and must form a valid date.

If zone is not supplied or is #f, the resulting decoded time will be represented in the
local time zone. Otherwise, zone must be a valid time zone, and the result will be
represented in that zone.

Warning: because this procedure depends on the operating system’s runtime library,
it is not capable of representing all dates. In particular, on most unix systems, it
is not possible to encode dates that occur prior to midnight, January 1, 1970 UTC.
Attempting to do this will signal an error.

(pp (make-decoded-time 0 9 11 26 3 1999))

a #[decoded-time 19]

a (second 0)

a (minute 9)

a (hour 11)

a (day 26)

a (month 3)

a (year 1999)

a (day-of-week 4)

a (daylight-savings-time 0)

a (zone 5)

256 MIT/GNU Scheme 10.1.1

(pp (make-decoded-time 0 9 11 26 3 1999 3))

a #[decoded-time 80]

a (second 0)

a (minute 9)

a (hour 11)

a (day 26)

a (month 3)

a (year 1999)

a (day-of-week 4)

a (daylight-savings-time 0)

a (zone 3)

[procedure]decoded-time/second decoded-time
[procedure]decoded-time/minute decoded-time
[procedure]decoded-time/hour decoded-time
[procedure]decoded-time/day decoded-time
[procedure]decoded-time/month decoded-time
[procedure]decoded-time/year decoded-time

Return the corresponding component of decoded-time.

(decoded-time/second (local-decoded-time)) ⇒ 17

(decoded-time/year (local-decoded-time)) ⇒ 1999

(decoded-time/day (local-decoded-time)) ⇒ 26

[procedure]decoded-time/day-of-week decoded-time
Return the day of the week on which decoded-time falls, encoded as an exact integer
between 0 (Monday) and 6 (Sunday), inclusive.

(decoded-time/day-of-week (local-decoded-time)) ⇒ 4

[procedure]decoded-time/daylight-savings-time? decoded-time
Return #t if decoded-time is represented using daylight savings time. Otherwise
return #f.

(decoded-time/daylight-savings-time? (local-decoded-time))

⇒ #f

[procedure]decoded-time/zone decoded-time
Return the time zone in which decoded-time is represented. This is an exact rational
number between -24 and +24 inclusive, that when multiplied by 3600 is an integer.
The value is the number of hours west of UTC.

(decoded-time/zone (local-decoded-time)) ⇒ 5

[procedure]time-zone? object
Returns #t if object is an exact number between -24 and +24 inclusive, that when
multiplied by 3600 is an integer.

(time-zone? -5) ⇒ #t

(time-zone? 11/2) ⇒ #t

(time-zone? 11/7) ⇒ #f

Chapter 15: Operating-System Interface 257

[procedure]month/max-days month
Returns the maximum number of days possible in month. Month must be an exact
integer between 1 and 12 inclusive.

(month/max-days 2) ⇒ 29

(month/max-days 3) ⇒ 31

(month/max-days 4) ⇒ 30

15.5.3 File Time

As stated above, file time is operating-system dependent. As of this writing, two formats
are used. For unix and Windows systems, file time is the number of seconds since midnight
January 1, 1970 UTC (the standard unix time convention).

The following procedures generate their results in file-time format:

file-access-time

file-access-time-direct

file-access-time-indirect

file-modification-time

file-modification-time-direct

file-modification-time-indirect

file-attributes/access-time

file-attributes/modification-time

file-attributes/change-time

Additionally, set-file-times! accepts its time arguments in file-time format.

15.5.4 Time-Format Conversion

The procedures described in this section convert times from one format to another.

[procedure]universal-time->local-decoded-time universal-time
[procedure]universal-time->global-decoded-time universal-time

Converts an argument in universal-time format to decoded-time format. The result
is in the local time zone or UTC, respectively.

(pp (universal-time->local-decoded-time (get-universal-time)))

a #[decoded-time 21]

a (second 23)

a (minute 57)

a (hour 17)

a (day 29)

a (month 4)

a (year 1999)

a (day-of-week 3)

a (daylight-savings-time 1)

a (zone 5)

258 MIT/GNU Scheme 10.1.1

(pp (universal-time->global-decoded-time

(get-universal-time)))

a #[decoded-time 22]

a (second 27)

a (minute 57)

a (hour 21)

a (day 29)

a (month 4)

a (year 1999)

a (day-of-week 3)

a (daylight-savings-time 0)

a (zone 0)

[procedure]universal-time->file-time universal-time
Converts an argument in universal-time format to file-time format.

(universal-time->file-time (get-universal-time))

⇒ 925422988

[procedure]universal-time->local-time-string universal-time
[procedure]universal-time->global-time-string universal-time

Converts an argument in universal-time format to a time string. The result is in the
local time zone or UTC, respectively.

(universal-time->local-time-string (get-universal-time))

⇒ "Thu, 29 Apr 1999 17:55:31 -0400"

(universal-time->global-time-string (get-universal-time))

⇒ "Thu, 29 Apr 1999 21:55:51 +0000"

[procedure]decoded-time->universal-time decoded-time
Converts an argument in decoded-time format to universal-time format.

(decoded-time->universal-time (local-decoded-time))

⇒ 3134411942

(decoded-time->universal-time (global-decoded-time))

⇒ 3134411947

[procedure]decoded-time->file-time decoded-time
Converts an argument in decoded-time format to file-time format.

(decoded-time->file-time (local-decoded-time))

⇒ 925423191

(decoded-time->file-time (global-decoded-time))

⇒ 925423195

[procedure]decoded-time->string decoded-time
Convert an argument in decoded-time format to a time string.

(decoded-time->string (local-decoded-time))

⇒ "Thu, 29 Apr 1999 18:00:43 -0400"

(decoded-time->string (global-decoded-time))

⇒ "Thu, 29 Apr 1999 22:00:46 +0000"

Chapter 15: Operating-System Interface 259

[procedure]file-time->universal-time file-time
Converts an argument in universal-time format to file-time format.

(file-time->universal-time (file-modification-time "/"))

⇒ 3133891907

[procedure]file-time->local-decoded-time file-time
[procedure]file-time->global-decoded-time file-time

Converts an argument in file-time format to decoded-time format. The result is in
the local time zone or UTC, respectively.

(pp (file-time->local-decoded-time

(file-modification-time "/")))

a #[decoded-time 26]

a (second 47)

a (minute 31)

a (hour 17)

a (day 23)

a (month 4)

a (year 1999)

a (day-of-week 4)

a (daylight-savings-time 1)

a (zone 5)

(pp (file-time->global-decoded-time

(file-modification-time "/")))

a #[decoded-time 27]

a (second 47)

a (minute 31)

a (hour 21)

a (day 23)

a (month 4)

a (year 1999)

a (day-of-week 4)

a (daylight-savings-time 0)

a (zone 0)

[procedure]file-time->local-time-string file-time
[procedure]file-time->global-time-string file-time

Converts an argument in file-time format to a time string. The result is in the local
time zone or UTC, respectively.

(file-time->local-time-string (file-modification-time "/"))

⇒ "Fri, 23 Apr 1999 17:31:47 -0400"

(file-time->global-time-string (file-modification-time "/"))

⇒ "Fri, 23 Apr 1999 21:31:47 +0000"

[procedure]string->universal-time time-string
Converts a time-string argument to universal-time format.

260 MIT/GNU Scheme 10.1.1

(string->universal-time "Fri, 23 Apr 1999 21:31:47 +0000")

⇒ 3133888307

(string->universal-time "Fri, 23 Apr 1999 17:31:47 -0400")

⇒ 3133888307

[procedure]string->decoded-time time-string
Converts a time-string argument to decoded-time format.

(pp (string->decoded-time "Fri, 23 Apr 1999 17:31:47 -0400"))

a #[decoded-time 30]

a (second 47)

a (minute 31)

a (hour 17)

a (day 23)

a (month 4)

a (year 1999)

a (day-of-week 4)

a (daylight-savings-time 0)

a (zone 4)

[procedure]string->file-time time-string
Converts a time-string argument to file-time format.

(string->file-time "Fri, 23 Apr 1999 17:31:47 -0400")

⇒ 924899507

15.5.5 External Representation of Time

The normal external representation for time is the time string, as described above. The
procedures in this section generate alternate external representations of time which are more
verbose and may be more suitable for presentation to human readers.

[procedure]decoded-time/date-string decoded-time
[procedure]decoded-time/time-string decoded-time

These procedures return strings containing external representations of the date and
time, respectively, represented by decoded-time. The results are implicitly in local
time.

(decoded-time/date-string (local-decoded-time))

⇒ "Tuesday March 30, 1999"

(decoded-time/time-string (local-decoded-time))

⇒ "11:22:38 AM"

[procedure]day-of-week/long-string day-of-week
[procedure]day-of-week/short-string day-of-week

Returns a string representing the given day-of-week. The argument must be an exact
non-negative integer between 0 and 6 inclusive. day-of-week/long-string returns
a long string that fully spells out the name of the day. day-of-week/short-string
returns a shortened string that abbreviates the day to three letters.

(day-of-week/long-string 0) ⇒ "Monday"

(day-of-week/short-string 0) ⇒ "Mon"

(day-of-week/short-string 3) ⇒ "Thu"

Chapter 15: Operating-System Interface 261

[procedure]month/long-string month
[procedure]month/short-string month

Returns a string representing the given month. The argument must be an exact
non-negative integer between 1 and 12 inclusive. month/long-string returns a long
string that fully spells out the name of the month. month/short-string returns a
shortened string that abbreviates the month to three letters.

(month/long-string 1) ⇒ "January"

(month/short-string 1) ⇒ "Jan"

(month/short-string 10) ⇒ "Oct"

[procedure]time-zone->string
Returns a string corresponding to the given time zone. This string is the same string
that is used to generate RFC-822 time strings.

(time-zone->string 5) ⇒ "-0500"

(time-zone->string -4) ⇒ "+0400"

(time-zone->string 11/2) ⇒ "-0530"

15.6 Machine Time

The previous section dealt with procedures that manipulate clock time. This section de-
scribes procedures that deal with computer time: elapsed CPU time, elapsed real time, and
so forth. These procedures are useful for measuring the amount of time it takes to execute
code.

Some of the procedures in this section manipulate a time representation called ticks. A
tick is a unit of time that is unspecified here but can be converted to and from seconds by
supplied procedures. A count in ticks is represented as an exact integer. At present each
tick is one millisecond, but this may change in the future.

[procedure]process-time-clock
Returns the amount of process time, in ticks, that has elapsed since Scheme was
started. Process time is measured by the operating system and is time during which
the Scheme process is computing. It does not include time in system calls, but
depending on the operating system it may include time used by subprocesses.

(process-time-clock) ⇒ 21290

[procedure]real-time-clock
Returns the amount of real time, in ticks, that has elapsed since Scheme was started.
Real time is the time measured by an ordinary clock.

(real-time-clock) ⇒ 33474836

[procedure]internal-time/ticks->seconds ticks
Returns the number of seconds corresponding to ticks. The result is always a real
number.

(internal-time/ticks->seconds 21290) ⇒ 21.29

(internal-time/ticks->seconds 33474836) ⇒ 33474.836

262 MIT/GNU Scheme 10.1.1

[procedure]internal-time/seconds->ticks seconds
Returns the number of ticks corresponding to seconds. Seconds must be a real num-
ber.

(internal-time/seconds->ticks 20.88) ⇒ 20880

(internal-time/seconds->ticks 20.83) ⇒ 20830

[procedure]system-clock
Returns the amount of process time, in seconds, that has elapsed since Scheme was
started. Roughly equivalent to:

(internal-time/ticks->seconds (process-time-clock))

Example:

(system-clock) ⇒ 20.88

[procedure]runtime
Returns the amount of process time, in seconds, that has elapsed since Scheme was
started. However, it does not include time spent in garbage collection.

(runtime) ⇒ 20.83

[procedure]with-timings thunk receiver
Calls thunk with no arguments. After thunk returns, receiver is called with three
arguments describing the time spent while computing thunk: the elapsed run time,
the amount of time spent in the garbage collector, and the elapsed real time. All
three times are in ticks.

This procedure is most useful for doing performance measurements, and is designed
to have relatively low overhead.

(with-timings

(lambda () . . . hairy computation . . .)
(lambda (run-time gc-time real-time)

(write (internal-time/ticks->seconds run-time))

(write-char #\space)

(write (internal-time/ticks->seconds gc-time))

(write-char #\space)

(write (internal-time/ticks->seconds real-time))

(newline)))

[procedure]measure-interval runtime? procedure
Calls procedure, passing it the current process time, in seconds, as an argument. The
result of this call must be another procedure. When procedure returns, the resulting
procedure is tail-recursively called with the ending time, in seconds, as an argument.

If runtime? is #f, the elapsed time is deducted from the elapsed system time returned
by runtime.

While this procedure can be used for time measurement, its interface is somewhat
clumsy for that purpose. We recommend that you use with-timings instead, because
it is more convenient and has lower overhead.

Chapter 15: Operating-System Interface 263

(measure-interval #t

(lambda (start-time)

(let ((v . . . hairy computation . . .))
(lambda (end-time)

(write (- end-time start-time))

(newline)

v))))

15.7 Subprocesses

MIT/GNU Scheme provides the ability to run and control subprocesses. This support
is divided into two parts: a low-level set of primitives that maps onto the underlying
operating system’s process-control primitives, and a high-level set of procedures for starting
a subprocess and running it to completion in a single call. Subprocesses that are run in
the latter fashion are referred to as synchronous, because they are started and stopped in
synchrony with a Scheme procedure call.

This chapter documents Scheme’s high-level synchronous-subprocess support. The low-
level support is not documented but is available for those who are willing to read the source
code.

Synchronous-subprocess support is a run-time-loadable option. To use it, execute

(load-option ’synchronous-subprocess)

once before calling it.

15.7.1 Subprocess Procedures

There are two commands for running synchronous subprocesses under Scheme. run-shell-
command is very simple to use, provides access to all shell features, and is to be preferred in
most situations. run-synchronous-subprocess allows direct execution of a program and
precise control of the command-line arguments passed to the program, but does not provide
file globbing, I/O redirection, or other shell features.

[procedure]run-shell-command command option . . .
Runs command, which must be a string. Command is passed to a command shell for
interpretation; how the shell is chosen is detailed below.

The options are a sequence of keyword/value pairs that specify optional behavior.
See Section 15.7.3 [Subprocess Options], page 264.

run-shell-command waits until the subprocess completes its execution and returns
the exit code from the subprocess. If the subprocess is killed or stopped, an error is
signalled and the procedure does not return.

[procedure]run-synchronous-subprocess program arguments option . . .
Runs program, passing it the given command-line arguments. Program must be
either the name of a program on the path, or else a pathname to a specific program.
Arguments must be a list of strings; each string is a single command-line argument
to the program.

The options are a sequence of keyword/value pairs that specify optional behavior.
See Section 15.7.3 [Subprocess Options], page 264.

264 MIT/GNU Scheme 10.1.1

run-synchronous-subprocess waits until the subprocess completes its execution and
returns the exit code from the subprocess. If the subprocess is killed or stopped, an
error is signalled and the procedure does not return.

15.7.2 Subprocess Conditions

If a subprocess spawned by one of the above procedures is killed or suspended, then one of
the following errors will be signalled.

[condition type]condition-type:subprocess-signalled subprocess reason
This condition type is a subtype of condition-type:subprocess-abnormal-

termination. It is signalled when the subprocess is killed.

Subprocess is an object that represents the subprocess involved. The internals of this
object can be accessed but the interface is not documented at this time; see the source
code for details.

Reason is interesting only on unix systems, where it is the signal that killed the
process. On other systems it has a fixed value that conveys no useful information.

[condition type]condition-type:subprocess-stopped subprocess reason
This condition type is a subtype of condition-type:subprocess-abnormal-

termination. It is signalled when the subprocess is stopped or suspended.

Subprocess is an object that represents the subprocess involved. The internals of this
object can be accessed but the interface is not documented at this time; see the source
code for details.

Reason is interesting only on unix systems, where it is the signal that stopped the
process. On other systems it has a fixed value that conveys no useful information.

[condition type]condition-type:subprocess-abnormal-termination
subprocess reason

This condition type is a subtype of condition-type:error. This is an abstract type
that is never signalled. It is provided so that condition handlers can be bound to it.

15.7.3 Subprocess Options

The following subprocess options may be passed to run-shell-command or
run-synchronous-subprocess. These options are passed as alternating keyword/value
pairs, for example:

(run-shell-command "ls /"

’output my-output-port

’output-buffer-size 8192)

The example shows a shell command being run with two options specified: output and
output-buffer-size.

[subprocess option]input port
Specifies the standard input of the subprocess. Port may be an input port, in which
case characters are read from port and fed to the subprocess until port reaches end-
of-file. Alternatively, port may be #f, indicating that the subprocess has no standard
input.

Chapter 15: Operating-System Interface 265

The default value of this option is #f.

(call-with-input-file "foo.in"

(lambda (port)

(run-shell-command "cat > /dev/null" ’input port)))

[subprocess option]input-line-translation line-ending
Specifies how line-endings should be translated when writing characters to the subpro-
cess. Ignored if the input option is #f. Line-ending must be either a string specifying
the line ending, or the symbol default, meaning to use the operating system’s stan-
dard line ending. In either case, newline characters to be written to the input port
are translated to the specified line ending before being written.

The default value of this option is default.

(call-with-input-file "foo.in"

(lambda (port)

(run-shell-command "cat > /dev/null"

’input port

’input-line-translation "\r\n")))

[subprocess option]input-buffer-size n
Specifies the size of the input buffer for the standard input of the subprocess. (This
is the buffer on the Scheme side, and has nothing to do with any buffering done on
the subprocess side.) Ignored if the input option is #f. N must be an exact positive
integer specifying the number of characters the buffer can hold.

The default value of this option is 512.

(call-with-input-file "foo.in"

(lambda (port)

(run-shell-command "cat > /dev/null"

’input port

’input-buffer-size 4096)))

[subprocess option]output port
Specifies the standard output and standard error of the subprocess. Port may be
an output port, in which case characters are read from the subprocess and fed to
port until the subprocess finishes. Alternatively, port may be #f, indicating that the
subprocess has no standard output or standard error.

The default value of this option is the value of (current-output-port).

(call-with-output-file "foo.out"

(lambda (port)

(run-shell-command "ls -la /etc" ’output port)))

[subprocess option]output-line-translation line-ending
Specifies how line-endings should be translated when reading characters from the
standard output of the subprocess. Ignored if the output option is #f. Line-ending
must be either a string specifying the line ending, or the symbol default, meaning
to use the operating system’s standard line ending. In either case, newline characters
read from the subprocess port are translated to the specified line ending.

266 MIT/GNU Scheme 10.1.1

The default value of this option is default.

(call-with-output-file "foo.out"

(lambda (port)

(run-shell-command "ls -la /etc"

’output port

’output-line-translation "\r\n")))

[subprocess option]output-buffer-size n
Specifies the size of the output buffer for the standard output of the subprocess. (This
is the buffer on the Scheme side, and has nothing to do with any buffering done on
the subprocess side.) Ignored if the output option is #f. N must be an exact positive
integer specifying the number of characters the buffer can hold.

The default value of this option is 512.

(call-with-output-file "foo.out"

(lambda (port)

(run-shell-command "ls -la /etc"

’output port

’output-buffer-size 4096)))

[subprocess option]redisplay-hook thunk
Specifies that thunk is to be run periodically when output from the subprocess is
available. Thunk must be a procedure of no arguments, or #f indicating that no hook
is supplied. This option is mostly useful for interactive systems. For example, the
Edwin text editor uses this to update output buffers when running some subprocesses.

The default value of this option is #f.

(run-shell-command "ls -la /etc"

’redisplay-hook

(lambda ()

(update-buffer-contents buffer)))

[subprocess option]environment environment
Specifies the environment variables that are to be used for the subprocess. Environ-
ment must be either a vector of strings or #f indicating the default environment. If
it is a vector of strings, each string must be a name/value pair where the name and
value are separated by an equal sign, for example, "foo=bar". To define a variable
with no value, just omit the value, as in "foo=".

Note that the variable scheme-subprocess-environment is bound to the default
subprocess environment.

The default value of this option is #f.

(run-shell-command "ls -la /etc"

’environment

(let* ((v scheme-subprocess-environment)

(n (vector-length v))

(v (vector-grow v (+ n 1))))

(vector-set! v n "TERM=none")

v))

Chapter 15: Operating-System Interface 267

[subprocess option]working-directory pathname
Specifies the working directory in which the subprocess will run.

The default value of this option is (working-directory-pathname).

(run-shell-command "ls -la" ’working-directory "/etc/")

[subprocess option]use-pty? boolean
This option is meaningful only on unix systems; on other systems it is ignored. Spec-
ifies whether to communicate with the subprocess using pty devices; if true, ptys
will be used, otherwise pipes will be used.

The default value of this option is #f.

(run-shell-command "ls -la /etc" ’use-pty? #t)

[subprocess option]shell-file-name pathname
Specifies the shell program to use for run-shell-command.

The default value of this option is (os/shell-file-name). This is the value of the
environment variable SHELL, or if SHELL is not set, the value is operating-system
dependent as follows:

• On unix systems, /bin/sh is used.

• On Windows systems, the value of the environment variable COMSPEC is used. If
that is not set, cmd.exe is used for Windows NT, or command.com is used for
Windows 9x; in each case the shell is found by searching the path.

(run-shell-command "ls -la /etc"

’shell-file-name "/usr/local/bin/bash")

15.8 TCP Sockets

MIT/GNU Scheme provides access to sockets, which are a mechanism for inter-process
communication. tcp stream sockets are supported, which communicate between computers
over a tcp/ip network. tcp sockets are supported on all operating systems.

tcp sockets have two distinct interfaces: one interface to implement a client and another
to implement a server. The basic protocol is that servers set up a listening port and wait
for connections from clients. Implementation of clients is simpler and will be treated first.

The socket procedures accept two special arguments, called host-name and service. Host-
name is a string which must be the name of an internet host. It is looked up using the
ordinary lookup rules for your computer. For example, if your host is foo.mit.edu and
host-name is "bar", then it specifies bar.mit.edu.

Service specifies the service to which you will connect. A networked computer normally
provides several different services, such as telnet or FTP. Each service is associated with a
unique port number; for example, the "www" service is associated with port 80. The service
argument specifies the port number, either as a string, or directly as an exact non-negative
integer. Port strings are decoded by the operating system using a table; for example, on
unix the table is in /etc/services. Usually you will use a port string rather than a number.

[procedure]open-tcp-stream-socket host-name service
open-tcp-stream-socket opens a connection to the host specified by host-name.
Host-name is looked up using the ordinary lookup rules for your computer. The

268 MIT/GNU Scheme 10.1.1

connection is established to the service specified by service. The returned value is
an I/O port, to which you can read and write characters using ordinary Scheme I/O

procedures such as read-char and write-char.

When you wish to close the connection, just use close-port.

As an example, here is how you can open a connection to a web server:

(open-tcp-stream-socket "web.mit.edu" "www")

Next we will treat setting up a tcp server, which is slightly more complicated. Creating
a server is a two-part process. First, you must open a server socket, which causes the
operating system to listen to the network on a port that you specify. Once the server socket
is opened, the operating system will allow clients to connect to your computer on that port.

In the second step of the process, you accept the connection, which completes the con-
nection initiated by the client, and allows you to communicate with the client. Accepting
a connection does not affect the server socket; it continues to listen for additional client
connections. You can have multiple client connections to the same server socket open si-
multaneously.

[procedure]open-tcp-server-socket service [address]
This procedure opens a server socket that listens for connections to service; the socket
will continue to listen until you close it. The returned value is a server socket object.

An error is signalled if another process is already listening on the service. Additionally,
ports whose number is less than 1024 are privileged on many operating systems, and
cannot be used by non-privileged processes; if service specifies such a port and you
do not have administrative privileges, an error may be signalled.

The optional argument address specifies the IP address on which the socket will
listen. If this argument is not supplied or is given as #f, then the socket listens on
all IP addresses for this machine. (This is equivalent to passing the result of calling
host-address-any.)

[procedure]tcp-server-connection-accept server-socket block? peer-address
[line-translation]

Checks to see if a client has connected to server-socket. If so, an I/O port is returned.
The returned port can be read and written using ordinary Scheme I/O procedures
such as read-char and write-char.

The argument block? says what to do if no client has connected at the time of the
call. If #f, it says to return immediately with two values of #f. Otherwise, the call
waits until a client connects.

The argument peer-address is either #f or an IP address as allocated by
allocate-host-address. If it is an IP address, the address is modified to be the
address of the client making the connection.

The optional argument line-translation specifies how end-of-line characters will be
translated when reading or writing to the returned socket. If this is unspecified or
#f, then lines will be terminated by cr-lf, which is the standard for most internet
protocols. Otherwise, it must be a string, which specifies the line-ending character
sequence to use.

Chapter 15: Operating-System Interface 269

Note that closing the port returned by this procedure does not affect server-socket;
it just closes the particular client connection that was opened by the call. To close
server-socket, use close-tcp-server-socket.

[procedure]close-tcp-server-socket server-socket
Closes the server socket server-socket. The operating system will cease listening for
network connections to that service. Client connections to server-socket that have
already been accepted will not be affected.

15.9 Miscellaneous OS Facilities

This section contains assorted operating-system facilities that don’t fit into other categories.

[variable]microcode-id/operating-system
[obsolete variable]microcode-id/operating-system-name

microcode-id/operating-system is bound to a symbol that specifies the type of
operating system that Scheme is running under. There are two possible values: unix
or nt.

The deprecated variable microcode-id/operating-system-name is a string that’s
equivalent to microcode-id/operating-system.

[variable]microcode-id/operating-system-variant
This variable is a string that identifies the particular variant of the operating system
that Scheme is running under. Here are some of the possible values:

"GNU/Linux"

"MacOSX"

"Microsoft Windows NT 4.0 (Build 1381; Service Pack 3)"

For Windows systems, it is recommended that you match on the prefix of this string
and ignore the "Build" suffix. This is because the suffix may contain information
about service packs or fixes, while the prefix will be constant for a particular version
of Windows.

The next few procedures provide access to the domain name service (DNS), which main-
tains associations between internet host names such as "www.swiss.ai.mit.edu" and IP

addresses, such as 18.23.0.16. In MIT/GNU Scheme, we represent an internet host name
as a string, and an IP address as a byte vector of length 4 (byte vectors are just character
strings that are accessed using vector-8b-ref rather than string-ref). The bytes in an
IP address read in the same order as they do when written out:

(get-host-by-name "www.swiss") ⇒ #("\022\027\000\020")

[procedure]get-host-by-name host-name
Looks up the internet host name host-name using the DNS, returning a vector of
IP addresses for the corresponding host, or #f if there is no such host. Usually
the returned vector has only one element, but if a host has more than one network
interface, the vector might have more than one element.

(get-host-by-name "www.swiss") ⇒ #("\022\027\000\020")

270 MIT/GNU Scheme 10.1.1

[procedure]get-host-by-address ip-address
Does a reverse DNS lookup on ip-address, returning the internet host name corre-
sponding to that address, or #f if there is no such host.

(get-host-by-address "\022\027\000\020") ⇒ "swissnet.ai.mit.edu"

[procedure]canonical-host-name host-name
Finds the “canonical” internet host name for host-name. For example:

(canonical-host-name "zurich") ⇒ "zurich.ai.mit.edu"

(canonical-host-name "www.swiss") ⇒ "swissnet.ai.mit.edu"

In both examples, the default internet domain ‘ai.mit.edu’ is added to host-name.
In the second example, "www.swiss" is an alias for another computer named
"swissnet".

[procedure]get-host-name
Returns the string that identifies the computer that MIT/GNU Scheme is running
on. Usually this is an unqualified internet host name, i.e. the host name without the
domain suffix:

(get-host-name) ⇒ "aarau"

[procedure]os/hostname
Returns the canonical internet host name of the computer that MIT/GNU Scheme is
running on. So, in contrast to the example for get-host-name:

(os/hostname) ⇒ "aarau.ai.mit.edu"

[procedure]allocate-host-address
Allocates and returns an IP address object. This is just a string of a fixed length
(current 4 bytes) into which an IP address may be stored. This procedure is used to
generate an appropriate argument to be passed to tcp-server-connection-accept.

(allocate-host-address) ⇒ "Xe\034\241"

[procedure]host-address-any
Return an IP address object that specifies “any host”. This object is useful only when
passed as the address argument to open-tcp-server-socket.

(host-address-any) ⇒ "\000\000\000\000"

[procedure]host-address-loopback
Return an IP address object that specifies the local loopback network interface. The
loopback interface is a software network interface that can be used only for commu-
nicating between processes on the same computer. This address object is useful only
when passed as the address argument to open-tcp-server-socket.

(host-address-loopback) ⇒ "\177\000\000\001"

271

16 Error System

The MIT/GNU Scheme error system provides a uniform mechanism for the signalling of
errors and other exceptional conditions. The simplest and most generally useful procedures
in the error system are:

error is used to signal simple errors, specifying a message and some irritant objects
(see Section 16.1 [Condition Signalling], page 272). Errors are usually handled
by stopping the computation and putting the user in an error repl.

warn is used to signal warnings (see Section 16.1 [Condition Signalling], page 272).
Warnings are usually handled by printing a message on the console and contin-
uing the computation normally.

ignore-errors

is used to suppress the normal handling of errors within a given dynamic extent
(see Section 16.3 [Condition Handling], page 275). Any error that occurs within
the extent is trapped, returning immediately to the caller of ignore-errors.

More demanding applications require more powerful facilities. To give a concrete exam-
ple, suppose you want floating-point division to return a very large number whenever the
denominator is zero. This behavior can be implemented using the error system.

The Scheme arithmetic system can signal many different kinds of errors, including
floating-point divide by zero. In our example, we would like to handle this particular
condition specially, allowing the system to handle other arithmetic errors in its usual way.

The error system supports this kind of application by providing mechanisms for dis-
tinguishing different types of error conditions and for specifying where control should be
transferred should a given condition arise. In this example, there is a specific object that
represents the “floating-point divide by zero” condition type, and it is possible to dynami-
cally specify an arbitrary Scheme procedure to be executed when a condition of that type
is signalled. This procedure then finds the stack frame containing the call to the division
operator, and returns the appropriate value from that frame.

Another useful kind of behavior is the ability to specify uniform handling for related
classes of conditions. For example, it might be desirable, when opening a file for input,
to gracefully handle a variety of different conditions associated with the file system. One
such condition might be that the file does not exist, in which case the program will try
some other action, perhaps opening a different file instead. Another related condition is
that the file exists, but is read protected, so it cannot be opened for input. If these or any
other related conditions occur, the program would like to skip this operation and move on
to something else.

At the same time, errors unrelated to the file system should be treated in their usual
way. For example, calling car on the argument 3 should signal an error. Or perhaps the
name given for the file is syntactically incorrect, a condition that probably wants to be
handled differently from the case of the file not existing.

To facilitate the handling of classes of conditions, the error system taxonomically orga-
nizes all condition types. The types are related to one another by taxonomical links, which
specify that one type is a “kind of” another type. If two types are linked this way, one is
considered to be a specialization of the other; or vice-versa, the second is a generalization

272 MIT/GNU Scheme 10.1.1

of the first. In our example, all of the errors associated with opening an input file would be
specializations of the condition type “cannot open input file”.

The taxonomy of condition types permits any condition type to have no more than
one immediate generalization. Thus, the condition types form a forest (set of trees).
While users can create new trees, the standard taxonomy (see Section 16.7 [Taxonomy],
page 286) is rooted at condition-type:serious-condition, condition-type:warning,
condition-type:simple-condition, and condition-type:breakpoint; users are encour-
aged to add new subtypes to these condition types rather than create new trees in the forest.

To summarize, the error system provides facilities for the following tasks. The sections
that follow will describe these facilities in more detail.

Signalling a condition
A condition may be signalled in a number of different ways. Simple errors may
be signalled, without explicitly defining a condition type, using error. The
signal-condition procedure provides the most general signalling mechanism.

Handling a condition
The programmer can dynamically specify handlers for particular condition
types or for classes of condition types, by means of the bind-condition-

handler procedure. Individual handlers have complete control over the han-
dling of a condition, and additionally may decide not to handle a particular
condition, passing it on to previously bound handlers.

Restarting from a handler
The with-restart procedure provides a means for condition-signalling code to
communicate to condition-handling code what must be done to proceed past
the condition. Handlers can examine the restarts in effect when a condition was
signalled, allowing a structured way to continue an interrupted computation.

Packaging condition state
Each condition is represented by an explicit object. Condition objects contain
information about the nature of the condition, information that describes the
state of the computation from which the condition arose, and information about
the ways the computation can be restarted.

Classification of conditions
Each condition has a type, represented by a condition type object. Each con-
dition type may be a specialization of some other condition types. A group of
types that share a common generalization can be handled uniformly by speci-
fying a handler for the generalization.

16.1 Condition Signalling

Once a condition instance has been created using make-condition (or any condition con-
structor), it can be signalled. The act of signalling a condition is separated from the act of
creating the condition to allow more flexibility in how conditions are handled. For example,
a condition instance could be returned as the value of a procedure, indicating that some-
thing unusual has happened, to allow the caller to clean up some state. The caller could
then signal the condition once it is ready.

Chapter 16: Error System 273

A more important reason for having a separate condition-signalling mechanism is that
it allows resignalling. When a signalled condition has been caught by a particular handler,
and the handler decides that it doesn’t want to process that particular condition, it can
signal the condition again. This is one way to allow other handlers to get a chance to see
the condition.

[procedure]error reason argument . . .
This is the simplest and most common way to signal a condition that requires inter-
vention before a computation can proceed (when intervention is not required, warn
is more appropriate). error signals a condition (using signal-condition), and if
no handler for that condition alters the flow of control (by invoking a restart, for
example) it calls the procedure standard-error-handler, which normally prints an
error message and stops the computation, entering an error repl. Under normal
circumstances error will not return a value (although an interactive debugger can be
used to force this to occur).

Precisely what condition is signalled depends on the first argument to error. If
reason is a condition, then that condition is signalled and the arguments are ignored.
If reason is a condition type, then a new instance of this type is generated and
signalled; the arguments are used to generate the values of the fields for this condition
type (they are passed as the field-plist argument to make-condition). In the most
common case, however, reason is neither a condition nor a condition type, but rather
a string or symbol. In this case a condition of type condition-type:simple-error is
created with the message field containing the reason and the irritants field containing
the arguments.

[procedure]warn reason argument . . .
When a condition is not severe enough to warrant intervention, it is appropriate to
signal the condition with warn rather than error. As with error, warn first calls
signal-condition; the condition that is signalled is chosen exactly as in error except
that a condition of type condition-type:simple-warning is signalled if reason is
neither a condition nor a condition type. If the condition is not handled, warn calls
the procedure standard-warning-handler, which normally prints a warning message
and continues the computation by returning from warn.

warn establishes a restart named muffle-warning before calling signal-condition.
This allows a signal handler to prevent the generation of the warning message by
calling muffle-warning. The value of a call to warn is unspecified.

[procedure]signal-condition condition
This is the fundamental operation for signalling a condition. The precise operation
of signal-condition depends on the condition type of which condition is an in-
stance, the condition types set by break-on-signals, and the handlers established
by bind-condition-handler and bind-default-condition-handler.

If the condition is an instance of a type that is a specialization of any of the types
specified by break-on-signals, then a breakpoint repl is initiated. Otherwise (or
when that repl returns), the handlers established by bind-condition-handler are
checked, most recent first. Each applicable handler is invoked, and the search for a
handler continues if the handler returns normally. If all applicable handlers return,

274 MIT/GNU Scheme 10.1.1

then the applicable handlers established by bind-default-condition-handler are
checked, again most recent first. Finally, if no handlers apply (or all return in a
normal manner), signal-condition returns an unspecified value.

Note: unlike many other systems, the MIT/GNU Scheme runtime library does not
establish handlers of any kind. (However, the Edwin text editor uses condition han-
dlers extensively.) Thus, calls to signal-condition will return to the caller unless
there are user supplied condition handlers, as the following example shows:

(signal-condition

(make-condition

condition-type:error

(call-with-current-continuation (lambda (x) x))

’() ; no restarts
’())) ; no fields

⇒ unspecified

16.2 Error Messages

By convention, error messages (and in general, the reports generated by write-condition-

report) should consist of one or more complete sentences. The usual rules for sentences
should be followed: the first word of the sentence should be capitalized, and the sentence
should be terminated by a period. The message should not contain extraneous whitespace
such as line breaks or indentation.

The error system provides a simple formatting language that allows the programmer
to have some control over the printing of error messages. This formatting language will
probably be redesigned in a future release.

Error messages typically consist of a string describing the error, followed by some irritant
objects. The string is printed using display, and the irritants are printed using write, typ-
ically with a space between each irritant. To allow simple formatting, we introduce a noise
object, printed using display. The irritant list may contain ordinary objects interspersed
with noise objects. Each noise object is printed using display, with no extra whitespace,
while each normal object is printed using write, prefixed by a single space character.

Here is an example:

(define (error-within-procedure message irritant procedure)

(error message

irritant

(error-irritant/noise "within procedure")

procedure

(error-irritant/noise ".")))

This would format as follows:

(error-within-procedure "Bad widget" ’widget-32 ’invert-widget) error

Bad widget widget-32 within procedure invert-widget.

Here are the operations supporting error messages:

Chapter 16: Error System 275

[procedure]format-error-message message irritants port
Message is typically a string (although this is not required), irritants a list of irritant
objects, and port an output port. Formats message and irritants to port in the
standard way. Note that, during the formatting process, the depth and breadth to
which lists are printed are each limited to small numbers, to guarantee that the output
from each irritant is not arbitrarily large.

[procedure]error-irritant/noise value
Creates and returns a noise object whose value is value.

16.3 Condition Handling

The occurrence of a condition is signalled using signal-condition. signal-condition

attempts to locate and invoke a condition handler that is prepared to deal with the type
of condition that has occurred. A condition handler is a procedure of one parameter, the
condition that is being signalled. A procedure is installed as a condition handler by calling
bind-condition-handler (to establish a handler that is in effect only while a particu-
lar thunk is executing) or bind-default-condition-handler (to establish a handler that
is in effect permanently). As implied by the name, handlers created by bind-default-

condition-handler are invoked only after all other applicable handlers have been invoked.

A handler may process a signal in any way it deems appropriate, but the common
patterns are:

Ignore the condition.
By returning from the handler in the usual manner.

Handle the condition.
By doing some processing and then invoking a restart (or, less preferably,
a continuation) that was established at some point prior to the call to
signal-condition.

Resignal a condition.
By doing some processing and calling signal-condition with either the same
condition or a newly created one. In order to support this, signal-condition
runs handler in such a way that a subsequent call to signal-condition sees
only the handlers that were established prior to this one.

As an aid to debugging condition handlers, Scheme maintains a set of condition types
that will cause an interactive breakpoint to occur prior to normal condition signalling. That
is, signal-condition creates a new repl prior to its normal operation when its argument is
a condition that is a specialization of any of these types. The procedure break-on-signals
establishes this set of condition types.

[procedure]ignore-errors thunk
Executes thunk with a condition handler that intercepts the signalling of any spe-
cialization of condition-type:error (including those produced by calls to error)
and immediately terminates the execution of thunk and returns from the call to
ignore-errors with the signalled condition as its value. If thunk returns normally,
its value is returned from ignore-errors.

276 MIT/GNU Scheme 10.1.1

Notice that ignore-errors does not “turn off signalling” or condition handling. Con-
dition handling takes place in the normal manner but conditions specialized from
condition-type:error are trapped rather than propogated as they would be by
default.

[procedure]bind-condition-handler condition-types handler thunk
Invokes thunk after adding handler as a condition handler for the conditions specified
by condition-types. Condition-types must be a list of condition types; signalling a
condition whose type is a specialization of any of these types will cause the handler
to be invoked. See signal-condition for a description of the mechanism used to
invoke handlers.

By special extension, if condition-types is the empty list then the handler is called
for all conditions.

[procedure]bind-default-condition-handler condition-types handler
Installs handler as a (permanent) condition handler for the conditions specified by
condition-types. Condition-types must be a list of condition types; signalling a con-
dition whose type is a specialization of any of these types will cause the handler to be
invoked. See signal-condition for a description of the mechanism used to invoke
handlers.

By special extension, if condition-types is the empty list then the handler is called
for all conditions.

[procedure]break-on-signals condition-types
Arranges for signal-condition to create an interactive repl before it signals a
condition that is a specialization of any of the types in the list of condition-types.
This can be extremely helpful when trying to debug code that uses custom condition
handlers. In order to create a repl when any condition type is signalled it is best to
actually put a breakpoint on entry to signal-condition.

[procedure]standard-error-handler condition
Called internally by error after it calls signal-condition. Normally creates a new
repl with the prompt "error>" (but see standard-error-hook). In order to sim-
ulate the effect of calling error, code may call signal-condition directly and then
call standard-error-handler if signal-condition returns.

[parameter]standard-error-hook
This parameter controls the behavior of the procedure standard-error-handler,
and hence error. It is intended to be bound with parameterize and is normally
#f. It may be changed to a procedure of one argument and will then be invoked
(with standard-error-hook rebound to #f) by standard-error-handler just prior
to starting the error repl. It is passed one argument, the condition being signalled.

[procedure]standard-warning-handler condition
This is the procedure called internally by warn after it calls signal-condition.
The normal behavior of standard-warning-handler is to print a message (but see
standard-warning-hook). More precisely, the message is printed to the port returned
by notification-output-port. The message is formed by first printing the string

Chapter 16: Error System 277

"Warning: " to this port, and then calling write-condition-report on condition
and the port.

In order to simulate the effect of calling warn, code may call signal-condition di-
rectly and then call standard-warning-handler if signal-condition returns. (This
is not sufficient to implement the muffle-warning protocol, however. For that pur-
pose an explicit restart must be provided.)

[parameter]standard-warning-hook
This parameter controls the behavior of the procedure standard-warning-handler,
and hence warn. It is intended to be bound with parameterize and is normally #f.
It may be changed to a procedure of one argument and will then be invoked (with
standard-warning-hook rebound to #f) by standard-warning-handler in lieu of
writing the warning message. It is passed one argument, the condition being signalled.

16.4 Restarts

The Scheme error system provides a mechanism, known as restarts, that helps coordinate
condition-signalling code with condition-handling code. A module of code that detects and
signals conditions can provide procedures (using with-simple-restart or with-restart)
to be invoked by handlers that wish to continue, abort, or restart the computation. These
procedures, called restart effectors, are encapsulated in restart objects.

When a condition object is created, it contains a set of restart objects, each of which con-
tains a restart effector. Condition handlers can inspect the condition they are handling (us-
ing find-restart to find restarts by name, or condition/restarts to see the entire set),
and they can invoke the associated effectors (using invoke-restart or invoke-restart-
interactively). Effectors can take arguments, and these may be computed directly by
the condition-handling code or by gathering them interactively from the user.

The names of restarts can be chosen arbitrarily, but the choice of name is significant.
These names are used to coordinate between the signalling code (which supplies names for
restarts) and the handling code (which typically chooses a restart effector by the name of
its restart). Thus, the names specify the restart protocol implemented by the signalling
code and invoked by the handling code. The protocol indicates the number of arguments
required by the effector code as well as the semantics of the arguments.

Scheme provides a conventional set of names (hence, protocols) for common use. By
choosing the names of restarts from this set, signalling code can indicate that it is able to
perform a small set of fairly common actions (abort, continue, muffle-warning, retry,
store-value, use-value). In turn, simple condition-handling code can look for the kind
of action it wishes to perform and simply invoke it by name. All of Scheme’s conventional
names are symbols, although in general restart names are not restricted to any particular
data type. In addition, the object #f is reserved to indicate the “not for automated use”
protocol: these restarts should be activated only under human control.

Restarts themselves are first-class objects. They encapsulate their name, a procedure
(known as the effector) to be executed if they are invoked, and a thunk (known as the
reporter) that can be invoked to display a description of the restart (used, for example,
by the interactive debugger). Invoking a restart is an indication that a handler has chosen
to accept control for a condition; as a consequence, the effector of the restart should not

278 MIT/GNU Scheme 10.1.1

return, since this would indicate that the handler declined to handle the condition. Thus, the
effector should call a continuation captured before the condition-signalling process began.
The most common pattern of usage by signalling code is encapsulated in with-simple-

restart.

Within this chapter, a parameter named restarts will accept any of the following values:

• A list of restart objects.

• A condition. The procedure condition/restarts is called on the condition, and the
resulting list of restarts is used in place of the condition.

• The symbol bound-restarts. The procedure bound-restarts is called (with no ar-
guments), and the resulting list of restarts is used in place of the symbol.

• If the restarts parameter is optional and is not supplied, it is equivalent to having
specified the symbol bound-restarts.

16.4.1 Establishing Restart Code

[procedure]with-simple-restart name reporter thunk
Invokes thunk in a dynamic environment created by adding a restart named name to
the existing named restarts. Reporter may be used during the execution of thunk to
produce a description of the newly created restart; it must either be a procedure of one
argument (a port) or a string. By convention, the description generated by reporter
should be a short complete sentence, with first word capitalized and terminated by
a period. The sentence should fit on one line with a little room to spare (see the
examples below); usually this means that the sentence should be 70 characters or less
in length.

If the restart created by with-simple-restart is invoked it simply aborts the com-
putation in progress by returning an unspecified value from the call to with-simple-

restart. Otherwise with-simple-restart returns the value computed by thunk.

(with-simple-restart ’george "This restart is named george."

(lambda () 3)) ⇒ 3

(with-simple-restart ’george "This restart is named george."

(lambda ()

(invoke-restart (find-restart ’george)))) ⇒ unspecific

(with-simple-restart ’george "This restart is named george."

(lambda () (car 3)))

;The object 3, passed as the first argument to car,

; is not the correct type.

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify an argument to use in its place.

; (RESTART 2) => This restart is named george.

; (RESTART 1) => Return to read-eval-print level 1.

[procedure]with-restart name reporter effector interactor thunk
Invokes thunk in a dynamic environment created by adding a restart named name
to the existing named restarts. Reporter may be used during the execution of thunk

Chapter 16: Error System 279

to produce a description of the newly created restart; it must either be a procedure
of one argument (a port) or a string. Effector is a procedure which will be called
when the restart is invoked by invoke-restart. Interactor specifies the arguments
that are to be passed to effector when it is invoked interactively; it may be either a
procedure of no arguments, or #f. If interactor is #f, this restart is not meant to be
invoked interactively.

The value returned by with-restart is the value returned by thunk. Should the
restart be invoked by a condition handler, however, the effector will not return back
to the handler that invoked it. Instead, the effector should call a continuation created
before the condition-signalling process began, and with-restart will therefore not
return in the normal manner.

(define (by-george! thunk)

; This code handles conditions that arise while executing thunk
; by invoking the GEORGE restart, passing 1 and 2 to the restart’s
; effector code.
(bind-condition-handler ’() ; All conditions

(lambda (condition)

(invoke-restart (find-restart ’george) 1 2))

thunk))

(define (can-george! thunk)

; This code provides a way of handling errors: the GEORGE restart.
; In order to GEORGE you must supply two values.
(lambda ()

(call-with-current-continuation

(lambda (kappa)

(with-restart

’george ; Name
"This restart is named george." ; Reporter
(lambda (a b) ; Effector

(kappa (list ’george a b)))

values ; Interactor
thunk))))) ; Thunk

(by-george! (can-george! (lambda () -3)) ⇒ -3

(by-george! (can-george! (lambda () (car ’x)))) ⇒ (george 1 2)

16.4.2 Invoking Standard Restart Code

Scheme supports six standard protocols for restarting from a condition, each encapsulated
using a named restart (for use by condition-signalling code) and a simple procedure (for
use by condition-handling code). Unless otherwise specified, if one of these procedures is
unable to find its corresponding restart, it returns immediately with an unspecified value.

Each of these procedures accepts an optional argument restarts, which is described above
in Section 16.4 [Restarts], page 277.

280 MIT/GNU Scheme 10.1.1

[procedure]abort [restarts]
Abort the computation, using the restart named abort. The corresponding effector
takes no arguments and abandons the current line of computation. This is the restart
provided by Scheme’s repl.

If there is no restart named abort, this procedure signals an error of type
condition-type:no-such-restart.

[procedure]continue [restarts]
Continue the current computation, using the restart named continue. The cor-
responding effector takes no arguments and continues the computation beyond the
point at which the condition was signalled.

[procedure]muffle-warning [restarts]
Continue the current computation, using the restart named muffle-warning. The
corresponding effector takes no arguments and continues the computation beyond
the point at which any warning message resulting from the condition would be pre-
sented to the user. The procedure warn establishes a muffle-warning restart for this
purpose.

If there is no restart named muffle-warning, this procedure signals an error of type
condition-type:no-such-restart.

[procedure]retry [restarts]
Retry the current computation, using the restart named retry. The corresponding
effector takes no arguments and simply retries the same computation that triggered
the condition. The condition may reoccur, of course, if the root cause has not been
eliminated. The code that signals a “file does not exist” error can be expected to
supply a retry restart. The restart would be invoked after first creating the missing
file, since the computation is then likely to succeed if it is simply retried.

[procedure]store-value new-value [restarts]
Retry the current computation, using the restart named store-value, after first
storing new-value. The corresponding effector takes one argument, new-value, and
stores it away in a restart-dependent location, then retries the same computation that
triggered the condition. The condition may reoccur, of course, if the root cause has
not been eliminated. The code that signals an “unassigned variable” error can be
expected to supply a store-value restart; this would store the value in the variable
and continue the computation.

[procedure]use-value new-value [restarts]
Retry the current computation, using the restart named use-value, but substituting
new-value for a value that previously caused a failure. The corresponding effector
takes one argument, new-value, and retries the same computation that triggered the
condition with the new value substituted for the failing value. The condition may
reoccur, of course, if the new value also induces the condition.

The code that signals an “unassigned variable” error can be expected to supply a
use-value restart; this would simply continue the computation with new-value in-
stead of the value of the variable. Contrast this with the retry and store-value

restarts. If the retry restart is used it will fail because the variable still has no value.

Chapter 16: Error System 281

The store-value restart could be used, but it would alter the value of the variable,
so that future references to the variable would not be detected.

16.4.3 Finding and Invoking General Restart Code

Restarts are a general mechanism for establishing a protocol between condition-signalling
and condition-handling code. The Scheme error system provides “packaging” for a number
of common protocols. It also provides lower-level hooks that are intended for implement-
ing customized protocols. The mechanism used by signalling code (with-restart and
with-simple-restart) is used for both purposes.

Four additional operations are provided for the use of condition-handling code. Two
operations (bound-restarts and find-restart) allow condition-handling code to locate
active restarts. The other two operations (invoke-restart and invoke-restart-

interactively) allow restart effectors to be invoked once the restart object has been
located.

In addition, there is a data abstraction that provides access to the information encapsu-
lated in restart objects.

[procedure]bound-restarts
Returns a list of all currently active restart objects, most recently installed first.
bound-restarts should be used with caution by condition-handling code, since it
reveals all restarts that are active at the time it is called, rather than at the time
the condition was signalled. It is useful, however, for collecting the list of restarts for
inclusion in newly generated condition objects or for inspecting the current state of
the system.

[procedure]find-restart name [restarts]
Returns the first restart object named name in the list of restarts (permissible values
for restarts are described above in Section 16.4 [Restarts], page 277). When used in
a condition handler, find-restart is usually passed the name of a particular restart
and the condition object that has been signalled. In this way the handler finds only
restarts that were available when the condition was created (usually the same as when
it was signalled). If restarts is omitted, the currently active restarts would be used,
and these often include restarts added after the condition ocurred.

[procedure]invoke-restart restart argument . . .
Calls the restart effector encapsulated in restart, passing the specified arguments to it.
invoke-restart is intended for use by condition-handling code that understands the
protocol implemented by restart, and can therefore calculate and pass an appropriate
set of arguments.

If a condition handler needs to interact with a user to gather the arguments for
an effector (e.g. if it does not understand the protocol implemented by restart)
invoke-restart-interactively should be used instead of invoke-restart.

[procedure]invoke-restart-interactively restart
First calls the interactor encapsulated in restart to interactively gather the arguments
needed for restart’s effector. It then calls the effector, passing these arguments to it.

282 MIT/GNU Scheme 10.1.1

invoke-restart-interactively is intended for calling interactive restarts (those
for which restart/interactor is not #f). For convenience, invoke-restart-

interactively will call the restart’s effector with no arguments if the restart has
no interactor; this behavior may change in the future.

16.4.4 The Named Restart Abstraction

A restart object is very simple, since it encapsulates only a name, effector, interactor, and
description.

[procedure]restart? object
Returns #f if and only if object is not a restart.

[procedure]restart/name restart
Returns the name of restart. While the Scheme error system uses only symbols and
the object #f for its predefined names, programs may use arbitrary objects (name
equivalence is tested using eq?).

[procedure]restart/effector restart
Returns the effector encapsulated in restart. Normally this procedure is not used since
invoke-restart and invoke-restart-interactively capture the most common
invocation patterns.

[procedure]restart/interactor restart
Returns the interactor encapsulated in restart. This is either a procedure of no argu-
ments or the object #f. Normally this procedure is not used since invoke-restart-
interactively captures the most common usage. Thus restart/interactor is
most useful as a predicate to determine if restart is intended to be invoked interac-
tively.

[procedure]write-restart-report restart port
Writes a description of restart to port. This works by either displaying (if it is a
string) or calling (if it is a procedure) the reporter that was supplied when the restart
was created.

16.5 Condition Instances

A condition, in addition to the information associated with its type, usually contains other
information that is not shared with other conditions of the same type. For example, the
condition type associated with “unbound variable” errors does not specify the name of the
variable that was unbound. The additional information is captured in a condition object,
also called a condition instance.

In addition to information that is specific to a given type of condition (such as the
variable name for “unbound variable” conditions), every condition instance also contains a
continuation that encapsulates the state of the computation in which the condition occurred.
This continuation is used for analyzing the computation to learn more about the context
in which the condition occurred. It is not intended to provide a mechanism for continuing
the computation; that mechanism is provided by restarts.

Chapter 16: Error System 283

16.5.1 Generating Operations on Conditions

Scheme provides four procedures that take a condition type as input and produce opera-
tions on the corresponding condition object. These are reminiscent of the operations on
record types that produce record operators (see Section 10.4 [Records], page 140). Given
a condition type it is possible to generate: a constructor for instances of the type (using
condition-constructor); an accessor to extract the contents of a field in instances of
the type (using condition-accessor); a predicate to test for instances of the type (using
condition-predicate); and a procedure to create and signal an instance of the type (using
condition-signaller).

Notice that the creation of a condition object is distinct from signalling an occurrence
of the condition. Condition objects are first-class; they may be created and never signalled,
or they may be signalled more than once. Further notice that there are no procedures for
modifying conditions; once created, a condition cannot be altered.

[procedure]condition-constructor condition-type field-names
Returns a constructor procedure that takes as arguments values for the fields specified
in field-names and creates a condition of type condition-type. Field-names must be a
list of symbols that is a subset of the field-names in condition-type. The constructor
procedure returned by condition-constructor has signature

(lambda (continuation restarts . field-values) ...)

where the field-names correspond to the field-values. The constructor argument
restarts is described in Section 16.4 [Restarts], page 277. Conditions created by the
constructor procedure have #f for the values of all fields other than those specified
by field-names.

For example, the following procedure make-simple-warning constructs a condition
of type condition-type:simple-warning given a continuation (where the condition
occurred), a description of the restarts to be made available, a warning message, and
a list of irritants that caused the warning:

(define make-simple-warning

(condition-constructor condition-type:simple-warning

’(message irritants)))

[procedure]condition-accessor condition-type field-name
Returns a procedure that takes as input a condition object of type condition-type
and extracts the contents of the specified field-name. condition-accessor sig-
nals error:bad-range-argument if the field-name isn’t one of the named fields of
condition-type; the returned procedure will signal error:wrong-type-argument if
passed an object other than a condition of type condition-type or one of its special-
izations.

If it is known in advance that a particular field of a condition will be accessed re-
peatedly it is worth constructing an accessor for the field using condition-accessor

rather than using the (possibly more convenient, but slower) access-condition pro-
cedure.

284 MIT/GNU Scheme 10.1.1

[procedure]condition-predicate condition-type
Returns a predicate procedure for testing whether an object is a condition of type
condition-type or one of its specializations (there is no predefined way to test for a
condition of a given type but not a specialization of that type).

[procedure]condition-signaller condition-type field-names default-handler
Returns a signalling procedure with parameters field-names. When the signalling
procedure is called it creates and signals a condition of type condition-type. If the
condition isn’t handled (i.e. if no handler is invoked that causes an escape from the
current continuation) the signalling procedure reduces to a call to default-handler
with the condition as its argument.

There are several standard procedures that are conventionally used for
default-handler. If condition-type is a specialization of condition-type:error,
default-handler should be the procedure
standard-error-handler. If condition-type is a specialization of
condition-type:warning, default-handler should be the procedure
standard-warning-handler. If condition-type is a specialization of
condition-type:breakpoint, default-handler should be the procedure
standard-breakpoint-handler.

16.5.2 Condition Abstraction

The condition data type is abstracted through a predicate condition? and a set of accessor
procedures.

[procedure]condition? object
Returns #f if and only if object is not a condition.

[procedure]condition/type condition
Returns the condition type of which condition is an instance.

[procedure]condition/error? condition
Returns #t if the condition is an instance of condition type condition-type:error

or a specialization of it, #f otherwise.

[procedure]condition/restarts condition
Returns the list of restarts specified when condition was created.

[procedure]condition/continuation condition
Returns the continuation specified when condition was created. This is provided for
inspecting the state of the system when the condition occurred, not for continuing or
restarting the computation.

[procedure]write-condition-report condition port
Writes a description of condition to port, using the reporter function from the condi-
tion type associated with condition. See also condition/report-string.

Chapter 16: Error System 285

16.5.3 Simple Operations on Condition Instances

The simple procedures described in this section are built on top of the more detailed ab-
straction of condition objects described above. While these procedures are sometimes easier
to use, they are often less efficient.

[procedure]make-condition condition-type continuation restarts field-plist
Create a new condition object as an instance of condition-type, associated with
continuation. The continuation is provided for inspection purposes only, not for
restarting the computation. The restarts argument is described in Section 16.4
[Restarts], page 277. The field-plist is an alternating list of field names and val-
ues for those fields, where the field names are those that would be returned by
(condition-type/field-names condition-type). It is used to provide values for
fields in the condition object; fields with no value specified are set to #f. Once a
condition object has been created there is no way to alter the values of these fields.

[procedure]access-condition condition field-name
Returns the value stored in the field field-name within condition. Field-name must
be one of the names returned by (condition-type/field-names (condition/type

condition)). access-condition looks up the field-name at runtime, so it is more
efficient to use condition-accessor to create an access function if the same field is
to be extracted from several instances of the same condition type.

[procedure]condition/report-string condition
Returns a string containing a report of the condition. This is generated by calling
write-condition-report on condition and a string output port, and returning the
output collected by the port as a string.

16.6 Condition Types

Each condition has a condition type object associated with it. These objects are used
as a means of focusing on related classes of conditions, first by concentrating all of the
information about a specific class of condition in a single place, and second by specifying an
inheritance relationship between types. This inheritance relationship forms the taxonomic
structure of the condition hierarchy (see Section 16.7 [Taxonomy], page 286).

The following procedures consititute the abstraction for condition types.

[procedure]make-condition-type name generalization field-names reporter
Creates and returns a (new) condition type that is a specialization of generalization (if
it is a condition type) or is the root of a new tree of condition types (if generalization
is #f). For debugging purposes, the condition type has a name, and instances of
this type contain storage for the fields specified by field-names (a list of symbols) in
addition to the fields common to all conditions (type, continuation and restarts).

Reporter is used to produce a description of a particular condition of this type. It
may be a string describing the condition, a procedure of arity two (the first argument
will be a condition of this type and the second a port) that will write the message to
the given port, or #f to specify that the reporter should be taken from the condition
type generalization (or produce an “undocumented condition of type . . . ” message
if generalization is #f). The conventions used to form descriptions are spelled out in
Section 16.2 [Error Messages], page 274.

286 MIT/GNU Scheme 10.1.1

[procedure]condition-type/error? condition-type
Returns #t if the condition-type is condition-type:error or a specialization of it,
#f otherwise.

[procedure]condition-type/field-names condition-type
Returns a list of all of the field names for a condition of type condition-type. This
is the set union of the fields specified when this condition-type was created with the
condition-type/field-names of the generalization of this condition-type.

[procedure]condition-type/generalizations condition-type
Returns a list of all of the generalizations of condition-type. Notice that every condi-
tion type is considered a generalization of itself.

[procedure]condition-type? object
Returns #f if and only if object is not a condition type.

16.7 Condition-Type Taxonomy

The MIT/GNU Scheme error system provides a rich set of predefined condition types.
These are organized into a forest through taxonomic links providing the relationships for
“specializes” and “generalizes”. The chart appearing below shows these relationships by
indenting all the specializations of a given type relative to the type. Note that the variables
that are bound to these condition types are prefixed by ‘condition-type:’; for exam-
ple, the type appearing in the following table as ‘simple-error’ is stored in the variable
condition-type:simple-error. Users are encouraged to add new condition types by cre-
ating specializations of existing ones.

Following the chart are detailed descriptions of the predefined condition types. Some
of these types are marked as abstract types. Abstract types are not intended to be used
directly as the type of a condition; they are to be used as generalizations of other types,
and for binding condition handlers. Types that are not marked as abstract are concrete;
they are intended to be explicitly used as a condition’s type.

Chapter 16: Error System 287

serious-condition

error

simple-error

illegal-datum

wrong-type-datum

wrong-type-argument

wrong-number-of-arguments

datum-out-of-range

bad-range-argument

inapplicable-object

file-error

file-operation-error

derived-file-error

port-error

derived-port-error

variable-error

unbound-variable

unassigned-variable

arithmetic-error

divide-by-zero

floating-point-overflow

floating-point-underflow

control-error

no-such-restart

not-loading

primitive-procedure-error

system-call-error

warning

simple-warning

simple-condition

breakpoint

[condition type]condition-type:serious-condition
This is an abstract type. All serious conditions that require some form of intervention
should inherit from this type. In particular, all errors inherit from this type.

[condition type]condition-type:error
This is an abstract type. All errors should inherit from this type.

[condition type]condition-type:simple-error message irritants
This is the condition generated by the error procedure when its first argument is not
a condition or condition type. The fields message and irritants are taken directly from
the arguments to error; message contains an object (usually a string) and irritants
contains a list of objects. The reporter for this type uses format-error-message to
generate its output from message and irritants.

[condition type]condition-type:illegal-datum datum
This is an abstract type. This type indicates the class of errors in which a program
discovers an object that lacks specific required properties. Most commonly, the object

288 MIT/GNU Scheme 10.1.1

is of the wrong type or is outside a specific range. The datum field contains the
offending object.

[condition type]condition-type:wrong-type-datum datum type
This type indicates the class of errors in which a program discovers an object that
is of the wrong type. The type field contains a string describing the type that was
expected, and the datum field contains the object that is of the wrong type.

(error:wrong-type-datum 3.4 "integer") error

;The object 3.4 is not an integer.

;To continue, call RESTART with an option number:

; (RESTART 1) => Return to read-eval-print level 1.

[procedure]error:wrong-type-datum datum type
This procedure signals a condition of type condition-type:wrong-type-datum. The
datum and type fields of the condition are filled in from the corresponding arguments
to the procedure.

[condition type]condition-type:wrong-type-argument datum type operator
operand

This type indicates that a procedure was passed an argument of the wrong type.
The operator field contains the procedure (or a symbol naming the procedure), the
operand field indicates the argument position that was involved (this field contains
either a symbol, a non-negative integer, or #f), the type field contains a string describ-
ing the type that was expected, and the datum field contains the offending argument.

(+ ’a 3) error

;The object a, passed as the first argument to integer-add,

; is not the correct type.

;To continue, call RESTART with an option number:

; (RESTART 2) => Specify an argument to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

(list-copy 3)

;The object 3, passed as an argument to list-copy, is not a list.

;To continue, call RESTART with an option number:

; (RESTART 1) => Return to read-eval-print level 1.

[procedure]error:wrong-type-argument datum type operator
This procedure signals a condition of type condition-type:wrong-type-argument.
The datum, type and operator fields of the condition are filled in from the corre-
sponding arguments to the procedure; the operand field of the condition is set to
#f.

[condition type]condition-type:wrong-number-of-arguments datum type
operands

This type indicates that a procedure was called with the wrong number of arguments.
The datum field contains the procedure being called, the type field contains the
number of arguments that the procedure accepts, and the operands field contains a
list of the arguments that were passed to the procedure.

Chapter 16: Error System 289

(car 3 4) error

;The procedure car has been called with 2 arguments;

; it requires exactly 1 argument.

;To continue, call RESTART with an option number:

; (RESTART 1) => Return to read-eval-print level 1.

[procedure]error:wrong-number-of-arguments datum type operands
This procedure signals a condition of type condition-type:wrong-number-of-

arguments. The datum, type and operands fields of the condition are filled in from
the corresponding arguments to the procedure.

[condition type]condition-type:datum-out-of-range datum
This type indicates the class of errors in which a program discovers an object that is
of the correct type but is otherwise out of range. Most often, this type indicates that
an index to some data structure is outside of the range of indices for that structure.
The datum field contains the offending object.

(error:datum-out-of-range 3) error

;The object 3 is not in the correct range.

;To continue, call RESTART with an option number:

; (RESTART 1) => Return to read-eval-print level 1.

[procedure]error:datum-out-of-range datum
This procedure signals a condition of type condition-type:datum-out-of-range.
The datum field of the condition is filled in from the corresponding argument to the
procedure.

[condition type]condition-type:bad-range-argument datum operator
operand

This type indicates that a procedure was passed an argument that is of the correct
type but is otherwise out of range. Most often, this type indicates that an index to
some data structure is outside of the range of indices for that structure. The operator
field contains the procedure (or a symbol naming the procedure), the operand field
indicates the argument position that was involved (this field contains either a symbol,
a non-negative integer, or #f), and the datum field is the offending argument.

(string-ref "abc" 3) error

;The object 3, passed as the second argument to string-ref,

; is not in the correct range.

;To continue, call RESTART with an option number:

; (RESTART 2) => Specify an argument to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

[procedure]error:bad-range-argument datum operator
This procedure signals a condition of type condition-type:bad-range-argument.
The datum and operator fields of the condition are filled in from the corresponding
arguments to the procedure; the operand field of the condition is set to #f.

290 MIT/GNU Scheme 10.1.1

[condition type]condition-type:inapplicable-object datum operands
This type indicates an error in which a program attempted to apply an object that
is not a procedure. The object being applied is saved in the datum field, and the
arguments being passed to the object are saved as a list in the operands field.

(3 4) error

;The object 3 is not applicable.

;To continue, call RESTART with an option number:

; (RESTART 2) => Specify a procedure to use in its place.

; (RESTART 1) => Return to read-eval-print level 1.

[condition type]condition-type:file-error filename
This is an abstract type. It indicates that an error associated with a file has occurred.
For example, attempting to delete a nonexistent file will signal an error. The filename
field contains a filename or pathname associated with the operation that failed.

[condition type]condition-type:file-operation-error filename verb noun
reason operator operands

This is the most common condition type for file system errors. The filename field
contains the filename or pathname that was being operated on. The verb field contains
a string which is the verb or verb phrase describing the operation being performed,
and the noun field contains a string which is a noun or noun phrase describing the
object being operated on. The reason field contains a string describing the error
that occurred. The operator field contains the procedure performing the operation
(or a symbol naming that procedure), and the operands field contains a list of the
arguments that were passed to that procedure. For example, an attempt to delete a
nonexistent file would have the following field values:

filename "/zu/cph/tmp/no-such-file"

verb "delete"

noun "file"

reason "no such file or directory"

operator file-remove

operands ("/zu/cph/tmp/no-such-file")

and would generate a message like this:

(delete-file "/zu/cph/tmp/no-such-file") error

;Unable to delete file "/zu/cph/tmp/no-such-file" because:

; No such file or directory.

;To continue, call RESTART with an option number:

; (RESTART 3) => Try to delete the same file again.

; (RESTART 2) => Try to delete a different file.

; (RESTART 1) => Return to read-eval-print level 1.

[procedure]error:file-operation index verb noun reason operator operands
This procedure signals a condition of type condition-type:file-operation-error.
The fields of the condition are filled in from the corresponding arguments to the
procedure, except that the filename is taken as the indexth element of operands.

Chapter 16: Error System 291

[condition type]condition-type:derived-file-error filename condition
This is another kind of file error, which is generated by obscure file-system errors that
do not fit into the standard categories. The filename field contains the filename or
pathname that was being operated on, and the condition field contains a condition
describing the error in more detail. Usually the condition field contains a condition
of type condition-type:system-call-error.

[procedure]error:derived-file filename condition
This procedure signals a condition of type condition-type:derived-file-error.
The filename and condition fields of the condition are filled in from the corresponding
arguments to the procedure.

[condition type]condition-type:port-error port
This is an abstract type. It indicates that an error associated with a I/O port has
occurred. For example, writing output to a file port can signal an error if the disk
containing the file is full; that error would be signalled as a port error. The port field
contains the associated port.

[condition type]condition-type:derived-port-error port condition
This is a concrete type that is signalled when port errors occur. The port field contains
the port associated with the error, and the condition field contains a condition object
that describes the error in more detail. Usually the condition field contains a condition
of type condition-type:system-call-error.

[procedure]error:derived-port port condition
This procedure signals a condition of type condition-type:derived-port-error.
The port and condition fields of the condition are filled in from the corresponding
arguments to the procedure.

[condition type]condition-type:variable-error location environment
This is an abstract type. It indicates that an error associated with a variable has
occurred. The location field contains the name of the variable, and the environment
field contains the environment in which the variable was referenced.

[condition type]condition-type:unbound-variable location environment
This type is generated when a program attempts to access or modify a variable that is
not bound. The location field contains the name of the variable, and the environment
field contains the environment in which the reference occurred.

foo error

;Unbound variable: foo

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of foo.

; (RESTART 2) => Define foo to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

[condition type]condition-type:unassigned-variable location environment
This type is generated when a program attempts to access a variable that is not
assigned. The location field contains the name of the variable, and the environment
field contains the environment in which the reference occurred.

292 MIT/GNU Scheme 10.1.1

foo error

;Unassigned variable: foo

;To continue, call RESTART with an option number:

; (RESTART 3) => Specify a value to use instead of foo.

; (RESTART 2) => Set foo to a given value.

; (RESTART 1) => Return to read-eval-print level 1.

[condition type]condition-type:arithmetic-error operator operands
This is an abstract type. It indicates that a numerical operation was unable to com-
plete because of an arithmetic error. (For example, division by zero.) The operator
field contains the procedure that implements the operation (or a symbol naming the
procedure), and the operands field contains a list of the arguments that were passed
to the procedure.

[condition type]condition-type:divide-by-zero operator operands
This type is generated when a program attempts to divide by zero. The operator field
contains the procedure that implements the failing operation (or a symbol naming the
procedure), and the operands field contains a list of the arguments that were passed
to the procedure.

(/ 1 0)

;Division by zero signalled by /.

;To continue, call RESTART with an option number:

; (RESTART 1) => Return to read-eval-print level 1.

[procedure]error:divide-by-zero operator operands
This procedure signals a condition of type condition-type:divide-by-zero. The
operator and operands fields of the condition are filled in from the corresponding
arguments to the procedure.

[condition type]condition-type:floating-point-overflow operator operands
This type is generated when a program performs an arithmetic operation that results
in a floating-point overflow. The operator field contains the procedure that imple-
ments the operation (or a symbol naming the procedure), and the operands field
contains a list of the arguments that were passed to the procedure.

[condition type]condition-type:floating-point-underflow operator
operands

This type is generated when a program performs an arithmetic operation that results
in a floating-point underflow. The operator field contains the procedure that im-
plements the operation (or a symbol naming the procedure), and the operands field
contains a list of the arguments that were passed to the procedure.

[condition type]condition-type:primitive-procedure-error operator
operands

This is an abstract type. It indicates that an error was generated by a primitive
procedure call. Primitive procedures are distinguished from ordinary procedures in
that they are not written in Scheme but instead in the underlying language of the
Scheme implementation. The operator field contains the procedure that implements

Chapter 16: Error System 293

the operation (or a symbol naming the procedure), and the operands field contains a
list of the arguments that were passed to the procedure.

[condition type]condition-type:system-call-error operator operands
system-call error-type

This is the most common condition type generated by primitive procedures. A con-
dition of this type indicates that the primitive made a system call to the operating
system, and that the system call signalled an error. The system-call error is reflected
back to Scheme as a condition of this type, except that many common system-call
errors are automatically translated by the Scheme implementation into more useful
forms; for example, a system-call error that occurs while trying to delete a file will be
translated into a condition of type condition-type:file-operation-error. The
operator field contains the procedure that implements the operation (or a symbol
naming the procedure), and the operands field contains a list of the arguments that
were passed to the procedure. The system-call and error-type fields contain symbols
that describe the specific system call that was being made and the error that occurred,
respectively; these symbols are completely operating-system dependent.

[condition type]condition-type:control-error
This is an abstract type. It describes a class of errors relating to program control
flow.

[condition type]condition-type:no-such-restart name
This type indicates that a named restart was not active when it was expected to be.
Conditions of this type are signalled by several procedures that look for particular
named restarts, for example muffle-warning. The name field contains the name
that was being searched for.

(muffle-warning) error

;The restart named muffle-warning is not bound.

;To continue, call RESTART with an option number:

; (RESTART 1) => Return to read-eval-print level 1.

[procedure]error:no-such-restart name
This procedure signals a condition of type condition-type:no-such-restart. The
name field of the condition is filled in from the corresponding argument to the pro-
cedure.

[condition type]condition-type:not-loading
A condition of this type is generated when the procedure current-load-pathname is
called from somewhere other than inside a file being loaded.

(current-load-pathname) error

;No file being loaded.

;To continue, call RESTART with an option number:

; (RESTART 1) => Return to read-eval-print level 1.

[condition type]condition-type:warning
This is an abstract type. All warnings should inherit from this type. Warnings are
a class of conditions that are usually handled by informing the user of the condition
and proceeding the computation normally.

294 MIT/GNU Scheme 10.1.1

[condition type]condition-type:simple-warning message irritants
This is the condition generated by the warn procedure. The fields message and
irritants are taken directly from the arguments to warn; message contains an object
(usually a string) and irritants contains a list of objects. The reporter for this type
uses format-error-message to generate its output from message and irritants.

[condition type]condition-type:simple-condition message irritants
This is an unspecialized condition that does not fall into any of the standard condition
classes. The message field contains an object (usually a string) and irritants contains
a list of objects. The reporter for this type uses format-error-message to generate
its output from message and irritants.

[condition type]condition-type:breakpoint environment message prompt
A condition of this type is generated by the breakpoint mechanism. The contents of
its fields are beyond the scope of this document.

295

17 Graphics

MIT/GNU Scheme has a simple two-dimensional line-graphics interface that is suitable for
many graphics applications. In particular it is often used for plotting data points from
experiments. The interface is generic in that it can support different types of graphics
devices in a uniform manner. At the present time only one type of graphics device is
implemented on each operating system.

Procedures are available for drawing points, lines, and text; defining the coordinate
system; clipping graphics output; controlling some of the drawing characteristics; and con-
trolling the output buffer (for devices that perform buffering). Additionally, devices may
support custom operations, such as control of colors.

There are some constraints on the arguments to the procedures described in this chapter.
Any argument named graphics-device must be a graphics device object that was returned
from a call to make-graphics-device. Any argument that is a coordinate must be either
an exact integer or an inexact real.

17.1 Opening and Closing of Graphics Devices

[procedure]graphics-type-available? graphics-device-type
This predicate returns #t if the graphics system named by the symbol graphics-device-
type is implemented by the Scheme system. Otherwise it returns #f, in which case it
is an error to attempt to make a graphics device using graphics-device-type.

[procedure]enumerate-graphics-types
This procedure returns a list of symbols which are the names of all the graphics device
types that are supported by the Scheme system. The result is useful in deciding
what additional arguments to supply to make-graphics-device, as each device type
typically has a unique way of specifying the initial size, shape and other attributes.

[procedure]make-graphics-device graphics-device-type object . . .
This operation creates and returns a graphics device object. Graphics-device-type is
a symbol naming a graphics device type, and both the number and the meaning of
the remaining arguments is determined by that type (see the description of each de-
vice type for details); graphics-device-type must satisfy graphics-type-available?.
Graphics-device-type may also be #f, in which case the graphics device type is cho-
sen by the system from what is available. This allows completely portable graphics
programs to be written provided no custom graphics operations are used. When
graphics-device-type is #f no further arguments may be given; each graphics device
type will use some “sensible” defaults. If more control is required then the program
should use one of the two procedures above to dispatch on the available types.

This procedure opens and initializes the device, which remains valid until explicitly
closed by the procedure graphics-close. Depending on the implementation of the
graphics device, if this object is reclaimed by the garbage collector, the graphics device
may remain open or it may be automatically closed. While a graphics device remains
open the resources associated with it are not released.

296 MIT/GNU Scheme 10.1.1

[procedure]graphics-close graphics-device
Closes graphics-device, releasing its resources. Subsequently it is an error to use
graphics-device.

17.2 Coordinates for Graphics

Each graphics device has two different coordinate systems associated with it: device co-
ordinates and virtual coordinates. Device coordinates are generally defined by low-level
characteristics of the device itself, and often cannot be changed. Most device coordinate
systems are defined in terms of pixels, and usually the upper-left-hand corner is the ori-
gin of the coordinate system, with x coordinates increasing to the right and y coordinates
increasing downwards.

In contrast, virtual coordinates are more flexible in the units employed, the position of
the origin, and even the direction in which the coordinates increase. A virtual coordinate
system is defined by assigning coordinates to the edges of a device. Because these edge
coordinates are arbitrary real numbers, any Cartesian coordinate system can be defined.

All graphics procedures that use coordinates are defined on virtual coordinates. For
example, to draw a line at a particular place on a device, the virtual coordinates for the
endpoints of that line are given.

When a graphics device is initialized, its virtual coordinate system is reset so that the
left edge corresponds to an x-coordinate of -1, the right edge to x-coordinate 1, the bottom
edge to y-coordinate -1, and the top edge to y-coordinate 1.

[procedure]graphics-device-coordinate-limits graphics-device
Returns (as multiple values) the device coordinate limits for graphics-device. The
values, which are exact non-negative integers, are: x-left, y-bottom, x-right, and y-
top.

[procedure]graphics-coordinate-limits graphics-device
Returns (as multiple values) the virtual coordinate limits for graphics-device. The
values, which are real numbers, are: x-left, y-bottom, x-right, and y-top.

[procedure]graphics-set-coordinate-limits graphics-device x-left y-bottom
x-right y-top

Changes the virtual coordinate limits of graphics-device to the given arguments.
X-left, y-bottom, x-right, and y-top must be real numbers. Subsequent calls to
graphics-coordinate-limits will return the new limits. This operation has no
effect on the device’s displayed contents.

Note: This operation usually resets the clip rectangle, although it is not guaranteed
to do so. If a clip rectangle is in effect when this procedure is called, it is necessary
to redefine the clip rectangle afterwards.

17.3 Drawing Graphics

The procedures in this section provide the basic drawing capabilities of Scheme’s graphics
system.

[procedure]graphics-clear graphics-device
Clears the display of graphics-device. Unaffected by the current drawing mode.

Chapter 17: Graphics 297

[procedure]graphics-draw-point graphics-device x y
Draws a single point on graphics-device at the virtual coordinates given by x and y,
using the current drawing mode.

[procedure]graphics-erase-point graphics-device x y
Erases a single point on graphics-device at the virtual coordinates given by x and y.
This procedure is unaffected by the current drawing mode.

This is equivalent to

(lambda (device x y)

(graphics-bind-drawing-mode device 0

(lambda ()

(graphics-draw-point device x y))))

[procedure]graphics-draw-line graphics-device x-start y-start x-end y-end
X-start, y-start, x-end, and y-end must be real numbers. Draws a line on graphics-
device that connects the points (x-start, y-start) and (x-end, y-end). The line is
drawn using the current drawing mode and line style.

[procedure]graphics-draw-text graphics-device x y string
Draws the characters of string at the point (x, y) on graphics-device, using the current
drawing mode. The characteristics of the characters drawn are device-dependent, but
all devices are initialized so that the characters are drawn upright, from left to right,
with the leftmost edge of the leftmost character at x, and the baseline of the characters
at y.

The following two procedures provide an alternate mechanism for drawing lines, which is
more akin to using a plotter. They maintain a cursor, which can be positioned to a particular
point and then dragged to another point, producing a line. Sequences of connected line
segments can be drawn by dragging the cursor from point to point.

Many graphics operations have an unspecified effect on the cursor. The following excep-
tions are guaranteed to leave the cursor unaffected:

graphics-device-coordinate-limits

graphics-coordinate-limits

graphics-enable-buffering

graphics-disable-buffering

graphics-flush

graphics-bind-drawing-mode

graphics-set-drawing-mode

graphics-bind-line-style

graphics-set-line-style

The initial state of the cursor is unspecified.

[procedure]graphics-move-cursor graphics-device x y
Moves the cursor for graphics-device to the point (x, y). The contents of the device’s
display are unchanged.

298 MIT/GNU Scheme 10.1.1

[procedure]graphics-drag-cursor graphics-device x y
Draws a line from graphics-device’s cursor to the point (x, y), simultaneously moving
the cursor to that point. The line is drawn using the current drawing mode and line
style.

17.4 Characteristics of Graphics Output

Two characteristics of graphics output are so useful that they are supported uniformly by
all graphics devices: drawing mode and line style. A third characteristic, color, is equally
useful (if not more so), but implementation restrictions prohibit a uniform interface.

The drawing mode, an exact integer in the range 0 to 15 inclusive, determines how the
figure being drawn is combined with the background over which it is drawn to generate the
final result. Initially the drawing mode is set to “source”, so that the new output overwrites
whatever appears in that place. Useful alternative drawing modes can, for example, erase
what was already there, or invert it.

Altogether 16 boolean operations are available for combining the source (what is being
drawn) and the destination (what is being drawn over). The source and destination are
combined by the device on a pixel-by-pixel basis as follows:

Mode Meaning

---- -------

0 ZERO [erase; use background color]
1 source AND destination

2 source AND (NOT destination)

3 source

4 (NOT source) AND destination

5 destination

6 source XOR destination

7 source OR destination

8 NOT (source OR destination)

9 NOT (source XOR destination)

10 NOT destination

11 source OR (NOT destination)

12 NOT source

13 (NOT source) OR destination

14 (NOT source) OR (NOT destination)

15 ONE [use foreground color]

The line style, an exact integer in the range 0 to 7 inclusive, determines which parts of
a line are drawn in the foreground color, and which in the background color. The default
line style, “solid”, draws the entire line in the foreground color. Alternatively, the “dash”
style alternates between foreground and background colors to generate a dashed line. This
capability is useful for plotting several things on the same graph.

Here is a table showing the name and approximate pattern of the different styles. A
‘1’ in the pattern represents a foreground pixel, while a ‘-’ represents a background pixel.
Note that the precise output for each style will vary from device to device. The only style
that is guaranteed to be the same for every device is “solid”.

Chapter 17: Graphics 299

Style Name Pattern

----- ------- -------

0 solid 1111111111111111

1 dash 11111111--------

2 dot 1-1-1-1-1-1-1-1-

3 dash dot 1111111111111-1-

4 dash dot dot 11111111111-1-1-

5 long dash 11111111111-----

6 center dash 111111111111-11-

7 center dash dash 111111111-11-11-

[procedure]graphics-bind-drawing-mode graphics-device drawing-mode thunk
[procedure]graphics-bind-line-style graphics-device line-style thunk

These procedures bind the drawing mode or line style, respectively, of graphics-device,
invoke the procedure thunk with no arguments, then undo the binding when thunk
returns. The value of each procedure is the value returned by thunk. Graphics
operations performed during thunk’s dynamic extent will see the newly bound mode
or style as current.

[procedure]graphics-set-drawing-mode graphics-device drawing-mode
[procedure]graphics-set-line-style graphics-device line-style

These procedures change the drawing mode or line style, respectively, of graphics-
device. The mode or style will remain in effect until subsequent changes or bindings.

17.5 Buffering of Graphics Output

To improve performance of graphics output, most graphics devices provide some form of
buffering. By default, Scheme’s graphics procedures flush this buffer after every drawing
operation. The procedures in this section allow the user to control the flushing of the output
buffer.

[procedure]graphics-enable-buffering graphics-device
Enables buffering for graphics-device. In other words, after this procedure is called,
graphics operations are permitted to buffer their drawing requests. This usually
means that the drawing is delayed until the buffer is flushed explicitly by the user, or
until it fills up and is flushed by the system.

[procedure]graphics-disable-buffering graphics-device
Disables buffering for graphics-device. By default, all graphics devices are initialized
with buffering disabled. After this procedure is called, all drawing operations perform
their output immediately, before returning.

Note: graphics-disable-buffering flushes the output buffer if necessary.

[procedure]graphics-flush graphics-device
Flushes the graphics output buffer for graphics-device. This operation has no effect
for devices that do not support buffering, or if buffering is disabled for the device.

300 MIT/GNU Scheme 10.1.1

17.6 Clipping of Graphics Output

Scheme provides a rudimentary mechanism for restricting graphics output to a given rectan-
gular subsection of a graphics device. By default, graphics output that is drawn anywhere
within the device’s virtual coordinate limits will appear on the device. When a clip rectan-
gle is specified, however, output that would have appeared outside the clip rectangle is not
drawn.

Note that changing the virtual coordinate limits for a device will usually reset the clip
rectangle for that device, as will any operation that affects the size of the device (such as a
window resizing operation). However, programs should not depend on this.

[procedure]graphics-set-clip-rectangle graphics-device x-left y-bottom
x-right y-top

Specifies the clip rectangle for graphics-device in virtual coordinates. X-left, y-
bottom, x-right, and y-top must be real numbers. Subsequent graphics output is
clipped to the intersection of this rectangle and the device’s virtual coordinate limits.

[procedure]graphics-reset-clip-rectangle graphics-device
Eliminates the clip rectangle for graphics-device. Subsequent graphics output is
clipped to the virtual coordinate limits of the device.

17.7 Custom Graphics Operations

In addition to the standard operations, a graphics device may support custom operations.
For example, most devices have custom operations to control color. graphics-operation
is used to invoke custom operations.

[procedure]graphics-operation graphics-device name object . . .
Invokes the graphics operation on graphics-device whose name is the symbol name,
passing it the remaining arguments. This procedure can be used to invoke the stan-
dard operations, as well as custom operations that are specific to a particular graphics
device type. The names of the standard graphics operations are formed by removing
the graphics- prefix from the corresponding procedure. For example, the following
are equivalent:

(graphics-draw-point device x y)

(graphics-operation device ’draw-point x y)

For information on the custom operations for a particular device, see the documen-
tation for its type.

17.8 Images

Some graphics device types support images, which are rectangular pieces of picture that
may be drawn into a graphics device. Images are often called something else in the host
graphics system, such as bitmaps or pixmaps. The operations supported vary between
devices, so look under the different device types to see what operations are available. All
devices that support images support the following operations.

[operation on graphics-device]create-image width height
Images are created using the create-image graphics operation, specifying the width
and height of the image in device coordinates (pixels).

Chapter 17: Graphics 301

(graphics-operation device ’create-image 200 100)

The initial contents of an image are unspecified.

create-image is a graphics operation rather than a procedure because the kind of
image returned depends on the kind of graphics device used and the options specified
in its creation. The image may be used freely with other graphics devices created
with the same attributes, but the effects of using an image with a graphics device
with different attributes (for example, different colors) is undefined. Under X, the
image is display dependent.

[operation on graphics-device]draw-image x y image
The image is copied into the graphics device at the specified position.

[operation on graphics-device]draw-subimage x y image im-x im-y w h
Part of the image is copied into the graphics device at the specified (x, y) position.
The part of the image that is copied is the rectangular region at im-x and im-y and
of width w and height h. These four numbers are given in device coordinates (pixels).

[procedure]image? object
Returns #t if object is an image, otherwise returns #f.

[procedure]image/destroy image
This procedure destroys image, returning storage to the system. Programs should
destroy images after they have been used because even modest images may use large
amounts of memory. Images are reclaimed by the garbage collector, but they may be
implemented using memory outside of Scheme’s heap. If an image is reclaimed before
being destroyed, the implementation might not deallocate that non-heap memory,
which can cause a subsequent call to create-image to fail because it is unable to
allocate enough memory.

[procedure]image/height image
Returns the height of the image in device coordinates.

[procedure]image/width image
Returns the width of the image in device coordinates.

[procedure]image/fill-from-byte-vector image bytes
The contents of image are set in a device-dependent way, using one byte per pixel
from bytes (a string). Pixels are filled row by row from the top of the image to the
bottom, with each row being filled from left to right. There must be at least (*

(image/height image) (image/width image)) bytes in bytes.

17.9 X Graphics

MIT/GNU Scheme supports graphics in the X window system (version 11). Arbitrary
numbers of displays may be opened, and arbitrary numbers of graphics windows may be
created for each display. A variety of operations is available to manipulate various aspects
of the windows, to control their size, position, colors, and mapping. The X graphics device
type supports images, which are implemented as Xlib XImage objects. X display, window,
and image objects are automatically closed if they are reclaimed by the garbage collector.

302 MIT/GNU Scheme 10.1.1

17.9.1 X Graphics Type

A graphics device for X windows is created by passing the symbol x as the graphics device
type name to make-graphics-device:

(make-graphics-device ’x #!optional display geometry suppress-map?)

where display is either a display object, #f, or a string; geometry is either #f or a string;
and suppress-map? is a boolean or a vector (see below). A new window is created on the
appropriate display, and a graphics device representing that window is returned.

Display specifies which X display the window is to be opened on; if it is #f or a string,
it is passed as an argument to x-open-display, and the value returned by that procedure
is used in place of the original argument. Geometry is an X geometry string, or #f which
means to use the default geometry (which is specified as a resource).

Suppress-map?, if given, may take two forms. First, it may be a boolean: if #f (the
default), the window is automatically mapped after it is created; otherwise, #t means to
suppress this automatic mapping. The second form is a vector of three elements. The
first element is a boolean with the same meaning as the boolean form of suppress-map?.
The second element is a string, which specifies an alternative resource name to be used for
looking up the window’s resources. The third element is also a string, which specifies a class
name for looking up the window’s resources. The default value for suppress-map? is #f.

The default resource and class names are "schemeGraphics" and "SchemeGraphics"

respectively.

The window is initialized using the resource and class names specified by suppress-map?,
and is sensitive to the following resource properties:

Property Class Default

-------- ----- -------

geometry Geometry 512x384+0+0

font Font fixed

borderWidth BorderWidth 2

internalBorder BorderWidth [border width]
background Background white

foreground Foreground black

borderColor BorderColor [foreground color]
cursorColor Foreground [foreground color]
pointerColor Foreground [foreground color]

The window is created with a backing_store attribute of Always. The window’s name
and icon name are initialized to "scheme-graphics".

17.9.2 Utilities for X Graphics

[procedure]x-graphics/open-display display-name
Opens a connection to the display whose name is display-name, returning a display
object. If unable to open a connection, #f is returned. Display-name is normally a
string, which is an X display name in the usual form; however, #f is also allowed,
meaning to use the value of the unix environment variable DISPLAY.

Chapter 17: Graphics 303

[procedure]x-graphics/close-display display
Closes display ; after calling this procedure, it is an error to use display for any
purpose. Any windows that were previously opened on display are destroyed and
their resources returned to the operating system.

[procedure]x-close-all-displays
Closes all open connections to X displays. Equivalent to calling x-close-display on
all open displays.

[procedure]x-geometry-string x y width height
This procedure creates and returns a standard X geometry string from the given
arguments. X and y must be either exact integers or #f, while width and height
must be either exact non-negative integers or #f. Usually either x and y are both
specified or both #f; similarly for width and height. If only one of the elements of
such a pair is specified, it is ignored.

Examples:

(x-geometry-string #f #f 100 200) ⇒ "100x200"

(x-geometry-string 2 -3 100 200) ⇒ "100x200+2-3"

(x-geometry-string 2 -3 #f #f) ⇒ "+2-3"

Note that the x and y arguments cannot distinguish between +0 and -0, even though
these have different meanings in X. If either of those arguments is 0, it means +0 in
X terminology. If you need to distinguish these two cases you must create your own
geometry string using Scheme’s string and number primitives.

17.9.3 Custom Operations on X Graphics Devices

Custom operations are invoked using the procedure graphics-operation. For example,

(graphics-operation device ’set-foreground-color "blue")

[operation on x-graphics-device]set-background-color color-name
[operation on x-graphics-device]set-foreground-color color-name
[operation on x-graphics-device]set-border-color color-name
[operation on x-graphics-device]set-mouse-color color-name

These operations change the colors associated with a window. Color-name must
be a string, which is the X server’s name for the desired color. set-border-color

and set-mouse-color immediately change the border and mouse-cursor colors.
set-background-color and set-foreground-color change the colors to be used
when drawing, but have no effect on anything drawn prior to their invocation.
Because changing the background color affects the entire window, we recommend
calling graphics-clear on the window’s device afterwards. Color names include
both mnemonic names, like "red", and intensity names specified in the "#rrggbb"

notation.

[operation on x-graphics-device]draw-arc x y radius-x radius-y angle-start
angle-sweep fill?

Operation draw-arc draws or fills an arc. An arc is a segment of a circle, which may
have been stretched along the x- or y- axis to form an ellipse.

304 MIT/GNU Scheme 10.1.1

The parameters x, y, radius-x and radius-y describe the circle and angle-start and
angle-sweep choose which part of the circle is drawn. The arc is drawn on the graphics
device with the center of the circle at the virtual coordinates given by x and y. radius-
x and radius-y determine the size of the circle in virtual coordinate units.

The parameter angle-start determines where the arc starts. It is measured in degrees
in an anti-clockwise direction, starting at 3 o’clock. angle-sweep determines how much
of the circle is drawn. It too is measured anti-clockwise in degrees. A negative value
means the measurement is in a clockwise direction.

Note that the angles are determined on a unit circle before it is stretched into an
ellipse, so the actual angles that you will see on the computer screen depends on all
of: radius-x and radius-y, the window size, and the virtual coordinates.

If fill? is #f then just the segment of the circle is drawn, otherwise the arc is filled in
a pie-slice fashion.

This draws a quarter circle pie slice, standing on its point, with point at virtual
coordinates (3,5):

(graphics-operation g ’draw-arc 3 5 .5 .5 45 90 #t)

[operation on x-graphics-device]draw-circle x y radius
[operation on x-graphics-device]fill-circle x y radius

These operations draw a circle (outline) or a filled circle (solid) at on the graph-
ics device at the virtual coordinates given by x and y. These operations could be
implemented trivially interms of the draw-arc operation.

[operation on x-graphics-device]set-border-width width
[operation on x-graphics-device]set-internal-border-width width

These operations change the external and internal border widths of a window. Width
must be an exact non-negative integer, specified in pixels. The change takes place im-
mediately. Note that changing the internal border width can cause displayed graphics
to be garbled; we recommend calling graphics-clear on the window’s device after
doing so.

[operation on x-graphics-device]set-font font-name
Changes the font used when drawing text in a window. Font-name must be a string
that is a font name known to the X server. This operation does not affect text drawn
prior to its invocation.

[operation on x-graphics-device]set-mouse-shape shape-number
Changes the shape of the mouse cursor. Shape-number is an exact non-negative
integer that is used as an index into the mouse-shape font; when multiplied by 2 this
number corresponds to an index in the file
/usr/include/X11/cursorfont.h.

[operation on x-graphics-device]map-window
[operation on x-graphics-device]withdraw-window

These operations control the mapping of windows. They correspond directly to Xlib’s
XMapWindow and XWithdrawWindow.

Chapter 17: Graphics 305

[operation on x-graphics-device]resize-window width height
Changes the size of a window. Width and height must be exact non-negative integers.
The operation corresponds directly to Xlib’s XResizeWindow.

This operation resets the virtual coordinate system and the clip rectangle.

[operation on x-graphics-device]move-window x y
Changes the position of a window on the display. X and y must be exact integers.
The operation corresponds directly to Xlib’s XMoveWindow. Note that the coordinates
x and y do not take the external border into account, and therefore will not position
the window as you might like. The only reliable way to position a window is to ask
a window manager to do it for you.

[operation on x-graphics-device]get-default resource property
This operation corresponds directly to Xlib’s XGetDefault. Resource and property
must be strings. The operation returns the character string corresponding to the
association of resource and property ; if no such association exists, #f is returned.

[operation on x-graphics-device]copy-area source-x-left source-y-top width
height destination-x-left destination-y-top

This operation copies the contents of the rectangle specified by source-x-left, source-
y-top, width, and height to the rectangle of the same dimensions at destination-x-left
and destination-y-top.

[operation on x-graphics-device]font-structure font-name
Returns a Scheme equivalent of the X font structure for the font named font-name. If
the string font-name does not name a font known to the X server, or names a 16-bit
font, #f is returned.

[procedure]x-font-structure/name font-structure
[procedure]x-font-structure/direction font-structure
[procedure]x-font-structure/all-chars-exist font-structure
[procedure]x-font-structure/default-char font-structure
[procedure]x-font-structure/min-bounds font-structure
[procedure]x-font-structure/max-bounds font-structure
[procedure]x-font-structure/start-index font-structure
[procedure]x-font-structure/character-bounds font-structure
[procedure]x-font-structure/max-ascent font-structure
[procedure]x-font-structure/max-descent font-structure

These procedures extract the components of the font description structure returned by
the X graphics operation font-structure. A more complete description of these com-
ponents appears in documentation of the XLoadQueryFont Xlib call. start-index is
the index of the first character available in the font. The min-bounds and max-bounds

components are structures of type x-character-bounds, and the character-bounds
component is a vector of the same type.

[procedure]x-character-bounds/lbearing character-bounds
[procedure]x-character-bounds/rbearing character-bounds
[procedure]x-character-bounds/width character-bounds
[procedure]x-character-bounds/ascent character-bounds

306 MIT/GNU Scheme 10.1.1

[procedure]x-character-bounds/descent character-bounds
These procedures extract components of objects of type x-character-bounds. A
more complete description of them appears in documentation of the
XLoadQueryFont Xlib call.

17.10 Win32 Graphics

MIT/GNU Scheme supports graphics on Microsoft Windows 95, Windows 98, and Windows
NT. In addition to the usual operations, there are operations to control the size, position
and colors of a graphics window. Win32 devices support images, which are implemented as
device independent bitmaps (dibs).

The Win32 graphics device type is implemented as a top level window.
graphics-enable-buffering is implemented and gives a 2x to 4x speedup on many
graphics operations. As a convenience, when buffering is enabled clicking on the graphics
window’s title bar effects a graphics-flush operation. The user has the benefit of the
increased performance and the ability to view the progress in drawing at the click of a
mouse button.

17.10.1 Win32 Graphics Type

Win32 graphics devices are created by specifying the symbol win32 as the graphics-device-
type argument to make-graphics-device. The Win32 graphics device type is implemented
as a top-level window and supports color drawing in addition to the standard Scheme
graphics operations.

Graphics devices are opened as follows:

(make-graphics-device ’win32 #!optional width height palette)

where width and height specify the size, in pixels, of the drawing area in the graphics
window (i.e. excluding the frame). Palette determines the colors available for drawing in
the window.

When a color is specified for drawing, the nearest color available in the palette is used.
Permitted values for palette are

’grayscale

The window allocates colors from a grayscale palette of approximately 236
shades of gray.

’grayscale-128

The window allocates colors from a grayscale palette of 128 shades of gray.

’standard

The standard palette has good selection of colors and grays.

#f or ’system
The colors available are those in the system palette. There are usually 16
to 20 colors in the system palette and these are usually sufficent for simple
applications like line drawings and x-vs-y graphs of mathematical functions.
Drawing with the system palette can be more efficient.

If palette is not specified then the standard palette is used.

Chapter 17: Graphics 307

17.10.2 Custom Operations for Win32 Graphics

Custom operations are invoked using the procedure graphics-operation. For example,

(graphics-operation device ’set-foreground-color "blue")

[operation on win32-graphics-device]set-background-color color-name
[operation on win32-graphics-device]set-foreground-color color-name

These operations change the colors associated with a window. Color-name must be
of one of the valid color specification forms listed below. set-background-color and
set-foreground-color change the colors to be used when drawing, but have no effect
on anything drawn prior to their invocation. Because changing the background color
affects the entire window, we recommend calling graphics-clear on the window’s
device afterwards.

The foreground color affects the drawing of text, points, lines, ellipses and filled
polygons.

Colors are specified in one of three ways:

An integer This is the Win32 internal RGB value.

By name A limited number of names are understood by the system. Names are
strings, e.g. "red", "blue", "black". More names can be registered with
the define-color operation.

RGB (Red-Green-Blue) triples
A triple is either a vector or list of three integers in the range 0–255
inclusive which specify the intensity of the red, green and blue components
of the color. Thus #(0 0 0) is black, (0 0 128) is dark blue and #(255

255 255) is white.

If the color is not available in the graphics device then the nearest available color is
used instead.

[operation on win32-graphics-device]define-color name spec
Define the string name to be the color specified by spec. Spec may be any acceptable
color specification. Note that the color names defined this way are available to any
Win32 graphics device, and the names do not have to be defined for each device.

Color names defined by this interface may also be used when setting the colors of the
Scheme console window, or the colors of Edwin editor windows.

[operation on win32-graphics-device]find-color name
Looks up a color previously defined by define-color. This returns the color in
its most efficient form for operations set-foreground-color or set-background-

color.

[operation on win32-graphics-device]draw-ellipse left top right bottom
Draw an ellipse. Left, top, right and bottom indicate the coordinates of the bounding
rectangle of the ellipse. Circles are merely ellipses with equal width and height. Note
that the bounding rectangle has horizontal and vertical sides. Ellipses with rotated
axes cannot be drawn. The rectangle applies to the center of the line used to draw
the ellipse; if the line width has been set to greater than 1 then the ellipse will spill
outside the bounding rectange by half of the line width.

308 MIT/GNU Scheme 10.1.1

[operation on win32-graphics-device]fill-polygon points
Draws a filled polygon using the current foreground color. Points is a vector of real
numbers. The numbers are in the order x1 y1 x2 y2 . . . xn yn. For example,

(graphics-operation device ’fill-polygon #(0 0 0 1 1 0))

draws a solid triangular region between the points (0, 0), (0, 1) and (1, 0).

[operation on win32-graphics-device]load-bitmap pathname
The graphics device contents and size are initialized from the windows bitmap file
specified by pathname. If no file type is supplied then a ".BMP" extension is added.
If a clip rectangle is in effect when this procedure is called, it is necessary to redefine
the clip rectangle afterwards.

[operation on win32-graphics-device]save-bitmap pathname
The graphics device contents are saved as a bitmap to the file specified by pathname.
If no file type is supplied then a ".BMP" extension is added. The saved bitmap may
be incorporated into documents or printed.

[operation on win32-graphics-device]move-window x y
The graphics device window is moved to the screen position specified by x and y.

[operation on win32-graphics-device]resize-window width height
The graphics device window is resized to the specified width and height in device
coordinates (pixels). If a clip rectangle is in effect when this procedure is called, it is
necessary to redefine the clip rectangle afterwards.

[operation on win32-graphics-device]set-line-width width
This operation sets the line width for future drawing of lines, points and ellipses. It
does not affect existing lines and has no effect on filled polygons. The line width is
specified in device units. The default and initial value of this parameter is 1 pixel.

[operation on win32-graphics-device]set-window-name name
This sets the window title to the string name. The window is given the name "Scheme
Graphics" at creation.

[operation on win32-graphics-device]set-font handle
Sets the font for drawing text. Currently not well supported. If you can get a Win32
font handle it can be used here.

[operation on win32-graphics-device]copy-area source-x-left source-y-top
width height destination-x-left destination-y-top

This operation copies the contents of the rectangle specified by source-x-left, source-
y-top, width, and height to the rectangle of the same dimensions at destination-x-left
and destination-y-top.

309

18 Win32 Package Reference

18.1 Overview

The Win32 implementation is still in a state of development. It is expected that changes
will be necessary when MIT/GNU Scheme is ported to Windows NT on the DEC Alpha
architecture. In particular, the current system is not arranged in a way that adequately
distinguishes between issues that are a consequence of the NT operating system and those
which are a consequence of the Intel x86 architecture.

Thus this documentation is not definitive, it merely outlines how the current system
works. Parts of the system will change and any project implemented using the win32
system must plan for a re-implementation stage.

The Win32 implementation has several components:

• Special microcode primitives.

• A foreign function interface (FFI) for calling procedures in dynamically linked libraries
(DLLs).

• An interface for Edwin.

• The Win32 package provides support for using the features of the Windows 3.1 and
Windows NT 3.1 environments.

• Device Independent Bitmap utilities. These are used by the win32 Scheme Graphics
implementation. (The Scheme Graphics implementation is described in the Reference
Manual).

Note that all the names in the Win32 support are part of the win32 package. The names
are bound in the (win32) environment, and do not appear as bindings in the user or root
environments. An effect of this is that it is far easier to develop Win32 software in the
(win32) package environment or a child environment.

18.2 Foreign Function Interface

The Win32 foreign function interface (FFI) is a primitive and fairly simple system for calling
procedures written in C in a dynamically linked library (DLL). Both user’s procedures
from a custom DLL and system procedures (e.g. MessageBox) are called using the same
mechanism.

Warning: The FFI as it stands has several flaws which make it difficult to use reliably. It
is expected that both the interface to and the mechanisms used by the FFI will be changed
in the future. We provide it, and this documentation, only to give people an early start in
accessing some of the features of Win32 from Scheme. Should you use it in an experiment
we welcome any feedback.

The FFI is designed for calling C procedures that use C data types rather than Scheme
data objects. Thus it is not possible to write and call a C procedure that returns, for
example, a Scheme list. The object returned will always be an integer (which may represent
the address of a C data structure).

Warning: It is extremely dangerous to try to pass Scheme callback procedures to C
procedures. It is only possible by passing integer ‘handles’ rather than the actual procedures,

310 MIT/GNU Scheme 10.1.1

and even so, if a garbage collection occurs during the execution of the callback procedure
objects in Scheme’s heap will have moved. Thus in a foreign procedure that has a callback
and a string, after calling the callback the string value may no longer be valid. Playing this
game requires a profound knowledge of the implementation.

The interface to the FFI has two main components: a language for declaring the types of
values passed to and returned from the foreign procedures and a form for declaring foreign
procedures.

18.2.1 Windows Types

Foreign types are designed to represent a correspondence between a Scheme data type that
is used to represent an object within the Scheme world and a C data type that represents
the data object in the C world. Thus we cannot manipulate true C objects in Scheme, nor
can we manipulate Scheme objects in C.

Each foreign type has four aspects that together ensure that the correspondence between
the Scheme and C objects is maintained. These aspects are all encoded as procedures that
either check for validity or convert between representations. Thus a foreign type is not a
declarative type so much as a procedural description of how to pass the type. The underlying
foreign procedure call mechanism can pass integers and vector-like Scheme objects, and
returns integer values. All other objects must be translated into integers or some other
basic type, and must be recovered from integers.

The aspects are:

check A predicate that returns #t if the argument is of an acceptable Scheme type,
otherwise returns #f. The check procedure is used for type-checking.

convert A procedure of one argument which returns a Scheme object of one of the basic
types. It is used to convert an object into a ‘simpler’ object that will eventually
be converted into a C object. The legal simpler objects are integers and strings.

return-convert
A procedure of one argument that, given an integer, returns a Scheme object
of a type satisfying check. Its purpose is to convert the result returned by the
foreign procedure into a Scheme value.

revert Some C procedures modify one or more of their arguments. These arguments
are passed by reference, i.e. as a pointer to their address. Since a Scheme object
might have a different memory layout and storage conventions, it must be passed
by copy-in and copy-out rather than by reference. Revert is a procedure of two
parameters, the original object passed and the result of convert on that object.
Revert may then inspect the converted object and copy back the changes to
the original.

[special form]define-windows-type name check convert return revert
[special form]define-similar-windows-type name model [check [convert

[return [revert]]]]
Both forms define a windows type. The first form defines a type in terms of its aspects
as described above. The second defines the type as being like another type, except
for certain aspects, which are redefined. Name is the name of the type. Model is the
name of a type. Check, convert, return and revert are procedures or the value #f. A

Chapter 18: Win32 Package Reference 311

#f means use the default value, which in the second form means use the definition
provided for model. The defaults are

check (lambda (x) #t), i.e. unchecked.

convert (lambda (x) x), i.e. no translation performed.

return (lambda (x) x), i.e. no translation performed.

revert (lambda (x y) unspecific), i.e. no update performed

The unchecked windows type (see below) is defined as:

(define-windows-type unchecked #f #f #f #f)

Windows types are not first class values, so they cannot be stored in variables or
defined using define:

(define my-type unchecked) error Unbound variable

(define-similar-windows-type my-type unchecked)

;; the correct way

Scheme characters must be converted to integers. This is accomplished as follows:

(define-windows-type char

char? ; check
char->integer ; convert
integer->char ; convert return value
#f ; cannot be passed by reference

)

[windows type]unchecked
The type which is not checked and undergoes only the basic conversion from a Scheme
integer to a C integer or from a Scheme string to a C pointer to the first byte of the
string. Returned unchecked values are returned as integers.

[windows type]bool
Scheme booleans are analogous to C integers 0 and 1. Windows type bool have been
defined as:

(define-windows-type bool

boolean?

(lambda (x) (if x 1 0))

(lambda (x) (if (eq? x 0) #f #t))

#f)

[windows type]char
Scheme characters are converted into C objects of type char, which are indistinguish-
able from small integers.

[windows type]int
[windows type]uint
[windows type]long
[windows type]ulong
[windows type]short
[windows type]ushort

312 MIT/GNU Scheme 10.1.1

[windows type]word
[windows type]byte

Various integer types that are passed without conversion.

[windows type]string
A string that is passed as a C pointer of type char* to the first character in the string.

[windows type]char*
A string or #f. The string is passed as a pointer to characters. The string is correctly
null-terminated. #f is passed as the null pointer. This is an example where there is
a more complex mapping between C objects and Scheme objects. C’s char* type is
represented as one of two Scheme types depending on its value. This allows us us
to distinguish between the C string (pointer) that points to the empty sequence of
characters and the null pointer (which doesnt point anywhere).

[windows type]handle
[windows type]hbitmap
[windows type]hbrush
[windows type]hcursor
[windows type]hdc
[windows type]hicon
[windows type]hinstance
[windows type]hmenu
[windows type]hpalette
[windows type]hpen
[windows type]hrgn
[windows type]hwnd

Various kinds of Win32 handle. These names correspond to the same, but all up-
percase, names in the Windows C language header files. Win32 API calls are the
source of values of this type and the values are meaningless except as arguments to
other Win32 API calls. Currently these values are represented as integers but we
expect that Win32 handles will in future be represented by allocated Scheme objects
(e.g. records) that will allow predicates (e.g. hmenu?) and sensible interlocking with
the garbage collector to free the programmer of the current tedious allocation and
deallocation of handles.

[windows type]resource-id
A Windows resource identifier is either a small integer or a string. In C, this distinc-
tion is possible because pointers look like larger integers, so a machine word repre-
senting a small integer can be distinguished from a machine word that is a pointer to
the text of the name of the resource.

18.2.2 Windows Foreign Procedures

Foreign procedures are declared as callable entry-points in a module, usually a dynamically
linked library (DLL).

[procedure]find-module name
Returns a module suitable for use in creating procedures with windows-procedure.
Name is a string which is the name of a DLL file. Internally, find-module uses the

Chapter 18: Win32 Package Reference 313

LoadLibrary Win32 API, so name should conform to the specifications for this call.
Name should be either a full path name of a DLL, or the name of a DLL that resides
in the same directory as the Scheme binary SCHEME.EXE or in the system directory.

The module returned is a description for the DLL, and the DLL need not necessarily
be linked at or immediately after this call. DLL modules are linked on need and
unlinked before Scheme exits and when there are no remaining references to entry
points after a garbage-collection. This behavior ensures that the Scheme system can
run when a DLL is absent, provided the DLL is not actually used (i.e. no attempt is
made to call a procedure in the DLL).

[variable]gdi32.dll
This variable is bound to the module describing the GDI32.DLL library, which contains
the Win32 API graphics calls, e.g. LineTo.

[variable]kernel32.dll
This variable is bound to the module describing the KERNEL32.DLL library.

[variable]user32.dll
This variable is bound to the module describing the USER32.DLL library. This module
contains many useful Win32 API procedures, like MessageBox and SetWindowText.

[special form]windows-procedure (name (parameter type) . . .) return-type
module entry-name [options]

This form creates a procedure, and could be thought of as “foreign-named-lambda”.
The form creates a Scheme procedure that calls the C procedure identified by the
exported entry point entry-name in the module identified by the value of module.
Both entry-name and module are evaluated at procedure creation time, so either
may be expression. Entry-name must evaluate to a string and module must evaluate
to a module as returned by find-module. These are the only parts of the form that
are evaluated at procedure creation time.

Name is the name of the procedure and is for documentation purposes only. This
form does not define a procedure called name. It is more like lambda. The name
might be used for debugging and pretty-printing.

A windows procedure has a fixed number of parameters (i.e. no ‘rest’ parameters or
‘varargs’), each of which is named and associated with a windows type type. Both the
name parameter and the windows type type must be symbols and are not evaluated.
The procedure returns a value of the windows type return-type.

The following example creates a procedure that takes a window handle (hwnd) and
a string and returns a boolean (bool) result. The procedure does this by calling the
SetWindowText entry in the module that is the value of the variable user32.dll.
The variable set-window-title is defined to have this procedure as it’s value.

314 MIT/GNU Scheme 10.1.1

(define set-window-title

(windows-procedure

(set-window-text (window hwnd) (text string))

bool user32.dll "SetWindowText"))

(set-window-title my-win "Hi")

⇒ #t

;; Changes window’s title/text

set-window-title ⇒ #[compiled-procedure ...]

set-window-text error Unbound variable

When there are no options the created procedure will (a) check its arguments against
the types, (b) convert the arguments, (c) call the C procedure and (d) convert the
returned value. No reversion is performed, even if one of the types has a reversion
defined. (Reverted types are rare [I have never used one], so paying a cost for this
unless it is used seems silly).

The following options are allowed:

with-reversions

The reversions are included in the type conversions.

expand A synonym for with-reversions.

Scheme code
The Scheme code is placed between steps (a) and (b) in the default pro-
cess. The Scheme code can enforce constraints on the arguments, includ-
ing constraints between arguments such as checking that an index refers
to a valid position in a string.

If both options (i.e. with-reversions and Scheme code) are used, with-reversions
must appear first. There can be arbitrarily many Scheme expression.

18.2.3 Win32 API names and procedures

This section is a moving target.

The #define values from wingdi.h and winuser.h are available as bindings in the
(win32) package environment. The #define symbols are all uppercase; these have been
translated to all lowercase Scheme identifiers, thus WM_LBUTTONUP is the scheme variable wm_
lbuttonup. As Scheme is case insensitive, the upper-case version may be used and probably
should to make the code look more like conventional Windows code. The Scheme bindings
have been produced automagically. Most of the #define-symbols contain an underscore so
there are not many name clashes. There is one very notable name clash, however: ERROR is
#defined to 0, which shadows the scheme procedure error in the root package environment.
To signal an error, use access to get error from the system global environment:

(declare (usual-integrations))

...

((access error system-global-environment) "Complain" ...)

The set of procedures is incomplete because procedures have been added on a by-need
basis for the implementation of other parts of the system, e.g. Scheme Graphics. Look in
the implementation for further details.

Chapter 18: Win32 Package Reference 315

Win32 API procedure names have been uniformly converted into Scheme identifiers as
follows:

• A leading uppercase letter is translated into a lowercase letter.

• Subsequent sequences of uppercase letters are translated into lowercase letters pre-
ceeded by a hyphen (minus symbol), i.e. hyphens are inserted at a lowercase to upper-
case transition.

• Predicates beginning with Is finally have a question-mark appended.

Example: applying these rules to IsWindow yields is-window?, and GetDC is translated into
get-dc.

18.3 Device Independent Bitmap Utilities

The Device Independent Bitmap (DIB) utilities library DIBUTILS.DLL and the associated
procedures in dib.scm in the Win32 system source is an example of how to use the foreign
function interface to access and manipulate non-Scheme objects.

[windows type]dib
In the C world a DIB is a handle to a piece of memory containing the bits that
represent information about the image and the pixels of the image. The handle is a
machine-word sized piece of data which may be thought of as a 32 bit integer. The
handle may be null (i.e. zero), indicating that there is no block of memory describing
the DIB. The null value is usually returned by C functions that are supposed to create
a DIB but failed, for some reason like the memory could not be allocated or a file
could not be opened.

In the Scheme world a DIB is a structure containing information about the bitmap
(specifically the integer that represents the handle). We also include #f in the dib

windows type to mirror the null handle error value.

(define dib-result

(lambda (handle)

(if (= handle 0)

#f

(make-dib handle))))

(define dib-arg

(lambda (dib)

(if dib

(cell-contents (dib-handle dib))

0)))

(define-windows-type dib

(lambda (thing) (or (dib? thing) (eq? thing #f)))

dib-arg

dib-result)

316 MIT/GNU Scheme 10.1.1

18.3.1 DIB procedures

The following procedures have typed parameters, using the same convention as
windows-procedure.

[procedure]open-dib (filename string)
Return type: dib. Calls the OpenDIB entry of DIBUTILS.DLL. If the return value is
not #f then the file filename was found, successfully opened, and the contents were
suitable for loading into memory as a device independent bitmap.

[procedure]write-dib (filename string) (dib dib)
Return type: bool. Calls the WriteDIB entry of DIBUTILS.DLL. Returns #t if the
file filename could be opened and written to. After this operation the file contains
the bitmap data in a standard format that is understood by open-dib and various
system utilities like the bitmap editor. Any problems resulting in failure are signalled
by a #f return value.

[procedure]bitmap-from-dib (dib dib) (palette hpalette)
Return type: hbitmap. Calls the BitmapFromDib entry of DIBUTILS.DLL. The re-
turned value is a device dependent bitmap. The colours from the DIB are matched
against colors in palette.

[procedure]dib-from-bitmap (bitmap hbitmap) (style dword) (bits word)
(palette hpalette)

Return type: dib. Returns a DIB containing the same image as the device dependent
bitmap bitmap. Style determines the kind of DIB, e.g. compression style. Calls the
DibFromBitmap entry of DIBUTILS.DLL.

[procedure]dib-blt (dest hdc) (x int) (y int) (w int) (h int) (src dib) (src-x int)
(src-y int) (raster-op long)

Return type: bool. Calls the DibBlt entry of DIBUTILS.DLL. Similar to the Win32
API BitBlt call, but draws a DIB rather than a piece of another device context.
Draws the dib on device context hdc at position (x,y). A rectangle of width w and
height h is copied from position (src-x,src-y) of dib. Raster-op is supposed to allow
the source and destination to be combined but I don’t think I got this right so stick
to SRCCOPY.

[procedure]delete-dib (dib dib)
Return type: bool. This procedure reclaims the storage occupied by a DIB. After
being deleted, the DIB should not be used. This procedure allows the programmer
to reclaim external heap storage rather than risking it running out before the next
garbage collection.

[procedure]dib-height (dib dib)
Return type: int. Calls the DibHeight expand entry of DIBUTILS.DLL, which returns
the height of the bitmap in pixels.

[procedure]dib-width (dib dib)
Return type: int. Calls the DibWidth entry of DIBUTILS.DLL, which returns the
width of the bitmap in pixels.

Chapter 18: Win32 Package Reference 317

[procedure]copy-bitmap (bm hbitmap)
Return type: hbitmap. Calls the CopyBitmap of DIBUTILS.DLL, which creates a new
bitmap with the same size and contents as the original.

[procedure]create-dib (width int) (height int) (style int) (depth int) (palette
hpalette)

Return type: dib. Calls the CreateDIB entry of DIBUTILS.DLL. Creates a DIB of
width by height pixels and depth bits of colour information. The style parameter
determines how the bitmap is stored. I have only ever used BI_RGB. If depth<=8
then the palette determines the DIB’s colour table.

[procedure]crop-bitmap (bm hbitmap) (left int) (top int) (right int) (bottom
int)

Return type: hbitmap. Calls the CropBitmap entry of DIBUTILS.DLL. Returns a new
bitmap containing the image from a region of the original.

[procedure]dib-set-pixels-unaligned dib (pixels string)
Return type: bool. Calls the DIBSetPixelsUnaligned entry of
DIBUTILS.DLL. Stuffs bytes from pixels into the bitmap. There are no alignment
constraints on pixels (the usual way of doing this is to use the SetDIBits function
which requires that every scan line of the bitmap is 32-bit word aligned, even if the
scan lines are not a multiple of 4 bytes long). doing this

18.3.2 Other parts of the DIB Utilities implementation

The DIBUTILS.DLL library is an ordinary DLL. See the standard Microsoft Windows doc-
umentation on how to create DLLs. Look at the code in the WIN32/DIBUTILS directory of
the Scheme source.

Please note:

• For the foreign function interface to find the procedures they must be declared as
exports in the .DEF definition file.

• To load the .DLL file use the find-module Scheme function. Look at WIN32/DIB.SCM
to see how this is done.

• The current system works with C procedures with the __stdcall and __cdecl calling
conventions but not the __fastcall calling convention.

319

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

320 MIT/GNU Scheme 10.1.1

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 321

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

322 MIT/GNU Scheme 10.1.1

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 323

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

324 MIT/GNU Scheme 10.1.1

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 325

A.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

327

Appendix B Binding Index

"
" . 89

#
. 64
#!optional . 12, 16
#!rest . 12, 16
#(. 127
#\ . 81
#\alarm . 81
#\backspace . 81
#\delete . 81
#\escape . 81
#\newline . 81
#\null . 81
#\return . 81
#\space . 81, 99
#\tab . 81
#b . 64
#d . 64
#e . 64
#f . 8, 24, 135
#i . 64
#o . 64
#t . 8, 24, 135
#x . 64

’
’ . 23, 111

(
(. 111
() . 111

)
) . 111

*
* . 14, 66, 106, 223, 225
** . 107, 108
**? . 107
*? . 106
default-pathname-defaults 244
*matcher . 221
*parser . 224
parser-canonicalize-symbols? 200
parser-radix . 200
random-state . 79
unparse-with-maximum-readability? 204
unparser-list-breadth-limit 204
unparser-list-depth-limit 204
unparser-radix . 204
unparser-string-length-limit 204

+
+ . 14, 62, 66, 107, 223, 225
+? . 107
+inf . 77

,
, . 24, 111
,@ . 24, 111

–
- . 66
->namestring . 238
->pathname . 238, 247
->truename . 249
-1+ . 66
-inf . 77

.

. 111

... 38

/
/ . 63, 66

328 MIT/GNU Scheme 10.1.1

<
< . 65
<= . 65
<xml-!attlist> . 234
<xml-!element> . 234
<xml-!entity> . 234
<xml-!notation> . 235
<xml-declaration> . 233
<xml-document> . 233
<xml-dtd> . 233
<xml-element> . 233
<xml-external-id> . 235
<xml-parameter-!entity> . 234
<xml-processing-instructions> 233
<xml-unparsed-!entity> . 234

=
= . 55, 64, 65, 96
=> . 25

>
> . 65
>= . 65

?
? . 106, 223, 225
?? . 106

‘
‘ . 24, 111

\
\" . 89
\\ . 89
\| . 89
\a . 89
\b . 89
\n . 89
\r . 89
\t . 89
\x . 89

1
1+ . 66
1d-table/alist . 152
1d-table/get . 152
1d-table/lookup . 152
1d-table/put! . 152
1d-table/remove! . 152
1d-table? . 152

2
2d-get . 153
2d-get-alist-x . 153
2d-get-alist-y . 153
2d-put! . 152
2d-remove! . 152

8
8-bit-char-set? . 88

A
abort . 277, 280
abs . 66
access . 22
access-condition . 283, 285
acos . 70
alist->hash-table . 155
alist->rb-tree . 167
alist->wt-tree . 171
alist-copy . 151
alist? . 150
allocate-host-address . 270
alt . 108, 223, 225
and . 26, 135
and-let* . 52
angle . 70, 71
any . 124
any-char . 105
append . 117
append! . 118
append-map . 122
append-map! . 122
append-map* . 122
append-map*! . 122
apply . 177
apply-hook-extra . 183
apply-hook-procedure . 183
apply-hook? . 183
asin . 70
assoc . 150
association-procedure . 150
assq . 150
assv . 150
atan . 70, 78

Appendix B: Binding Index 329

B
beep . 202
begin . 27
binary-port? . 190
bind-cell-contents! . 140
bind-condition-handler 272, 273, 275, 276
bind-default-condition-handler . . 273, 275, 276
bit-string->signed-integer 134
bit-string->unsigned-integer 134
bit-string-allocate . 131
bit-string-and . 133
bit-string-and! . 133
bit-string-andc . 133
bit-string-andc! . 133
bit-string-append . 132
bit-string-clear! . 132
bit-string-copy . 131
bit-string-fill! . 133
bit-string-length . 132
bit-string-move! . 134
bit-string-movec! . 133
bit-string-not . 133
bit-string-or . 133
bit-string-or! . 133
bit-string-ref . 132
bit-string-set! . 132
bit-string-xor . 133
bit-string-xor! . 133
bit-string-zero? . 133
bit-string=? . 133
bit-string? . 132
bit-substring . 132
bit-substring-find-next-set-bit 132
bit-substring-move-right! 134
bitless-char? . 85
bitmap-from-dib . 316
bool . 311
boolean/and . 136
boolean/or . 136
boolean? . 135
both . 100
bound-restart . 281
bound-restarts . 281
bracketed-print-method . 208
break-on-signals 273, 275, 276
buffered-input-chars on
textual input port . 214

buffered-output-chars on
textual output port . 215

byte . 312

C
caaaar . 113
caaadr . 113
caaar . 113
caadar . 113
caaddr . 113
caadr . 113
caar . 113
cadaar . 113
cadadr . 113
cadar . 113
caddar . 113
cadddr . 113
caddr . 113
cadr . 113
call-with-binary-input-file 192
call-with-binary-output-file 192
call-with-current-continuation 180
call-with-input-file . 191
call-with-output-bytevector 195
call-with-output-file . 191
call-with-output-string . 193
call-with-port . 189, 191, 192
call-with-temporary-file-pathname 249
call-with-truncated-output-port 189, 194
call-with-truncated-output-string 194
call-with-values . 182
canonical-host-name . 270
capture-syntactic-environment 44
car . 9, 112, 145
car+cdr . 113
case . 26, 27
cd . 247
cdaaar . 113
cdaadr . 113
cdaar . 113
cdadar . 113
cdaddr . 113
cdadr . 113
cdar . 113
cddaar . 113
cddadr . 113
cddar . 113
cdddar . 113
cddddr . 113
cdddr . 113
cddr . 113
cdr . 6, 112, 145
ceiling . 68
ceiling->exact . 69
cell-contents . 140
cell? . 140
char . 222, 311
char* . 312
char->digit . 84
char->integer . 83
char->name . 82
char-alphabetic? . 82

330 MIT/GNU Scheme 10.1.1

char-alphanumeric? . 83
char-bits . 85
char-bits-limit . 85
char-ci . 104, 222
char-ci-predicate . 85
char-ci<=? . 82
char-ci<? . 82
char-ci=? . 82
char-ci>=? . 82
char-ci>? . 82
char-code . 85
char-code-limit . 85
char-downcase . 83
char-foldcase . 83
char-general-category . 86
char-graphic? . 210
char-in . 105
char-in-set? . 87
char-lower-case? . 83
char-not-in . 105
char-numeric? . 82
char-predicate . 85
char-ready? . 197
char-ready? on textual input port 213
char-set . 87, 222
char-set* . 87
char-set->code-points . 87
char-set-difference . 88
char-set-intersection . 88
char-set-intersection* . 88
char-set-invert . 88
char-set-predicate . 87
char-set-union . 88
char-set-union* . 88
char-set:alphabetic . 88
char-set:alphanumeric . 88
char-set:lower-case . 88
char-set:numeric . 88
char-set:upper-case . 88
char-set:whitespace . 88, 101
char-set=? . 88
char-set? . 87
char-upcase . 83
char-upper-case? . 83
char-whitespace? . 82, 100
char<=? . 82
char<? . 82
char=? . 55, 82
char>=? . 82
char>? . 82
char? . 82
chars-remaining on textual input port 214
circular-list . 125
circular-list? . 116
clear . 202
close-all-open-files . 193
close-input-port . 191
close-output-port . 191

close-port . 191
close-syntax . 43
close-tcp-server-socket . 269
code-point-general-category 86
code-point-in-set? . 87
compile-regsexp . 109
compiled-procedure? . 178
complex? . 64
compound-procedure? . 178
compute-char-set . 87
conc-name . 32
cond . 5, 25, 27, 135
cond-expand . 50
condition-accessor . 283, 285
condition-constructor . 283
condition-predicate . 283, 284
condition-signaller . 283, 284
condition-type/error? . 286
condition-type/field-names 286
condition-type/generalizations 286
condition-type:arithmetic-error 292
condition-type:bad-range-argument 66, 71,

134, 164, 289
condition-type:breakpoint 272, 294
condition-type:control-error 293
condition-type:datum-out-of-range 289
condition-type:derived-file-error 291
condition-type:derived-port-error 291
condition-type:divide-by-zero 292
condition-type:error 275, 284, 286, 287
condition-type:file-error 290
condition-type:file-operation-error 246,

247, 249, 290
condition-type:floating-point-overflow . . . 292
condition-type:floating-

point-underflow . 292
condition-type:illegal-datum 287
condition-type:inapplicable-object 290
condition-type:macro-binding 185
condition-type:no-such-restart 280, 293
condition-type:not-loading 293
condition-type:port-error 291
condition-type:primitive-

procedure-error . 292
condition-type:serious-condition 272, 287
condition-type:simple-condition 272, 294
condition-type:simple-error 273, 287
condition-type:simple-warning 273, 294
condition-type:subprocess-

abnormal-termination . 264
condition-type:subprocess-signalled 264
condition-type:subprocess-stopped 264
condition-type:system-call-error 293
condition-type:unassigned-variable 6, 185,

291
condition-type:unbound-variable 6, 21, 291
condition-type:variable-error 291
condition-type:warning 272, 293

Appendix B: Binding Index 331

condition-type:wrong-

number-of-arguments 15, 178, 288
condition-type:wrong-type-argument 6, 288
condition-type:wrong-type-datum 288
condition-type? . 286
condition/continuation . 284
condition/error? . 284
condition/report-string . 285
condition/restarts 283, 284, 285
condition/type . 284
condition? . 284
conjugate . 71
cons . 112
cons* . 115
cons-stream . 144
console-i/o-port . 191
constructor . 31
continuation? . 181
continue . 277, 280
copier . 31
copy-area on win32-graphics-device 308
copy-area on x-graphics-device 305
copy-bitmap . 317
copy-file . 248
cos . 70
create-dib . 317
create-image on graphics-device 300
crop-bitmap . 317
current-error-port . 190
current-file-time . 252
current-input-port . 190, 192
current-output-port . 190, 192
current-parser-macros . 228

D
day-of-week/long-string . 260
day-of-week/short-string 260
debug . 210
decoded-time->file-time . 258
decoded-time->string . 258
decoded-time->universal-time 258
decoded-time/date-string 260
decoded-time/day . 256
decoded-time/day-of-week 256
decoded-time/daylight-savings-time? 256
decoded-time/hour . 256
decoded-time/minute . 256
decoded-time/month . 256
decoded-time/second . 256
decoded-time/time-string 260
decoded-time/year . 256
decoded-time/zone . 256
default-object? . 15
define . 7, 21, 22, 27, 187
define-*matcher-expander 227
define-*matcher-macro . 227
define-*parser-expander . 227

define-*parser-macro . 227
define-color on win32-graphics-device 307
define-print-method . 208
define-record-type . 53
define-similar-windows-type 310
define-structure . 29, 140
define-syntax . 37
define-windows-type . 310
del-assoc . 150
del-assoc! . 151
del-assq . 150
del-assq! . 151
del-assv . 150
del-assv! . 151
delay . 18, 142
delete . 119
delete! . 119, 120
delete-association-procedure 151
delete-dib . 316
delete-directory . 248
delete-file . 248
delete-file-no-errors . 248
delete-matching-items . 119
delete-matching-items! . 119
delete-member-procedure . 120
delq . 119
delq! . 119
delv . 119, 120
delv! . 119
denominator . 68
dib . 315
dib-blt . 316
dib-from-bitmap . 316
dib-height . 316
dib-set-pixels-unaligned 317
dib-width . 316
digit->char . 84
digit-value . 83
directory-namestring . 244
directory-pathname . 244
directory-pathname-as-file 245
directory-pathname? . 242
directory-read . 253
discard-chars on textual input port 213
discard-matched . 222, 225
discard-parser-buffer-head! 218
discretionary-flush-output 200
discretionary-flush-output on
textual output port . 215

display . 201, 274
do . 7, 27, 29
dotted-list? . 116
draw-arc . 303
draw-arc on x-graphics-device 303
draw-circle . 304
draw-circle on x-graphics-device 304
draw-ellipse on win32-graphics-device 307
draw-image on graphics-device 301

332 MIT/GNU Scheme 10.1.1

draw-subimage on graphics-device 301
dynamic-wind . 181

E
eighth . 117
else . 5, 25, 26
encapsulate . 226
end-of-input . 222
enough-namestring . 244
enough-pathname . 244
entity-extra . 183
entity-procedure . 183
entity? . 183
enumerate-graphics-types 295
environment . 266
environment-assign! . 186
environment-assignable? . 186
environment-assigned? . 186
environment-bindings . 185
environment-bound-names . 185
environment-bound? . 186
environment-definable? . 186
environment-define . 186
environment-define-macro 187
environment-has-parent? . 185
environment-lookup . 186
environment-lookup-macro 186
environment-macro-names . 185
environment-parent . 185
environment-reference-type 186
environment? . 185
eof-object . 197
eof-object? . 197
eof? on textual input port 214
ephemeron-broken? . 147
ephemeron-datum . 148
ephemeron-key . 148
ephemeron? . 147
epoch . 254
eq-hash . 163
eq-hash-mod . 157, 164
eq? . . 55, 58, 119, 121, 136, 138, 150, 151, 152, 154,

157, 164, 282
equal-hash . 163
equal-hash-mod . 157, 164
equal? 23, 55, 59, 119, 121, 150, 151, 155, 157
eqv-hash . 163
eqv-hash-mod . 164
eqv? . . . 9, 26, 55, 112, 119, 121, 150, 151, 154, 155
er-macro-transformer . 47
error . 4, 271, 273, 275, 276
error-irritant/noise . 275
error:bad-range-argument 289
error:datum-out-of-range 289
error:derived-file . 291
error:derived-port . 291
error:divide-by-zero . 292

error:file-operation . 290
error:no-such-restart . 293
error:wrong-number-of-arguments 289
error:wrong-type-argument 288
error:wrong-type-datum . 288
eval . 187
even? . 65
every . 124
exact . 62
exact->inexact . 71
exact-integer? . 65
exact-nonnegative-integer? 65
exact-rational? . 65
exact? . 65
except-last-pair . 118
except-last-pair! . 118
exp . 70
expt . 70
extend-top-level-environment 188

F
false . 135
false? . 135
fifth . 117
file-access . 250
file-access-time . 251
file-access-time-direct . 251
file-access-time-indirect 251
file-attributes . 252
file-attributes-direct . 252
file-attributes-indirect 252
file-attributes/access-time 252
file-attributes/change-time 252
file-attributes/gid . 253
file-attributes/inode-number 253
file-attributes/length . 253
file-attributes/mode-string 253
file-attributes/modes . 253
file-attributes/modification-time 252
file-attributes/n-links . 253
file-attributes/type . 252
file-attributes/uid . 253
file-directory? . 249
file-eq? . 251
file-error? . 192, 193
file-executable? . 250
file-exists-direct? . 248
file-exists-indirect? . 248
file-exists? . 248
file-length . 252
file-modes . 251
file-modification-time . 251
file-modification-time-direct 251
file-modification-time-indirect 251
file-namestring . 244
file-pathname . 244
file-readable? . 250

Appendix B: Binding Index 333

file-regular? . 249
file-symbolic-link? . 250
file-time->global-decoded-time 259
file-time->global-time-string 259
file-time->local-decoded-time 259
file-time->local-time-string 259
file-time->universal-time 259
file-touch . 252
file-type-direct . 250
file-type-indirect . 250
file-writeable? . 250
fill-circle . 304
fill-circle on x-graphics-device 304
fill-polygon . 308
fill-polygon on win32-graphics-device 308
fill-with . 99
filter . 118
filter! . 119
find . 120
find-color on win32-graphics-device 307
find-matching-item . 121
find-module . 312
find-restart . 277, 281
find-tail . 121
first . 117
fix:* . 75
fix:+ . 75
fix:- . 75
fix:-1+ . 75
fix:< . 75
fix:<= . 75
fix:= . 75
fix:> . 75
fix:>= . 75
fix:1+ . 75
fix:and . 76
fix:andc . 76
fix:divide . 76
fix:fixnum? . 75
fix:gcd . 75
fix:lsh . 76
fix:negative? . 75
fix:not . 76
fix:or . 76
fix:positive? . 75
fix:quotient . 75
fix:remainder . 75
fix:xor . 76
fix:zero? . 75
flo:* . 77
flo:+ . 77
flo:- . 77
flo:/ . 77
flo:< . 77
flo:= . 77
flo:> . 77
flo:abs . 77
flo:acos . 77

flo:asin . 77
flo:atan . 78
flo:atan2 . 78
flo:ceiling . 78
flo:ceiling->exact . 78
flo:cos . 77
flo:exp . 77
flo:expt . 78
flo:finite? . 77
flo:flonum? . 77
flo:floor . 78
flo:floor->exact . 78
flo:log . 77
flo:negate . 77
flo:negative? . 77
flo:positive? . 77
flo:random-unit . 79
flo:round . 78
flo:round->exact . 78
flo:sin . 77
flo:sqrt . 78
flo:tan . 77
flo:truncate . 78
flo:truncate->exact . 78
flo:zero? . 77
flonum-parser-fast? . 72
flonum-unparser-cutoff . 72
floor . 68
floor->exact . 69
fluid-let . 20, 21, 22, 27
flush-output . 202
flush-output on textual output port 215
flush-output-port . 200, 202
fold-left . 123
fold-right . 123
font-structure on x-graphics-device 305
for-all? . 125
for-each . 122
force . 142, 145
format . 206
format-error-message . 275
fourth . 117
fresh-line . 202
fresh-line on textual output port 215

G
gcd . 68
gdi32.dll . 313
ge . 7, 188
general-car-cdr . 114
generate-uninterned-symbol 138
get-default on x-graphics-device 305
get-host-by-address . 270
get-host-by-name . 269
get-host-name . 270
get-output-bytevector . 195
get-output-string . 193, 194

334 MIT/GNU Scheme 10.1.1

get-parser-buffer-pointer 217
get-parser-buffer-tail . 218
get-universal-time . 254
global-decoded-time . 255
global-parser-macros . 228
grapheme-cluster-length . 94
grapheme-cluster-slice . 94
graphics-bind-drawing-mode 299
graphics-bind-line-style 299
graphics-clear . 296, 303, 304
graphics-close . 296
graphics-coordinate-limits 296
graphics-device-coordinate-limits 296
graphics-disable-buffering 299
graphics-drag-cursor . 298
graphics-draw-line . 297
graphics-draw-point . 297
graphics-draw-text . 297
graphics-enable-buffering 299
graphics-erase-point . 297
graphics-flush . 299
graphics-move-cursor . 297
graphics-operation . 300
graphics-reset-clip-rectangle 300
graphics-set-clip-rectangle 300
graphics-set-coordinate-limits 296
graphics-set-drawing-mode 299
graphics-set-line-style . 299
graphics-type-available? 295
group . 108
group-ref . 108
guarantee-procedure-of-arity 179

H
handle . 312
hard-link-file . 248
hash . 164
hash-by-equal . 164
hash-by-eqv . 164
hash-by-identity . 163
hash-object . 164
hash-table->alist . 159
hash-table-clean! . 161
hash-table-clear! . 159
hash-table-constructor . 155
hash-table-delete! . 159
hash-table-entry-type:datum-ephemeral 157
hash-table-entry-type:datum-weak 156
hash-table-entry-

type:key&datum-ephemeral 157
hash-table-entry-type:key&datum-weak 157
hash-table-entry-type:key-ephemeral 157
hash-table-entry-type:key-weak 156
hash-table-entry-type:key/datum-weak 157
hash-table-entry-type:strong 156
hash-table-grow-size . 162
hash-table-intern! . 160

hash-table-keys . 159
hash-table-ref . 159
hash-table-ref/default . 159
hash-table-rehash-size . 163
hash-table-rehash-threshold 163
hash-table-set! . 158
hash-table-shrink-size . 162
hash-table-size . 159
hash-table-update! . 160
hash-table-update!/default 160
hash-table-values . 159
hash-table-walk . 160
hash-table/clean! . 161
hash-table/clear! . 159
hash-table/constructor . 158
hash-table/count . 159
hash-table/datum-list . 159
hash-table/for-each . 160
hash-table/get . 159
hash-table/intern! . 160
hash-table/key-list . 159
hash-table/lookup . 160
hash-table/make . 165
hash-table/modify! . 160
hash-table/put! . 158
hash-table/rehash-size . 163
hash-table/rehash-threshold 163
hash-table/remove! . 159
hash-table/size . 162
hash-table? . 158
hbitmap . 312
hbrush . 312
hcursor . 312
hdc . 312
hicon . 312
hinstance . 312
hmenu . 312
host-address-any . 270
host-address-loopback . 270
host-namestring . 244
host=? . 245
host? . 245
hpalette . 312
hpen . 312
hrgn . 312
hwnd . 312

I
i/o-port-type? . 212
i/o-port? . 190
identifier=? . 46
identifier? . 46
if . 25, 135
ignore-error . 276
ignore-errors . 275
imag-part . 70
image/destroy . 301

Appendix B: Binding Index 335

image/fill-from-byte-vector 301
image/height . 301
image/width . 301
image? . 301
implemented-primitive-procedure? 180
inexact . 71
inexact? . 65
init-file-pathname . 245
initial-offset . 34
input . 264
input-buffer-size . 265
input-buffer-size on textual input port . . . 214
input-line-translation . 265
input-port->parser-buffer 216
input-port-blocking-mode 204
input-port-open? . 190
input-port-terminal-mode 206
input-port-type? . 212
input-port/char-ready? . 214
input-port/discard-chars 214
input-port/peek-char . 214
input-port/read-char . 214
input-port/read-string . 214
input-port/read-substring 214
input-port? . 190
int . 311
integer->char . 83
integer-ceiling . 67
integer-divide . 67, 76
integer-divide-quotient 67, 76
integer-divide-remainder 67, 76
integer-floor . 67
integer-round . 67
integer-truncate . 67
integer? . 64
interaction-i/o-port 190, 209
intern . 137
intern-soft . 137
internal-time/seconds->ticks 262
internal-time/ticks->seconds 261
interpreter-environment? 188
invoke-restart 277, 278, 281, 282
invoke-restart-interactively 277, 281, 282
iota . 115

K
keep-matching-items . 118
keep-matching-items! . 119
kernel32.dll . 313
keyword-constructor . 32

L
lambda 5, 7, 12, 14, 15, 18, 21, 22, 27, 177
last-pair . 118
lcm . 68
leading . 99, 100
length . 62, 116
length+ . 116
let . 7, 17, 20, 21, 22, 27, 28
let* . 7, 17, 21, 22, 27
let*-syntax . 37
let-syntax . 36
letrec . 7, 18, 21, 22, 27
letrec-syntax . 36
line-end . 105
line-start . 105
link-variables . 188
list . 6, 114, 115, 125, 127, 194
list->stream . 144
list->string . 93
list->vector . 115, 127
list-copy . 115, 151
list-deletor . 120, 151
list-deletor! . 120, 151
list-head . 117
list-ref . 117
list-search-negative . 121
list-search-positive . 121
list-tabulate . 115
list-tail . 117
list-transform-negative . 119
list-transform-positive . 118
list? . 116, 150, 152
load-bitmap on win32-graphics-device 308
load-option 166, 169, 206, 221, 228
local-decoded-time . 254
local-host . 245
log . 70
long . 311

M
magnitude . 70
make-1d-table . 152
make-apply-hook . 183
make-bit-string . 131
make-cell . 140
make-char . 84
make-circular-list . 125
make-condition . 272, 273, 285
make-condition-type . 285
make-datum-weak-eq-hash-table 154
make-datum-weak-eqv-hash-table 155
make-decoded-time . 255
make-directory . 248
make-entity . 183
make-ephemeron . 147
make-eq-hash-table . 154
make-equal-hash-table . 155

336 MIT/GNU Scheme 10.1.1

make-eqv-hash-table . 154
make-graphics-device . 295
make-hash-table . 155
make-hash-table* . 155
make-hash-table-type . 156
make-hash-table-type* . 156
make-initialized-list . 115
make-initialized-vector . 128
make-key-ephemeral-eq-hash-table 154
make-key-ephemeral-eqv-hash-table 155
make-key-weak-eq-hash-table 154
make-key-weak-eqv-hash-table 154
make-list . 115, 125
make-object-hash-table . 154
make-object-hasher . 165
make-parameter . 139
make-parser-macros . 227
make-pathname . 241
make-polar . 70
make-port . 213
make-port-type . 212
make-primitive-procedure 179
make-procedure-arity . 178
make-random-state . 79
make-rb-tree . 166
make-record-type . 140
make-rectangular . 70
make-root-top-level-environment 188
make-settable-parameter . 139
make-string . 90
make-string-hash-table . 155
make-strong-eq-hash-table 154
make-strong-eqv-hash-table 154
make-symbol-hash-table . 154
make-syntactic-closure . 43
make-synthetic-identifier 47
make-textual-port . 212
make-textual-port-type . 212
make-top-level-environment 188
make-unsettable-parameter 139
make-vector . 127
make-weak-eq-hash-table . 154
make-weak-eqv-hash-table 154
make-wt-tree . 170
make-wt-tree-type . 170
make-xml-!attlist . 234
make-xml-!element . 234
make-xml-!entity . 234
make-xml-!notation . 235
make-xml-declaration . 233
make-xml-document . 233
make-xml-dtd . 233
make-xml-element . 233
make-xml-external-id . 235
make-xml-name . 230
make-xml-nmtoken . 232
make-xml-parameter-!entity 234
make-xml-processing-instructions 233

make-xml-qname . 231
make-xml-unparsed-!entity 234
map . 121, 226
map* . 122
map-window on x-graphics-device 304
match . 224
match-parser-buffer-char 218
match-parser-buffer-char-ci 218
match-parser-buffer-char-ci-no-advance . . . 218
match-parser-buffer-char-in-set 218
match-parser-buffer-char-in-

set-no-advance . 218
match-parser-buffer-char-no-advance 218
match-parser-buffer-not-char 218
match-parser-buffer-not-char-ci 218
match-parser-buffer-not-char-

ci-no-advance . 218
match-parser-buffer-not-

char-no-advance . 218
match-parser-buffer-string 218
match-parser-buffer-string-ci 218
match-parser-buffer-string-

ci-no-advance . 218
match-parser-buffer-string-no-advance 218
match-parser-buffer-substring 219
match-parser-buffer-substring-ci 219
match-parser-buffer-substring-

ci-no-advance . 219
match-parser-buffer-

substring-no-advance . 219
max . 66
measure-interval . 262
member . 121
member-procedure . 121
memq . 121
memv . 121
merge-pathnames . 191, 243
merge-sort . 125
merge-sort! . 130
microcode-id/operating-system 269
microcode-id/operating-system-name 269
microcode-id/operating-system-variant 269
min . 66
modulo . 66
month/long-string . 261
month/max-days . 257
month/short-string . 261
move-window on win32-graphics-device 308
move-window on x-graphics-device 305
muffle-warning . 273, 277, 280

Appendix B: Binding Index 337

N
name->char . 82
named . 33
named-lambda . 16, 21, 27
NaN . 77
nearest-repl/environment 187
negative? . 65
newline . 201
nil . 135
ninth . 117
noise . 225
not . 135
not-char . 222
not-char-ci . 222
notification-output-port 190, 276
nt-file-mode/archive . 251
nt-file-mode/compressed . 251
nt-file-mode/directory . 251
nt-file-mode/hidden . 251
nt-file-mode/normal . 251
nt-file-mode/read-only . 251
nt-file-mode/system . 251
nt-file-mode/temporary . 251
null-xml-name-prefix . 232
null-xml-name-prefix? . 232
null-xml-namespace-uri . 232
null-xml-namespace-uri? . 232
null? . 116, 145
number->string . 71
number-wt-type . 170
number? . 64
numerator . 68

O
object-hash . 164
object-hashed? . 165
object-unhash . 164
odd? . 65
open-binary-i/o-file . 193
open-binary-input-file . 192
open-binary-output-file . 192
open-dib . 316
open-i/o-file . 193
open-input-bytevector . 195
open-input-file . 191, 192
open-input-string . 193
open-output-bytevector . 195
open-output-file . 191, 192
open-output-string . 193, 194
open-tcp-server-socket . 268
open-tcp-stream-socket . 267
or . 27, 135
os/hostname . 270
output . 265
output-buffer-size . 266
output-buffer-size on
textual output port . 216

output-line-translation . 265
output-port-blocking-mode 204
output-port-open? . 190
output-port-terminal-mode 206
output-port-type? . 212
output-port/discretionary-flush-output . . . 215
output-port/flush-output 215
output-port/fresh-line . 215
output-port/write-char . 215
output-port/write-string 215
output-port/write-substring 215
output-port/x-size . 216
output-port/y-size . 216
output-port? . 190

P
pair? . 112, 116, 146
param:default-pathname-defaults 243
param:flonum-printer-cutoff 72
param:print-with-maximum-readability? 204
param:printer-list-breadth-limit 203
param:printer-list-depth-limit 203
param:printer-radix . 203
param:printer-string-length-limit 203
param:reader-fold-case? . 200
param:reader-radix . 199
parameterize 18, 191, 192, 202
parameterize* . 140
parse-namestring . 238
parser-buffer-pointer-index 219
parser-buffer-pointer-line 219
parser-buffer-pointer? . 217
parser-buffer-position-string 219
parser-buffer-ref . 217
parser-buffer? . 217
parser-macros? . 227
partition . 119
partition! . 119
pathname-absolute? . 242
pathname-as-directory 245, 247
pathname-default . 244
pathname-default-device . 242
pathname-default-directory 242
pathname-default-name . 242
pathname-default-type . 242
pathname-default-version 242
pathname-device . 241
pathname-directory . 241
pathname-host . 241
pathname-name . 241
pathname-new-device . 241
pathname-new-directory . 241
pathname-new-name . 241
pathname-new-type . 242
pathname-new-version . 242
pathname-simplify . 238
pathname-type . 241

338 MIT/GNU Scheme 10.1.1

pathname-version . 241
pathname-wild? . 243
pathname=? . 242
pathname? . 242
peek-char . 196
peek-char on textual input port 213
peek-parser-buffer-char . 217
peek-u8 . 198
port-type/operation . 212
port-type/operation-names 212
port-type/operations . 212
port-type? . 212
port/input-blocking-mode 205
port/input-terminal-mode 206
port/operation . 213
port/operation-names . 213
port/output-blocking-mode 205
port/output-terminal-mode 206
port/set-input-blocking-mode 205
port/set-input-terminal-mode 206
port/set-output-blocking-mode 205
port/set-output-terminal-mode 206
port/state . 213
port/type . 213
port/with-input-blocking-mode 205
port/with-input-terminal-mode 206
port/with-output-blocking-mode 205
port/with-output-terminal-mode 206
port? . 190
positive? . 65
pp . 202
predicate . 31
primitive-procedure-name 179
primitive-procedure? . 178
print-procedure . 31
procedure . 135
procedure-arity . 179
procedure-arity-max . 178
procedure-arity-min . 178
procedure-arity-valid? . 179
procedure-arity? . 178
procedure-environment . 178
procedure-of-arity? . 179
procedure? . 177
process-time-clock . 261
promise-forced? . 143
promise-value . 143
promise? . 143
prompt-for-command-char . 210
prompt-for-command-expression 210
prompt-for-confirmation . 211
prompt-for-evaluated-expression 210
prompt-for-expression . 210
pwd . 246

Q
quasiquote . 23, 111
quick-sort . 125
quick-sort! . 130
quote . 23, 111
quotient . 66, 67

R
random . 78
random-state? . 79
rational? . 64
rationalize . 69
rationalize->exact . 69
rb-tree->alist . 166
rb-tree/copy . 167
rb-tree/datum-list . 166
rb-tree/delete! . 166
rb-tree/delete-max! . 168
rb-tree/delete-max-datum! 168
rb-tree/delete-max-pair! 168
rb-tree/delete-min! . 168
rb-tree/delete-min-datum! 168
rb-tree/delete-min-pair! 168
rb-tree/empty? . 167
rb-tree/equal? . 167
rb-tree/height . 167
rb-tree/insert! . 166
rb-tree/key-list . 166
rb-tree/lookup . 166
rb-tree/max . 168
rb-tree/max-datum . 168
rb-tree/max-pair . 168
rb-tree/min . 168
rb-tree/min-datum . 168
rb-tree/min-pair . 168
rb-tree/size . 167
rb-tree? . 166
read . 4, 8, 111, 136, 189, 195
read-bytevector . 198
read-bytevector! . 198
read-char . 189, 196, 197, 199
read-char on textual input port 213
read-char-no-hang . 196
read-delimited-string . 199
read-line . 197
read-only . 31
read-parser-buffer-char . 217
read-string . 197
read-string on textual input port 213
read-string! . 197
read-substring on textual input port 214
read-substring! . 198
read-u8 . 189, 198
read-xml . 229
read-xml-file . 229
real-part . 70
real-time-clock . 261

Appendix B: Binding Index 339

real? . 64
receive . 51
record-accessor . 141
record-constructor . 140
record-keyword-constructor 141
record-modifier . 141
record-predicate . 141
record-type-descriptor . 141
record-type-field-names . 142
record-type-name . 142
record-type? . 142
record? . 141
redisplay-hook . 266
reduce-left . 123
reduce-right . 123
reference-barrier . 148
regsexp-match-string . 109
regsexp-search-string-forward 109
remainder . 66, 67
remove . 119
remove! . 119
rename-file . 248
resize-window on win32-graphics-device . . . 308
resize-window on x-graphics-device 305
resource-id . 312
restart/effector . 282
restart/interactor . 281, 282
restart/name . 282
restart? . 282
retry . 277, 280
reverse . 125
reverse! . 125
round . 68
round->exact . 69
rsc-macro-transformer . 42
run-shell-command . 263
run-synchronous-subprocess 263
runtime . 262

S
safe-accessors . 34
save-bitmap on win32-graphics-device 308
sc-macro-transformer . 41
scheme-subprocess-environment 266
second . 117
seq . 108, 223, 225
sequence . 27
set! . 21, 22
set-apply-hook-extra! . 183
set-apply-hook-procedure! 183
set-background-color . 307
set-background-color on
win32-graphics-device . 307

set-background-color on
x-graphics-device . 303

set-border-color on x-graphics-device 303
set-border-width on x-graphics-device 304

set-car! . 113
set-cdr! . 111, 113, 194
set-cell-contents! . 140
set-current-input-port! . 191
set-current-output-port! 191
set-current-parser-macros! 228
set-entity-extra! . 183
set-entity-procedure! . 183
set-ephemeron-datum! . 148
set-ephemeron-key! . 148
set-file-modes! . 251
set-file-times! . 252
set-font on win32-graphics-device 308
set-font on x-graphics-device 304
set-foreground-color . 307
set-foreground-color on
win32-graphics-device . 307

set-foreground-color on
x-graphics-device . 303

set-hash-table-rehash-size! 163
set-hash-table-rehash-threshold! 163
set-hash-table/rehash-size! 163
set-hash-table/rehash-threshold! 163
set-input-buffer-size on
textual input port . 214

set-input-port-blocking-mode! 204
set-input-port-terminal-mode! 206
set-interaction-i/o-port! 191
set-internal-border-width on
x-graphics-device . 304

set-line-width on win32-graphics-device . . 308
set-mouse-color on x-graphics-device 303
set-mouse-shape on x-graphics-device 304
set-notification-output-port! 191
set-output-buffer-size on
textual output port . 216

set-output-port-blocking-mode 204
set-output-port-terminal-mode! 206
set-parser-buffer-pointer! 218
set-port/state! . 213
set-record-type-unparser-method! 209
set-textual-port-state! . 213
set-trace-output-port! . 191
set-window-name on
win32-graphics-device . 308

set-working-directory-pathname! 247
set-xml-!attlist-definitions! 234
set-xml-!attlist-name! . 234
set-xml-!element-content-type! 234
set-xml-!element-name! . 234
set-xml-!entity-name! . 234
set-xml-!entity-value! . 234
set-xml-!notation-id! . 235
set-xml-!notation-name! . 235
set-xml-declaration-encoding! 233
set-xml-declaration-standalone! 233
set-xml-declaration-version! 233
set-xml-document-declaration! 233

340 MIT/GNU Scheme 10.1.1

set-xml-document-dtd! . 233
set-xml-document-misc-1! 233
set-xml-document-misc-2! 233
set-xml-document-misc-3! 233
set-xml-document-root! . 233
set-xml-dtd-external! . 233
set-xml-dtd-internal! . 233
set-xml-dtd-root! . 233
set-xml-element-attributes! 233
set-xml-element-content! 233
set-xml-element-name! . 233
set-xml-external-id-id! . 235
set-xml-external-id-uri! 235
set-xml-parameter-!entity-name! 234
set-xml-parameter-!entity-value! 234
set-xml-processing-instructions-name! 233
set-xml-processing-instructions-text! 233
set-xml-unparsed-!entity-id! 234
set-xml-unparsed-!entity-name! 234
set-xml-unparsed-!entity-notation! 234
seventh . 117
sexp . 223, 226
shell-file-name . 267
short . 311
signal-condition 272, 273, 276
signed-integer->bit-string 134
simplest-exact-rational . 69
simplest-rational . 69
sin . 70
singleton-wt-tree . 170
sixth . 117
soft-link-file . 248
sort . 125
sort! . 130
source->parser-buffer . 217
sqrt . 63, 70
standard-error-handler . 276
standard-error-hook . 276
standard-print-method . 208
standard-unparser-method 209
standard-warning-handler 276, 277
standard-warning-hook . 277
store-value . 277, 280
stream . 144
stream->list . 144
stream-car . 145
stream-cdr . 145
stream-first . 145
stream-head . 145
stream-length . 145
stream-map . 145
stream-null? . 145
stream-pair? . 144
stream-ref . 145
stream-rest . 145
stream-tail . 145
string . 90, 222, 312
string* . 90

string->decoded-time . 260
string->file-time . 260
string->list . 93
string->nfc . 94
string->nfd . 94
string->number . 74
string->parser-buffer . 217
string->symbol . 137
string->uninterned-symbol 138
string->universal-time . 259
string->vector . 128
string->xml . 229
string-any . 95
string-append . 93
string-append* . 93
string-builder . 96
string-ci . 104, 222
string-ci<=? . 91
string-ci<? . 91
string-ci=? . 91, 96
string-ci>=? . 91
string-ci>? . 91
string-compare . 91
string-compare-ci . 91
string-copy . 93
string-copy! . 93
string-count . 95
string-downcase . 92
string-end . 105
string-every . 96
string-fill! . 93
string-find-first-index . 102
string-find-last-index . 102
string-find-next-char . 102
string-find-next-char-ci 102
string-find-next-char-in-set 102
string-find-previous-char 103
string-find-previous-char-ci 103
string-find-previous-char-in-set 103
string-foldcase . 92
string-for-each . 95
string-hash . 96, 139
string-hash-ci . 96
string-hash-mod . 157
string-head . 96
string-in-nfc? . 94
string-in-nfd? . 94
string-is-xml-name? . 232
string-is-xml-nmtoken? . 232
string-joiner . 97
string-joiner* . 97
string-length . 62, 90
string-lower-case? . 92
string-map . 94
string-match-backward . 103
string-match-forward . 103
string-null? . 96
string-pad-left . 99

Appendix B: Binding Index 341

string-pad-right . 99
string-padder . 98
string-prefix-ci? . 104
string-prefix? . 104
string-ref . 9, 90
string-replace . 101
string-search-all . 102
string-search-backward . 101
string-search-forward . 101
string-set! . 9, 90, 137
string-slice . 92
string-splitter . 98
string-start . 105
string-suffix-ci? . 104
string-suffix? . 104
string-tail . 96
string-titlecase . 92
string-trim . 101
string-trim-left . 101
string-trim-right . 101
string-trimmer . 100
string-upcase . 92
string-upper-case? . 92
string-word-breaks . 94
string-wt-type . 170
string<=? . 91
string<? . 91
string=? 55, 90, 96, 136, 137, 155, 157
string>=? . 91
string>? . 91
string? . 90
strong-hash-table/constructor 158
sublist . 117
substring . 92
substring->parser-buffer 217
substring? . 102
subvector . 129
subvector->list . 115
subvector-fill! . 130
subvector-move-left! . 130
subvector-move-right! . 130
symbol->string . 9, 55, 137
symbol-append . 138
symbol-hash . 139
symbol-hash-mod . 139
symbol<? . 139
symbol? . 137
syntax-rules . 38
system-clock . 262
system-global-environment 187
system-library-directory-pathname 246
system-library-pathname . 246

T
t . 135
tan . 70
tcp-server-connection-accept 268
template . 5
temporary-directory-pathname 249
temporary-file-pathname . 249
tenth . 117
textual-i/o-port-type? . 212
textual-input-port->parser-buffer 216
textual-input-port-type? 212
textual-output-port-type? 212
textual-port-operation . 213
textual-port-operation-names 213
textual-port-state . 213
textual-port-type . 213
textual-port-type? . 212
textual-port? . 190
the-environment . 188
there-exists? . 124
third . 117
thunk? . 179
time-zone->string . 261
time-zone? . 256
top-level-environment? . 188
trace-output-port . 190
trailing . 99, 100
transform . 226
tree-copy . 114
true . 135
truncate . 68
truncate->exact . 69
type . 31, 33
type-descriptor . 32

U
u8-ready? . 198
uint . 311
ulong . 311
unbind-variable . 188
unchecked . 311
unhash . 164
unhash-object . 164
unicode-char? . 86
unicode-code-point? . 85
unicode-scalar-value? . 86
universal-time->file-time 258
universal-time->global-decoded-time 257
universal-time->global-time-string 258
universal-time->local-decoded-time 257
universal-time->local-time-string 258
unparser/set-tagged-pair-method! 209
unparser/set-tagged-vector-method! 209
unquote . 24, 111
unquote-splicing . 24, 111
unread-char . 196
unsigned-integer->bit-string 134

342 MIT/GNU Scheme 10.1.1

use-pty? . 267
use-value . 277, 280
user-homedir-pathname . 245
user-initial-environment 7, 187
user32.dll . 313
ushort . 311

V
valid-hash-number? . 165
valid-object-hash? . 165
values . 182, 225
vector . 127
vector->list . 115, 127
vector->string . 128
vector-binary-search . 129
vector-copy . 127
vector-eighth . 129
vector-fifth . 129
vector-fill! . 130
vector-first . 129
vector-fourth . 129
vector-grow . 128
vector-head . 129
vector-length . 62, 128
vector-map . 128
vector-ref . 9, 128
vector-second . 129
vector-set! . 129
vector-seventh . 129
vector-sixth . 129
vector-tail . 129
vector-third . 129
vector? . 128

W
warn . 273, 280
weak-car . 146
weak-cdr . 147
weak-cons . 146
weak-hash-table/constructor 158
weak-pair/car? . 146
weak-pair? . 146
weak-set-car! . 147
weak-set-cdr! . 147
where . 210
windows-procedure . 313
with-current-parser-macros 228
with-current-unparser-state 209
with-input-from-binary-file 192
with-input-from-file . 192
with-input-from-port . 191
with-input-from-string . 194
with-input-port-blocking-mode 205
with-input-port-terminal-mode 206
with-interaction-i/o-port 191
with-notification-output-port 191

with-output-port-blocking-mode 205
with-output-port-terminal-mode 206
with-output-to-binary-file 192
with-output-to-file . 192
with-output-to-port . 191
with-output-to-string . 194
with-output-to-truncated-string 194
with-pointer . 224, 227
with-restart 272, 277, 278, 281
with-simple-restart 277, 278, 281
with-timings . 262
with-trace-output-port . 191
with-working-directory-pathname 247
withdraw-window on x-graphics-device 304
within-continuation . 181
word . 311
working-directory . 267
working-directory-pathname 246
write 8, 136, 189, 194, 200, 274
write-bytevector . 201
write-char . 6, 189, 201
write-char on textual output port 215
write-condition-report 276, 284, 285
write-dib . 316
write-line . 202
write-restart-report . 282
write-shared . 201
write-simple . 201
write-string . 201, 206
write-substring . 201
write-substring on textual output port 215
write-to-string . 194
write-u8 . 189, 201
write-xml . 230
write-xml-file . 230
wt-tree/add . 171
wt-tree/add! . 171
wt-tree/delete . 172
wt-tree/delete! . 172
wt-tree/delete-min . 175
wt-tree/delete-min! . 176
wt-tree/difference . 172
wt-tree/empty? . 171
wt-tree/fold . 173
wt-tree/for-each . 173
wt-tree/index . 174
wt-tree/index-datum . 174
wt-tree/index-pair . 174
wt-tree/intersection . 172
wt-tree/lookup . 171
wt-tree/member? . 171
wt-tree/min . 175
wt-tree/min-datum . 175
wt-tree/min-pair . 175
wt-tree/rank . 175
wt-tree/set-equal? . 173
wt-tree/size . 171
wt-tree/split< . 172

Appendix B: Binding Index 343

wt-tree/split> . 172
wt-tree/subset? . 173
wt-tree/union . 172
wt-tree/union-merge . 174
wt-tree? . 171

X
x-character-bounds/ascent 305
x-character-bounds/descent 305
x-character-bounds/lbearing 305
x-character-bounds/rbearing 305
x-character-bounds/width 305
x-close-all-displays . 303
x-font-structure/all-chars-exist 305
x-font-structure/character-bounds 305
x-font-structure/default-char 305
x-font-structure/direction 305
x-font-structure/max-ascent 305
x-font-structure/max-bounds 305
x-font-structure/max-descent 305
x-font-structure/min-bounds 305
x-font-structure/name . 305
x-font-structure/start-index 305
x-geometry-string . 303
x-graphics/close-display 303
x-graphics/open-display . 302
x-open-display . 302
x-size on textual output port 216
xcons . 112
xml-!attlist . 234
xml-!attlist-definitions 234
xml-!attlist-name . 234
xml-!attlist? . 234
xml-!element . 234
xml-!element-content-type 234
xml-!element-name . 234
xml-!element? . 234
xml-!entity . 234
xml-!entity-name . 234
xml-!entity-value . 234
xml-!entity? . 234
xml-!notation . 235
xml-!notation-id . 235
xml-!notation-name . 235
xml-!notation? . 235
xml->string . 230
xml->wide-string . 230
xml-declaration . 233
xml-declaration-encoding 233
xml-declaration-standalone 233
xml-declaration-version . 233
xml-declaration? . 233
xml-document . 233
xml-document-declaration 233

xml-document-dtd . 233
xml-document-misc-1 . 233
xml-document-misc-2 . 233
xml-document-misc-3 . 233
xml-document-root . 233
xml-document? . 233
xml-dtd . 233
xml-dtd-external . 233
xml-dtd-internal . 233
xml-dtd-root . 233
xml-dtd? . 233
xml-element . 233
xml-element-attributes . 233
xml-element-content . 233
xml-element-name . 233
xml-element? . 233
xml-external-id . 235
xml-external-id-id . 235
xml-external-id-uri . 235
xml-external-id? . 235
xml-name->symbol . 231
xml-name-local . 231
xml-name-prefix . 231
xml-name-string . 231
xml-name-uri . 231
xml-name=? . 231
xml-name? . 231
xml-nmtoken? . 232
xml-parameter-!entity . 234
xml-parameter-!entity-name 234
xml-parameter-!entity-value 234
xml-parameter-!entity? . 234
xml-processing-instructions 233
xml-processing-instructions-name 233
xml-processing-instructions-text 233
xml-processing-instructions? 233
xml-qname-local . 232
xml-qname-prefix . 232
xml-qname? . 231
xml-unparsed-!entity . 234
xml-unparsed-!entity-id . 234
xml-unparsed-!entity-name 234
xml-unparsed-!entity-notation 234
xml-unparsed-!entity? . 234
xml-uri . 232
xmlns-uri . 232

Y
y-size . 211
y-size on textual output port 216

Z
zero? . 64, 65

345

Appendix C Concept Index

!
! in mutation procedure names 10

"
" as external representation . 89

#
as format parameter . 207
in external representation of number 64
#(as external representation 127
#* as external representation 131
#[as external representation 208
#\ as external representation 81
#| as external representation 11
#b as external representation 64
#d as external representation 64
#e as external representation 64
#f as external representation 135
#i as external representation 64
#o as external representation 64
#t as external representation 135
#x as external representation 64

’
’ as external representation . 23

(
(as external representation 111

)
) as external representation 111

,
, as external representation . 24
,@ as external representation 24

–
-| notational convention . 4
-ci, in string procedure name 89

.

. as external representation 111

... in entries . 5

;
; as external representation . 11

=
=> in cond clause . 25

=> notational convention . 4

?
? in predicate names . 10

[
[in entries . 5

]
] in entries . 5

‘
‘ as external representation . 24

\
\ as escape character in string 89

1
1D table (defn) . 151

346 MIT/GNU Scheme 10.1.1

A
absolute pathname (defn) . 246
absolute value, of number . 66
access time, of file . 251
access, used with set! . 22
addition, of numbers . 66
address hashing . 163
alias . 40, 45
alist (defn) . 149
alphabetic case, of interned symbol 136
alphabetic case-insensitivity of

programs (defn) . 10
anonymous syntactic keyword 35
apostrophe, as external representation 23
appending, of bit strings . 132
appending, of lists . 117
appending, of symbols . 138
appending, to output file . 192
application hook (defn) 177, 182
application, of procedure . 177
apply hook (defn) . 182
argument evaluation order . 14
arity . 178
ASCII character . 84
assignment . 22
association list (defn) . 149
association table (defn) . 152
asterisk, as external representation 131
attribute, of file . 252

B
backquote, as external representation 24
backslash, as escape character in string 89
Backtracking, in parser language 219
balanced binary trees . 165, 168
barrier, reference . 148
bell, ringing on console . 202
binary port (defn) . 189
binary trees . 165, 168
binary trees, as discrete maps 169
binary trees, as sets . 169
binding expression (defn) . 7
binding expression, dynamic 19
binding expression, lexical . 17
binding, of variable . 6
binding, syntactic keyword . 185
binding, unassigned . 185
binding, variable . 185
bit string (defn) . 131
bit string index (defn) . 131
bit string length (defn) . 131
bitless character . 85
bitmaps . 308
bitmaps, graphics . 300
bitwise-logical operations, on fixnums 76
block structure . 17
blocking mode, of port . 204

BOA constructor . 29
BOA constructor (defn) . 31
body, of special form (defn) . 5
boolean object . 8
boolean object (defn) . 135
boolean object, equivalence predicate 135
bound variable (defn) . 6
bound-restarts . 283, 285
bracket, in entries . 5
broken ephemeron . 147
bucky bit, of character (defn) 84
bucky bit, prefix (defn) . 81
buffering, of graphics output 299
buffering, of output . 200
built-in procedure . 177
bytevector, input and output ports 195

C
call by need evaluation (defn) 142
car field, of pair (defn) . 111
case clause . 26
case conversion, of character 83
case folding, of character . 83
case sensitivity, of string operations 89
case, of interned symbol . 136
case-insensitivity of programs (defn) 10
cdr field, of pair (defn) . 111
cell (defn) . 140
character (defn) . 81
character bits (defn) . 84
character code (defn) . 84
character set . 86
character, bitless . 85
character, input from port . 196
character, input from textual port 213
character, output to textual port 215
character, searching string for 101
characters, special, in programs 11
child, of environment (defn) . 6
circle, graphics . 307
circles, drawing . 303, 304
circular list . 116, 125
circular structure . 59
clause, of case expression . 26
clause, of cond expression . 25
clearing the console screen . 202
client socket . 267
clip rectangle, graphics (defn) 300
clipping, of graphics . 300
closing environment, of procedure (defn) 15
closing, of file port . 193
closing, of port . 191
code point . 85
code, of character (defn) . 84
code-point list . 87
code-point range . 87
color . 307

Appendix C: Concept Index 347

combination (defn) . 14
comma, as external representation 24
comment, extended, in programs (defn) 11
comment, in programs (defn) 11
comparison predicate . 48
comparison, for equivalence . 55
comparison, of bit strings . 133
comparison, of boolean objects 135
comparison, of characters . 82
comparison, of numbers . 65
comparison, of XML names 231
compiled, procedure type . 177
component selection, of bit string 132
component selection, of cell 140
component selection, of character 85
component selection, of ephemeron 148
component selection, of list 116
component selection, of pair 112
component selection, of stream 145
component selection, of vector 128
component selection, of weak pair 146
components, of pathname . 239
compound procedure . 177
cond clause . 25
condition (defn) . 282
condition handler (defn) . 275
condition instance (defn) . 282
condition signalling (defn) . 272
condition type . 272, 285
conditional expression (defn) 24
console, clearing . 202
console, port . 191
console, ringing the bell . 202
constant . 9
constant expression (defn) . 13
constant, and quasiquote . 23
constant, and quote . 23
construction, of bit string . 131
construction, of cell . 140
construction, of character . 84
construction, of circular list 125
construction, of continuation 180
construction, of EOF object 197
construction, of ephemeron . 147
construction, of hash table . 153
construction, of list . 114
construction, of pair . 112
construction, of pathname 238, 241
construction, of procedure . 15
construction, of promise . 142
construction, of stream . 144
construction, of symbols . 137
construction, of textual port type 212
construction, of vector . 127
construction, of weak pair . 146
continuation . 180
continuation, alternate invocation 181
continuation, and dynamic binding 19

control, bucky bit prefix (defn) 81
conventions for error messages 274
conventions, lexical . 9
conventions, naming . 10
conventions, notational . 4
conversion, pathname to string 238, 244
cooked mode, of terminal port 205
coordinates, graphics . 296
copying, of alist . 151
copying, of bit string . 131
copying, of file . 248
copying, of tree . 114
copying, of vector . 127
current environment . 188
current environment (defn) . 7
current error port (defn) . 190
current input port (defn) . 190
current input port, rebinding 192
current interaction port (defn) 190
current notification port (defn) 190
current output port (defn) . 190
current output port, rebinding 192
current tracing output port (defn) 190
current working directory . 237
current working directory (defn) 246
cursor, graphics (defn) . 297
custom operations, on graphics device 300
custom operations, on textual port 211
cutting, of bit string . 132
cutting, of list . 117
cutting, of vector . 129

D
d, as exponent marker in number 64
decoded time . 254
default object (defn) . 15
defaulting, of pathname . 243
define, procedure (defn) . 21
defining foreign procedures . 313
defining foreign types . 310
definition . 21
definition, internal . 22
definition, internal (defn) . 21
definition, top-level . 21
definition, top-level (defn) . 21
deletion, of alist element . 150
deletion, of file . 248
deletion, of list element . 118
delimiter, in programs (defn) 10
device coordinates, graphics (defn) 296
device, pathname component 239
difference, of numbers . 66
directive, format (defn) . 206
directory path (defn) . 240
directory, converting pathname to 245
directory, current working (defn) 246
directory, pathname component 239

348 MIT/GNU Scheme 10.1.1

directory, predicate for . 249
directory, reading . 245, 253
discrete maps, using binary trees 169
discretionary flushing, of buffered output 200
disembodied property list . 136
display, clearing . 202
display, X graphics . 302
division, of integers . 66
division, of numbers . 66
DLL, DIBUTILS.DLL . 315
DLL, exports . 317
DLL, GDI32.DLL . 313
DLL, KERNEL32.DLL . 313
DLL, loading . 312
DLL, USER32.DLL . 313
dot, as external representation 111
dotted notation, for pair (defn) 111
dotted pair (see pair) . 111
double precision, of inexact number 64
double quote, as external representation 89
drawing arcs and circles, graphics 303, 304
drawing mode, graphics (defn) 298
dynamic binding . 19, 276, 277
dynamic binding, and continuations 19
dynamic binding, versus static scoping 7
dynamic environment . 19
dynamic extent . 19
dynamic parameter (defn) . 139
dynamic types (defn) . 3

E
e, as exponent marker in number 64
effector, restart (defn) . 277
element, of list (defn) . 111
ellipse, graphics . 307
ellipsis, in entries . 5
else clause, of case expression (defn) 26
else clause, of cond expression (defn) 25
empty list (defn) . 111
empty list, external representation 111
empty list, predicate for . 116
empty stream, predicate for 145
empty string, predicate for . 96
end of file object (see EOF object) 197
end, of subvector (defn) . 127
entity (defn) . 182
entry format . 5
environment (defn) . 6
environment, current . 188
environment, current (defn) . 7
environment, extension (defn) 6
environment, initial (defn) . 7
environment, interpreter . 188
environment, of procedure . 15
environment, procedure closing (defn) 15
environment, procedure invocation (defn) 15
environment, top-level . 188

EOF object, construction . 197
EOF object, predicate for . 197
ephemerally held data, of hash table 154
ephemerally held keys, of hash table 154
ephemeron (defn) . 147
ephemeron, broken . 147
equality, of XML names . 231
equivalence predicate (defn) . 55
equivalence predicate, for bit strings 133
equivalence predicate, for boolean objects 135
equivalence predicate, for characters 82
equivalence predicate, for fixnums 75
equivalence predicate, for flonums 77
equivalence predicate, for numbers 65
equivalence predicate, for pathname host 245
equivalence predicate, for pathnames 242
equivalence predicate, of hash table 154
error messages, conventions 274
error port, current (defn) . 190
error, in examples . 4
error, unassigned variable . 6
error, unbound variable (defn) 6
error–> notational convention 4
errors, notational conventions 4
escape character, for string . 89
escape procedure (defn) . 180
escape procedure, alternate invocation 181
evaluation order, of arguments 14
evaluation, call by need (defn) 142
evaluation, in examples . 4
evaluation, lazy (defn) . 142
evaluation, of s-expression . 187
even number . 65
exactness . 62
examples . 4
existence, testing of file . 248
exit, non-local . 180
explicit renaming . 47
exponent marker (defn) . 64
expression (defn) . 12
expression, binding (defn) . 7
expression, conditional (defn) 24
expression, constant (defn) . 13
expression, input from port 195
expression, iteration (defn) . 28
expression, literal (defn) . 13
expression, procedure call (defn) 13
expression, special form (defn) 13
extended comment, in programs (defn) 11
extension, of environment (defn) 6
extent, of dynamic binding (defn) 19
extent, of objects . 3
external representation (defn) 8
external representation, and quasiquote 23
external representation, and quote 23
external representation, for bit string 131
external representation, for empty list 111
external representation, for list 111

Appendix C: Concept Index 349

external representation, for number 64
external representation, for pair 111
external representation, for procedure 177
external representation, for string 89
external representation, for symbol 136
external representation, for vector 127
external representation, parsing 195
extra object, of application hook 182

F
f, as exponent marker in number 64
false, boolean object . 8
false, boolean object (defn) 135
false, in conditional expression (defn) 24
false, predicate for . 135
FDL, GNU Free Documentation License 319
file (regular), predicate for . 249
file name . 237
file time . 254
file type, procedure for . 250
file, converting pathname directory to 245
file, end-of-file marker (see EOF object) 197
file, input and output ports 191
filename (defn) . 237
filling, of bit string . 133
filling, of vector . 130
filtering, of list . 118
fixnum (defn) . 75
flonum (defn) . 77
flushing, of buffered output 200
forcing, of promise . 142
foreign type declarations . 310
form . 40
form, special (defn) . 13
formal parameter list, of lambda (defn) 15
format directive (defn) . 206
format, entry . 5

G
generalization, of condition types 272, 273, 285,

286
generalization, of condition types (defn) 271
gensym (see uninterned symbol) 138
geometry string, X graphics 303
grapheme cluster . 93
graphics . 295
graphics, bitmaps . 300
graphics, buffering of output 299
graphics, circle . 307
graphics, clipping . 300
graphics, coordinate systems 296
graphics, cursor (defn) . 297
graphics, custom operations 300
graphics, device coordinates (defn) 296
graphics, drawing . 296
graphics, drawing arcs and circles 303, 304

graphics, drawing mode (defn) 298
graphics, ellipse . 307
graphics, images . 300
graphics, line style (defn) . 298
graphics, opening and closing devices 295
graphics, output characteristics 298
graphics, virtual coordinates (defn) 296
greatest common divisor, of numbers 68
growing, of vector . 128

H
handler, condition (defn) . 275
hard linking, of file . 248
hash table . 153
hashing, of key in hash table 156
hashing, of object . 164
hashing, of string . 96
hashing, of symbol . 139
home directory, as pathname 245
hook, application (defn) . 177
host, in filename . 237
host, pathname component . 239
hostname, TCP . 267
hygienic . 35
hyper, bucky bit prefix (defn) 81

I
I/O, to bytevectors . 195
I/O, to files . 191
I/O, to strings . 193
identifier . 40
identifier (defn) . 10
identity, additive . 66
identity, multiplicative . 66
images, graphics . 300
immutable . 9
immutable string . 90
implementation restriction . 62
implicit begin . 27
improper list (defn) . 111
index, of bit string (defn) . 131
index, of list (defn) . 117
index, of string (defn) . 89
index, of subvector (defn) . 127
index, of vector (defn) . 127
inheritance, of environment bindings (defn) 6
initial environment (defn) . 7
initial size, of hash table . 162
input . 189
input form . 41
input form, to macro . 47
input operations . 195
input port (defn) . 189
input port, bytevector . 195
input port, console . 191
input port, current (defn) . 190

350 MIT/GNU Scheme 10.1.1

input port, file . 191
input port, string . 193
input, XML . 228
insensitivity, to case in programs (defn) 10
installed, as pathname component 241
instance, of condition (defn) 282
integer division . 66
integer, converting to bit string 134
interaction port, current (defn) 190
interactive input ports (defn) 195
internal definition . 22
internal definition (defn) . 21
internal representation, for character 84
internal representation, for inexact number 64
interned symbol (defn) . 136
interning, of symbols . 137
interpreted, procedure type 177
interpreter environment . 188
inverse, additive, of number . 66
inverse, multiplicative, of number 66
inverse, of bit string . 133
inverse, of boolean object . 135
invocation environment, of procedure (defn) 15
iteration expression (defn) . 28

J
joiner procedure, of strings . 97
joining, of strings . 97

K
key, of association list element (defn) 149
keyword . 35
keyword binding . 185
keyword constructor . 29
keyword constructor (defn) . 32
keyword, of special form (defn) 13

L
l, as exponent marker in number 64
lambda expression (defn) . 15
lambda list (defn) . 15
lambda, implicit in define . 21
lambda, implicit in let . 17
latent types (defn) . 3
lazy evaluation (defn) . 142
least common multiple, of numbers 68
length, of bit string . 132
length, of bit string (defn) . 131
length, of list (defn) . 111
length, of stream . 145
length, of string (defn) . 89
length, of vector (defn) . 127
letrec, implicit in define . 22
lexical binding expression . 17
lexical conventions . 9

lexical scoping (defn) . 7
library, system pathname . 246
limitations . 309
line style, graphics (defn) . 298
linking (hard), of file . 248
linking (soft), of file . 248
list (defn) . 111
list index (defn) . 117
list, association (defn) . 149
list, converting to stream . 144
list, converting to vector . 127
list, external representation 111
list, improper (defn) . 111
literal expression (defn) . 13
literal, and quasiquote . 23
literal, and quote . 23
literal, identifier as . 10
loading DLLs . 312
local part, of XML name . 231
location . 9
location, of variable . 6
logical operations, on fixnums 76
long precision, of inexact number 64
loopback interface . 270
looping (see iteration expressions) 28
lowercase . 10
lowercase, character conversion 83

M
macro . 35
macro keyword . 35
macro transformer . 35, 41, 47
macro use . 35
magnitude, of real number . 66
manifest types (defn) . 3
mapping, of list . 121
mapping, of stream . 145
mapping, of vector . 128
Matcher language . 221
Matcher procedure . 221
matching, of strings . 101
maximum, of numbers . 66
memoization, of promise . 142
merging, of pathnames . 243
meta, bucky bit prefix (defn) 81
minimum, of numbers . 66
modification time, of file . 251
modification, of bit string . 133
modification, of vector . 130
modulus, of hashing procedure 156
modulus, of integers . 66
moving, of bit string elements 133
moving, of vector elements . 130
multiple values, from procedure 182
multiplication, of numbers . 66
must be, notational convention 4
mutable . 9

Appendix C: Concept Index 351

mutable string . 90
mutation procedure (defn) . 10

N
name, of file . 248
name, of symbol . 137
name, of value (defn) . 6
name, pathname component 239
named lambda (defn) . 16
named let (defn) . 28
names, XML . 230
naming conventions . 10, 314
negative infinity (-inf) . 77
negative number . 65
nesting, of quasiquote expressions 24
newest, as pathname component 241
NFC . 94
NFD . 94
non-local exit . 180
Normalization Form C (NFC) 94
Normalization Form D (NFD) 94
not a number (NaN) . 77
notation, dotted (defn) . 111
notational conventions . 4
notification port, current (defn) 190
null string, predicate for . 96
number . 61
number, external representation 64
number, pseudo-random . 78
numeric precision, inexact . 64
numerical input and output . 71
numerical operations . 64
numerical types . 61

O
object hashing . 164
odd number . 65
oldest, as pathname component 241
one-dimensional table (defn) 151
operand, of procedure call (defn) 13
Operating-System Interface 237
operator, of procedure call (defn) 13
option, run-time-loadable . . 166, 169, 206, 221, 228
optional component, in entries 5
optional parameter (defn) . 15
order, of argument evaluation 14
ordering, of characters . 82
ordering, of numbers . 65
output . 189
output form . 41
output port (defn) . 189
output port, bytevector . 195
output port, console . 191
output port, current (defn) . 190
output port, file . 191
output port, string . 193

output procedures . 200
output, XML . 229

P
padder procedure . 98
padding, of string . 98
pair (defn) . 111
pair, external representation 111
pair, weak (defn) . 146
parameter list, of lambda (defn) 15
parameter, dynamic (defn) . 139
parameter, entry category . 5
parameter, optional (defn) . 15
parameter, required (defn) . 15
parameter, rest (defn) . 15
parent, of directory . 240
parent, of environment (defn) 6
parenthesis, as external representation 111, 127
Parser buffer . 216
Parser language . 219, 224
Parser procedure . 224
parser, XML . 228
Parser-buffer pointer . 216
parsing, of external representation 195
pasting, of bit strings . 132
pasting, of lists . 117
pasting, of symbols . 138
path, directory (defn) . 240
pathname . 237
pathname (defn) . 237
pathname components . 239
pathname, absolute (defn) . 246
pathname, relative (defn) . 246
period, as external representation 111
physical size, of hash table (defn) 161
port . 189
port (defn) . 189
port number, TCP . 267
port, bytevector . 195
port, console . 191
port, current . 190
port, file . 191
port, string . 193
positive infinity (+inf) . 77
positive number . 65
precision, of inexact number . 64
predicate (defn) . 10, 55
predicate, equivalence (defn) 55
prefix, of string . 104
prefix, of XML name . 231
pretty printer . 202
primitive procedure (defn) . 177
primitive, procedure type . 177
print name, of symbol . 137
printed output, in examples . 4
printing graphics output . 308
procedure . 177

352 MIT/GNU Scheme 10.1.1

procedure call (defn) . 13
procedure define (defn) . 21
procedure, closing environment (defn) 15
procedure, compiled . 177
procedure, compound . 177
procedure, construction . 15
procedure, entry format . 5
procedure, escape (defn) . 180
procedure, interpreted . 177
procedure, invocation environment (defn) 15
procedure, of application hook 182
procedure, primitive . 177
procedure, type . 177
product, of numbers . 66
promise (defn) . 142
promise, construction . 142
promise, forcing . 142
prompting . 209
proper tail recursion (defn) . 3
property list . 149, 151, 152
property list, of symbol . 136
protocol, restart (defn) . 277
pseudo-random number . 78

Q
qname, of XML name . 230
quote, as external representation 23
quotient, of integers . 66
quotient, of numbers . 66
quoting . 23

R
R4RS . 3
random number . 78
rational, simplest (defn) . 69
raw mode, of terminal port . 205
record-type descriptor (defn) 140
recursion (see tail recursion) . 3
red-black binary trees . 165
reduction, of list . 123
reference barrier . 148
reference, strong (defn) . 145
reference, variable (defn) . 13
reference, weak (defn) . 145
referentially transparent . 35
region of variable binding, do 29
region of variable binding, internal definition . . . 22
region of variable binding, lambda 15
region of variable binding, let 17
region of variable binding, let* 17
region of variable binding, letrec 18
region, of variable binding (defn) 7
regular file, predicate for . 249
rehash size, of hash table (defn) 162
rehash threshold, of hash table (defn) 162
relative pathname (defn) . 246

remainder, of integers . 66
renaming procedure . 47
renaming, of file . 248
REP loop . 273, 275, 276, 280
REP loop (defn) . 7
REP loop, environment of . 7
representation, external (defn) 8
required parameter (defn) . 15
resizing, of hash table . 161
resources, X graphics . 302
rest parameter (defn) . 15
restart (defn) . 277
restart effector (defn) . 277
restart protocol . 277
restarts, bound . 283, 285
result of evaluation, in examples 4
result, unspecified (defn) . 4
reversal, of list . 125
ringing the console bell . 202
root, as pathname component 240
run-time-loadable option . . . 166, 169, 206, 221, 228
runtime system . 3

S
s, as exponent marker in number 64
s-expression . 187
scalar value . 85
scheme concepts . 6
Scheme standard . 3
scope (see region) . 3
scoping, lexical (defn) . 7
scoping, static . 7
screen, clearing . 202
searching, of alist . 150
searching, of bit string . 132
searching, of list . 120
searching, of string . 101
searching, of vector . 129
selecting, of stream component 145
selection, components of pathname 244
selection, of bit string component 132
selection, of cell component 140
selection, of character component 85
selection, of ephemeron component 148
selection, of list component 116
selection, of pair component 112
selection, of vector component 128
selection, of weak pair component 146
semicolon, as external representation 11
sensitivity, to case in programs (defn) 10
sequencing expressions . 27
server socket . 267, 268
service, TCP . 267
set, of characters . 86
sets, using binary trees . 169
shadowing, of variable binding (defn) 6
short precision, of inexact number 64

Appendix C: Concept Index 353

signal an error (defn) . 4
signalling, of condition (defn) 272
simplest rational (defn) . 69
simplification, of pathname 238
single precision, of inexact number 64
size, of hash table (defn) . 161
slice, of string . 92
socket . 267
soft linking, of file . 248
special characters, in programs 11
special form . 15
special form (defn) . 13
special form, entry category . 5
specialization, of condition types 272, 273, 283,

284, 286
specialization, of condition types (defn) 271
specified result, in examples . 4
splitter procedure . 98
splitting, of string . 98
SRFI 0 . 50
SRFI 2 . 52
SRFI 8 . 51
SRFI 9 . 52
SRFI syntax . 49
standard operations, on textual port 211
standard Scheme (defn) . 3
start, of subvector (defn) . 127
static scoping . 7
static scoping (defn) . 3
static types (defn) . 3
stream (defn) . 144
stream, converting to list . 144
string builder procedure . 96
string index (defn) . 89
string length (defn) . 89
string slice . 92
string, character (defn) . 89
string, input and output ports 193
string, input from port . 199
string, input from textual port 213
string, interning as symbol . 137
string, of bits (defn) . 131
string, searching string for . 101
strong reference (defn) . 145
strong types (defn) . 3
strongly held data, of hash table 154
strongly held keys, of hash table 154
subprocess . 263
substring, of bit string . 132
substring, output to textual port 215
subtraction, of numbers . 66
subvector (defn) . 127
suffix, of string . 104
sum, of numbers . 66
super, bucky bit prefix (defn) 81
symbol (defn) . 136
symbolic link, predicate for 250
symbolic linking, of file . 248

synchronous subprocess . 263
syntactic closure . 41
syntactic closures . 40
syntactic environment . 40
syntactic keyword . 14, 35
syntactic keyword (defn) . 13
syntactic keyword binding . 185
syntactic keyword, identifier as 10
synthetic identifier . 40

T
table, association (defn) . 152
table, one-dimensional (defn) 151
tail recursion (defn) . 3
tail recursion, vs. iteration expression 28
taxonomical link, of condition type (defn) 271
terminal mode, of port . 205
terminal screen, clearing . 202
textual input port operations 213
textual output port operations 215
textual port (defn) . 189
textual port primitives . 211
textual port type . 211
tick . 261
time, decoded . 254
time, file . 254
time, string . 254
time, universal . 253
token, in programs (defn) . 9
top-level definition . 21
top-level definition (defn) . 21
top-level environment . 188
total ordering (defn) . 125
tracing output port, current (defn) 190
transformer environment . 41
tree, copying . 114
trees, balanced binary . 165, 168
trimmer procedure . 100
trimming, of string . 100
true, boolean object . 8
true, boolean object (defn) . 135
true, in conditional expression (defn) 24
truename, of input file . 249
type predicate, for 1D table 152
type predicate, for alist . 150
type predicate, for apply hook 183
type predicate, for bit string 132
type predicate, for boolean . 135
type predicate, for cell . 140
type predicate, for character 82
type predicate, for character set 87
type predicate, for compiled procedure 178
type predicate, for compound procedure 178
type predicate, for continuation 181
type predicate, for empty list 116
type predicate, for entity . 183
type predicate, for environment 185

354 MIT/GNU Scheme 10.1.1

Appendix C: Concept Index 355

type predicate, for EOF object 197
type predicate, for ephemeron 147
type predicate, for fixnum . 75
type predicate, for flonum . 77
type predicate, for hash table 158
type predicate, for list . 116
type predicate, for number . 64
type predicate, for pair . 112
type predicate, for pathname 242
type predicate, for pathname host 245
type predicate, for port . 190
type predicate, for primitive procedure 178
type predicate, for procedure 177
type predicate, for promise . 143
type predicate, for record . 141
type predicate, for record type 142
type predicate, for stream pair 144
type predicate, for symbol . 137
type predicate, for top-level environment 188
type predicate, for vector . 128
type predicate, for weak pair 146
type, condition . 272
type, of condition . 285
type, of procedure . 177
type, pathname component 239
types, latent (defn) . 3
types, manifest (defn) . 3
types, Windows . 310

U
unassigned binding . 185
unassigned variable . 13
unassigned variable (defn) . 6
unassigned variable, and assignment 22
unassigned variable, and definition 21
unassigned variable, and dynamic bindings 21
unassigned variable, and named let 28
unbound variable . 13
unbound variable (defn) . 6
Unicode . 85
Unicode code point . 85
Unicode normalization forms 94
Unicode scalar value . 85
Uniform Resource Identifier 230
uninterned symbol (defn) . 136
universal time . 253
unspecified result (defn) . 4
up, as pathname component 240
uppercase . 10
uppercase, character conversion 83
URI, of XML name . 230
usable size, of hash table (defn) 161
usage environment . 41

V
V as format parameter . 207
valid index, of bit string (defn) 131
valid index, of list (defn) . 117
valid index, of string (defn) . 89
valid index, of subvector (defn) 127
valid index, of vector (defn) 127
value, of variable (defn) . 6
values, multiple . 182
variable binding . 6, 185
variable binding, do . 29
variable binding, fluid-let . 20
variable binding, internal definition 22
variable binding, lambda . 15
variable binding, let . 17
variable binding, let* . 17
variable binding, letrec . 18
variable binding, top-level definition 21
variable reference (defn) . 13
variable, adding to environment 21
variable, assigning values to . 22
variable, binding region (defn) 7
variable, entry category . 5
variable, identifier as . 10
vector (defn) . 127
vector index (defn) . 127
vector length (defn) . 127
vector, converting to list . 115
version, pathname component 239
virtual coordinates, graphics (defn) 296

W
warning . 309
weak pair (defn) . 146
weak pair, and 1D table . 151
weak reference (defn) . 145
weak types (defn) . 3
weakly held data, of hash table 154
weakly held keys, of hash table 154
weight-balanced binary trees 168
whitespace, in programs (defn) 9
Win32 API names . 314
Win32 graphics . 306
Windows types . 310
working directory (see current

working directory) . 246

X
X display, graphics . 302
X geometry string, graphics 303
X graphics . 301
X resources, graphics . 302
X window system . 301
XML input . 228
XML names . 230
XML output . 229
XML parser . 228

Z
zero . 65

	Acknowledgements
	Overview
	Notational Conventions
	Errors
	Examples
	Entry Format

	Scheme Concepts
	Variable Bindings
	Environment Concepts
	Initial and Current Environments
	Static Scoping
	True and False
	External Representations
	Disjointness of Types
	Storage Model

	Lexical Conventions
	Whitespace
	Delimiters
	Identifiers
	Uppercase and Lowercase
	Naming Conventions
	Comments
	Additional Notations

	Expressions
	Literal Expressions
	Variable References
	Special Form Syntax
	Procedure Call Syntax

	Special Forms
	Lambda Expressions
	Lexical Binding
	Dynamic Binding
	Fluid-Let

	Definitions
	Top-Level Definitions
	Internal Definitions

	Assignments
	Quoting
	Conditionals
	Sequencing
	Iteration
	Structure Definitions
	Macros
	Binding Constructs for Syntactic Keywords
	Pattern Language
	Syntactic Closures
	Syntax Terminology
	Transformer Definition
	Identifiers

	Explicit Renaming

	SRFI syntax
	cond-expand (SRFI 0)
	receive (SRFI 8)
	and-let* (SRFI 2)
	define-record-type (SRFI 9)

	Equivalence Predicates
	Numbers
	Numerical types
	Exactness
	Implementation restrictions
	Syntax of numerical constants
	Numerical operations
	Numerical input and output
	Fixnum and Flonum Operations
	Fixnum Operations
	Flonum Operations

	Random Numbers

	Characters
	Character implementation
	Unicode
	Character Sets

	Strings
	Searching and Matching Strings
	Regular Expressions
	Regular S-Expressions
	Regsexp Procedures

	Lists
	Pairs
	Construction of Lists
	Selecting List Components
	Cutting and Pasting Lists
	Filtering Lists
	Searching Lists
	Mapping of Lists
	Reduction of Lists
	Miscellaneous List Operations

	Vectors
	Construction of Vectors
	Selecting Vector Components
	Cutting Vectors
	Modifying Vectors

	Bit Strings
	Construction of Bit Strings
	Selecting Bit String Components
	Cutting and Pasting Bit Strings
	Bitwise Operations on Bit Strings
	Modification of Bit Strings
	Integer Conversions of Bit Strings

	Miscellaneous Datatypes
	Booleans
	Symbols
	Parameters
	Cells

	Records
	Promises
	Streams
	Weak References
	Weak Pairs
	Ephemerons
	Reference barriers

	Associations
	Association Lists
	1D Tables
	The Association Table
	Hash Tables
	Construction of Hash Tables
	Basic Hash Table Operations
	Resizing of Hash Tables
	Address Hashing

	Object Hashing
	Red-Black Trees
	Weight-Balanced Trees
	Construction of Weight-Balanced Trees
	Basic Operations on Weight-Balanced Trees
	Advanced Operations on Weight-Balanced Trees
	Indexing Operations on Weight-Balanced Trees

	Procedures
	Procedure Operations
	Arity
	Primitive Procedures
	Continuations
	Application Hooks

	Environments
	Environment Operations
	Environment Variables
	REPL Environment
	Top-level Environments

	Input/Output
	Ports
	File Ports
	String Ports
	Bytevector Ports
	Input Procedures
	Reader Controls

	Output Procedures
	Blocking Mode
	Terminal Mode
	Format
	Custom Output
	Prompting
	Textual Port Primitives
	Textual Port Types
	Constructors and Accessors for Textual Ports
	Textual Input Port Operations
	Textual Output Port Operations

	Parser Buffers
	Parser Language
	*Matcher
	*Parser
	Parser-language Macros

	XML Support
	XML Input
	XML Output
	XML Names
	XML Structure

	Operating-System Interface
	Pathnames
	Filenames and Pathnames
	Components of Pathnames
	Operations on Pathnames
	Miscellaneous Pathname Procedures

	Working Directory
	File Manipulation
	Directory Reader
	Date and Time
	Universal Time
	Decoded Time
	File Time
	Time-Format Conversion
	External Representation of Time

	Machine Time
	Subprocesses
	Subprocess Procedures
	Subprocess Conditions
	Subprocess Options

	TCP Sockets
	Miscellaneous OS Facilities

	Error System
	Condition Signalling
	Error Messages
	Condition Handling
	Restarts
	Establishing Restart Code
	Invoking Standard Restart Code
	Finding and Invoking General Restart Code
	The Named Restart Abstraction

	Condition Instances
	Generating Operations on Conditions
	Condition Abstraction
	Simple Operations on Condition Instances

	Condition Types
	Condition-Type Taxonomy

	Graphics
	Opening and Closing of Graphics Devices
	Coordinates for Graphics
	Drawing Graphics
	Characteristics of Graphics Output
	Buffering of Graphics Output
	Clipping of Graphics Output
	Custom Graphics Operations
	Images
	X Graphics
	X Graphics Type
	Utilities for X Graphics
	Custom Operations on X Graphics Devices

	Win32 Graphics
	Win32 Graphics Type
	Custom Operations for Win32 Graphics

	Win32 Package Reference
	Overview
	Foreign Function Interface
	Windows Types
	Windows Foreign Procedures
	Win32 API names and procedures

	Device Independent Bitmap Utilities
	DIB procedures
	Other parts of the DIB Utilities implementation

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Binding Index
	Concept Index

